
1

Sequential message authentication code without

random oracles

Bin Wang
a*
 and Xiaojing Hong

b

a
No.196 West HuaYang Road, Information Engineering College of Yangzhou

University, Yangzhou City, Jiangsu Province, 225127 P.R.China

b
No.5 South YangZiJiang Road, Yangzhou City, Jiangsu Province, 225101 P.R. China

E-mail: jxbin76@yeah.net
 a*

Abstract: Katz et al. provided a generic transform to construct aggregate message

authentication codes and imposed a lower bound on the length of one aggregate MAC tag.

The lower bound shows that the required tag length is at least linear with the number of

messages when fast verification such as constant or logarithmic computation overhead is

required. Aggregate message authentication codes are useful in settings such as mobile ad-hoc

networks where devices are resource-constrained and energy cost is at a premium. In this

paper, we introduce the notion of sequential aggregate message authentication code

(SAMAC). We present a security model for this notion under unforgeability against chosen

message and verification query attack and construct an efficient SAMAC scheme by

extending a number-theoretic MAC construction due to Dodis et al. We prove the security of

our SAMAC scheme under the CDH assumption in the standard model. Our SAMAC scheme

improves the lower bound with the help of the underlying algebraic structure. Performance

analysis shows that our SAMAC scheme yields constant computation for the verifier as well

as fixed length for one aggregate.

Keywords: Message authentication code; Sequential aggregate; CDH assumption; Chosen

message and verification query attack

1. Introduction

Aggregate signature proposed by Boneh et al. [6] allows a collection of signatures from

(possibly different) signers on (possibly different) messages to be aggregated into one short

aggregate signature. The short aggregate signature can assure a verifier that all signers indeed

signed for the collection of messages respectively. Aggregate signatures are very useful in

2

practical applications such as certificate chains, secure routing protocols [12] where

compressing a collection of signatures will greatly improve application performance.

Sequential aggregate signature proposed in [15], a variant of aggregate signature, is

distinct from aggregate signature in that aggregation operations are performed by each signer

in turn and it is well suited for secure BGP protocol [17]. It is also shown in [4] how to

construct proxy signature via sequential aggregate signature. Lu et al. presented a sequential

aggregate signature scheme [14] based on Waters signature [19] secure in the standard model

with the advantage that the costly computational overhead (e.g, pairing operations) of it is

constant, while that of the aggregate signature scheme [6] is linear with the number of the

messages.

Message authentication code, the private-key analog of digital signature, is one of the

main primitives of interest in cryptography. Similarly, aggregate message authentication code
is the private-key analog of aggregate signature. At present, there are relatively less research

works on this topic [3,7] than those on aggregate signature. The formal study of it was not

initiated until the work of Katz et al. [11]. It is pointed out in [11] that aggregate message

authentication codes can also be used to improve efficiency of authenticated schemes that

deal with aggregation of data in mobile ad-hoc networks [10,18], where devices are

resource-constrained and the energy cost of communication is at a premium. They designed a

security model that supports to aggregate MAC tags without any inherent order and

constructed two secure aggregate message authentication code schemes. Their idea is to use

XOR operations to compress MAC tags but the verification need re-compute MAC tags.

One drawback of the first aggregate message authentication code scheme (KL Scheme 1)

in [11] is that a verifier has to re-compute l MAC operations to verify an aggregate MAC

tag of fixed length on a set of l messages. Although the verifier (e.g., base station) may be

more powerful than other nodes, it is still desirable to offload the processing time of the

verifier as much as possible. To address this issue, they suggested a trade off between the

length of one aggregate tag and the time required to verify the tag. In other words, one can

verify a tag in constant time at the price of the tag of ()O l length. The second aggregate

message authentication code scheme (KL Scheme 2), which lies between the above two

3

extremes, achieves ()O l verification time but the aggregate tag has length ()O l .

Moreover, they also proved by their definition that the length of one aggregate MAC tag is at

least ()lΩ when logarithmic (log)O l computation overhead for verification is required.

Traditionally, pseudorandom functions are used to construct message authentication

codes. Pseudorandom function constructions can be relied upon symmetric-based primitives

such as CBC MAC [2] or number-theoretic assumptions [16]. Although the former have the

speed advantage, their security cannot be reduced to number-theoretic assumptions and they

lack algebraic properties useful for some specific applications. On the other hand, most

number-theoretic pseudorandom function constructions are comparably inefficient. It is an

open question how to build an efficient MAC based on number-theoretic assumptions such as

DDH assumption. To address this issue, Dodis et al. [8] presented a novel idea to design

efficient probabilistic message authentication codes based on number-theoretic assumptions.

Their idea is to remove the public verification functionality inherent in digital signatures to

construct message authentication codes. In other words, only the secret key is used to verify

validity of MAC tags.

We note that the generic construction of aggregation message authentication codes in [11]

does not take potential algebraic structure into account and their result is obtained by

assuming arbitrary order to aggregate MAC tags. Inspired by the ideas presented in [8], we

aim to improve the lower bound [11] imposed on the length of one aggregate tag by

constructing a sequential aggregation message authentication code (SAMAC) scheme based

on number-theoretic assumptions. At first, it seems that we can simply use the technique in [8]

to transform the sequential aggregate signature [14] secure in the standard model by removing

the public verification functionality in order to yield a SAMAC scheme secure in the standard

model. However, this method does not work because a signer in their scheme [14] need access

the public keys of other users appearing in the aggregate-so-far in order to perform aggregate

operation on it. The resulting scheme is not practical since the public key size required by

their scheme [14] is quite large. For instance, the key of one user takes around 38KB to store

if we assume a 160-bit collision resistant hash function. The authors [14] also suggested an

open question to reduce the size of user keys for sequential aggregate signatures secure in the

4

standard model. On the other hand, it seems peculiar to keep the concept of public key in a

symmetric primitive such as aggregate message authentication code.

We choose to extend the message authentication code scheme MACBB [8] which is based

on Boneh-Boyen signature [5] to yield an efficient SAMAC scheme secure in the standard

model. Performance analysis shows that our SAMAC scheme only requires a verifier to

compute less than three exponentiation operations to verify validity of an aggregate tag,

independent of l , the number of signers. In addition, the length of an aggregate tag consists

of only three group elements.

The rest of this paper is organized as follows. At first, we describe the notations used in

this paper and bilinear mappings in section 2. Syntax of SAMAC schemes is introduced in

section 3. Katz et al. [11] considered security for aggregation message authentication codes

under the notion of “unforgeability against chosen message attack(uf-cma)” [9]. It is

reasonable in their setting because they mainly considered deterministic MACs constructed

by primitives like block ciphers or hash functions. In this case, “unforgeability against chosen

message (uf-cma) attack” is equivalent to “unforgeability against chosen message and

verification query (uf-cmva) attack. For probabilistic MACs, some MAC constructions are

only uf-cma secure, but not uf-cmva secure [1,13].

As our SAMAC scheme is probabilistic, we define security model for SAMAC schemes

under the notion of “unforgeability against chosen message and verification query

attack(uf-cmva)”. In view of XOR operations used by the generic construction [11] make it

difficult to take advantage of potential algebraic properties, we design a SAMAC scheme by

extending the “algebraic message authentication code scheme” MACBB proposed in [8] and

prove our SAMAC scheme to be secure under the CDH assumption in the standard model.

Our scheme is proven to be selectively secure. That is, an adversary must commit the target

forgery in advance. It is well known that a selectively secure cryptographic scheme implies a

full secure one at the price of loss of a security degradation factor by guessing the forgery.

Finally, we evaluate the performance of our SAMAC scheme to show that our scheme yields

constant computation for a verifier as well as fixed length for an aggregate tag.

2. Preliminaries

5

2.1 Notation

We denote by λ a security parameter. If A is a randomized algorithm, then

1 2(, , ;)y A x x r�← means that A has input 1 2, ,x x � and uniform random coins r , and

the output of A is assigned to y . We use the notation Rx S← to mean “the element x

is chosen with uniform probability from the set S ”.

2. 2 Bilinear pairing

Given a security parameter λ , an efficient algorithm (1)PG λ
 outputs (, , , ,)Te G G g p ,

where G is a cyclic group of a prime order p generated by g . TG is a cyclic group of

the same order, and let : Te G G G× → be a efficiently computable bilinear function with

the following properties:

1. Bilinear: (,) (,) ,a b abe g g e g g= for all , pa b Z∈ .

2. Non-degenerate: (,) 1
TG

e g g ≠

3. Sequential aggregate message authentication codes

3.1 Syntax of sequential aggregate message authentication codes

A sequential aggregate message authentication code (SAMAC) scheme consists of the

following algorithms:

(1) Setup: Given a security parameter λ , output a common parameter cpar .

(2) KG: Given the common parameter cpar , this key-generation algorithm generates a

secret key k and its unique public reference id .

(3) Mac: Given a message m and a secret key k , this tagging algorithm outputs a tag

by running ((,),)Mac k id m t→ .

(4) AMac: Given a message m , a key-reference pair (,)k id , an aggregate-so-far tag

pt , a set of message-reference pairs 1{(,)}li i iMI id m
=

= , l n< . Let 1{ }li iI id
=

= be the

corresponding set of references derived from MI . n is a system parameter that serves as

an upper bound on the number of signers. If id I∉ , this aggregate-tagging algorithm outputs

6

an aggregate tag: ((,), , ,)AMac k id MI m pt t→ . This description means that a signer is

not allowed to sign twice in one aggregate tag.

(5) Vrfy: Given a set of message-reference pairs 1{(,)}li i iMI id m
=

= , a set of

key-reference pairs: 1{(,)}li i iK k id
=

= , l n≤ , and a tag t , this verification algorithm first

verifies that no reference appears more than once, and outputs 1 to denote t is a valid tag on

the messages in MI under the keys in K ; otherwise it outputs 0. There is no inherent order

enforced by this verification algorithm.

Correctness: For any message m , key-reference pair (,) (1)k id KG λ
← , an

aggregate-so-far tag pt , and two sets: 1{(,)}li i iMI id m
=

= , 1{(,)}li i iK k id
=

= , l n< , if

(, ,) 1Vrfy MI K pt → and (, , ,)AMac k MI m pt t→ ，we require:
 Pr[((,), (,),) 1] 1Vrfy MI m id K k id t → =∪ ∪

3.2 Security model for sequential aggregate message authentication codes

3.2.1 Unforgeability

Given a sequential aggregate message authentication code (SAMAC) scheme, consider

the following game
uf-cmva

SAMACExp (, ,)A nλ between an adversary A and a game challenger

S . Our description is obtained by extending the standard security notion of unforgeability

under chosen message and verification query attack for MAC schemes.

Stage 1: The challenger S runs (1)KG λ
 to obtain a challenge key-reference pair

* *(,)k id and two empty sets ,KS TS are also created, which are used to keep track of the

registered keys as well as tag queries issued by the adversary respectively. Then A is

provided with the reference
*id .

Stage 2: A can issue key queries, tag queries as well as verification queries which are

handled as follows:

()Key ⋅

 (,) (1)i ik id KG λ
← ;

7

{ }iKS KS id← ∪ ; return ik ;

(, ,)Tag m MI pt

 Let 1{(,)}li i iMI id m
=

= and 1{ }li iI id
=

= be derived from MI ;

 If l n≥ , return ⊥ ;

If iid I∃ ∈ but iid KS∉ , return ⊥ ;

If
*id I∉ and each reference iid I∈ appears only once,

* *((,), , ,)AMac k id MI m pt t→ ; { }TS TS m← ∪ ;

return t ;

(,)V MI t

 Let 1{(,)}li i iMI id m
=

= and 1{ }li iI id
=

= be derived from MI ;

 If l n> , return ⊥ ;

If iid I∃ ∈ but iid KS∉ , return ⊥ ;

Let 1{(,)}li i iK k id
=

= , where ik is the secret key associated with iid I∈ ;

If each reference iid I∈ appears only once,

 Run (, ,)Vrfy MI K t b→ ; return the bit b ;

Otherwise return ⊥ ;

Finally, A outputs a forgery
*t on a set of message-reference pairs

*

1{(,)}li i iMI id m
=

= . Let
*

1{ }li iI id
=

= be the set of references derived from
*MI . We

require
* *,id I l n∈ ≤ and each reference in

*I appears only once. Let
*

1{(,)}li i iK k id
=

= ,

where ik is the secret key associated with
*

iid I∈ . A wins the game if the following

hold:

8

(1)
* * *(, ,) 1Vrfy MI K t → ;

(2) and the message
*m bound with

*id is not queried to the tag oracle by the

adversary. That is,
*m TS∉ .

The advantage
uf-cmva

SAMACAdv (, ,)A nλ of A is defined to be the probability of A

winning in this game. A SAMAC scheme is unforgeable if
uf-cmva

SAMACAdv (, ,)A nλ is negligible

in λ for every PPT adversary A .

Remark: Selective security is defined by
suf-cmva

SAMACExp (, ,)A nλ , which is the same as

uf-cmva

SAMACExp (, ,)A nλ except that the adversary must declare its target message
*m bound

with
*id in advance.

4 Our SAMAC scheme

 We adapt the message authentication code scheme MACBB in [8] to yield a SAMAC

scheme, which consists of the following algorithms:

1. Setup: Given the security parameter λ , (1)PG λ
 outputs (, , , ,)Te G G g p . The

common parameter is (, , , ,)Tcpar e G G g p= . Messages to be signed are viewed as

elements in pZ .

2. KG: Picks a secret key k = 3

1 2(, ,) R px x y Z← . The public reference for this key is a

unique identifier id .

3. Mac: Given a secret key k = 1 2(, ,)x x y and a message m , a tag is generated as:

1 1 2 1 2

1 2 3(, ,) (, ,)x y x m x x m xt t t t U g U g⋅ ⋅ + ⋅ +
= = ⋅ , \{1 }R GU G←

where 1G is the identity over the group G . The seemingly redundant 1 2x m xg ⋅ +
 in this

tag is introduced for fast aggregation.

4. AMac: Given a message m , a key-reference pair (,)k id , an aggregate-so-far tag

9

pt , a set of message-reference pairs 1{(,)}li i iMI id m
=

= , l n< , an aggregate tag is

generated as follows:

(1) Let 1{ }li iI id
=

= be the corresponding set of references derived from MI . If

id I∈ , return ⊥ ;

(2) Otherwise parse pt as 1 2 3(, ,)pt pt pt and the secret key k as 1 2(, ,)x x y ;

(3) If 1 1Gpt = , return ⊥ ;

(4) Compute 1 1 2

2 2 1()x y x m xt pt g pt⋅ ⋅ +
= ⋅ ⋅ , 1 2

3 3

x m xt pt g ⋅ +
= ⋅ ;

(5) Pick � R pu Z← and compute
� �

1 1 2 2 3, ()u ut pt g t t t= ⋅ = ⋅ ;

(6) Output 1 2 3(, ,)t t t t= .

5. Vrfy: Given a set of message-reference pairs 1{(,)}li i iMI id m
=

= , a set of

key-reference pairs: 1{(,)}li i iK k id
=

= , l n≤ , and a tag t , the verification algorithm first

verifies that each reference appears only once and proceeds as follows:

(1) Parse the tag t as 1 2 3(, ,)t t t , the secret key
() () ()

1 2(, ,)i i i

ik x x y= ,1 i l≤ ≤ ;

(2) Let
() () () ()

1 2 1

1 1

,
l l

i i i i

l i l

i i

a x m x b x y
= =

= ⋅ + =∑ ∑ . Output 1 if

 1 2 1 31 ()l l lb a a

Gt t g t t g≠ ∧ = ⋅ ∧ = (1)

We consider (1 ,1 ,1)G G Gpt = as a valid tag under an empty set of signers. In this case,

we take 0 0 0a b= = . In addition, it is not difficult to verify that the output of

�((,), , , (1 ,1 ,1);)G G GAMac k id m pt u t∅ = → over the randomness �u is identically

distributed to that of ((,),)Mac k id m t→ .

Correctness: For any message m , key-reference pair (,) (1)k id KG λ
← , an

aggregate-so-far tag pt , and two sets: 1{(,)}li i iMI id m
=

= , 1{(,)}li i iK k id
=

= , 1 l n≤ < , if

(, ,) 1AVrfy MI K pt → , we proceed as follows:

10

(1) Parse the aggregate-so-far tag pt as 1 2 3(, ,)pt pt pt , the secret keys k = 1 2(, ,)x x y ,

and
() () ()

1 2(, ,)i i i

ik x x y= ,1 i l≤ ≤ ;

(2) Let
() () () ()

1 2 1

1 1

,
l l

i i i i

l i l

i i

a x m x b x y
= =

= ⋅ + =∑ ∑ . (, ,) 1AVrfy MI K pt → means:

1 2 1 3() 1 ()l l lb a au

Gpt g pt g pt pt g= ≠ ∧ = ⋅ ∧ =

Assume � R pu Z← be the randomness used by the algorithm Amac. The output

1 2 3(, ,)t t t t= of �((,), , , ;)AMac k id MI m pt u is computed as follows:

 At step (4) of Amac, 1 1 2

2 2 1()x y x m xt pt g pt⋅ ⋅ +
= ⋅ ⋅ , 1 2

3 3

x m xt pt g ⋅ +
= ⋅ ;

 Plugging the expressions of 1 2 3, ,pt pt pt into 2 3,t t , we obtain:

 1 1 2

2 1 1(()) ()l lb a x y x m xt g pt g pt⋅ ⋅ +
= ⋅ ⋅ ⋅ 1 1 2

1()l lb x y a x m x
g pt

+ ⋅ + ⋅ +
= ⋅

1 21 2

3
l la a x m xx m xt g g g

+ ⋅ +⋅ +
= ⋅ =

At the re-randomization step (5) of Amac,
� �

1 1

u u ut pt g g +
= ⋅ = ,

�

2 2 3()
ut t t= ⋅ .

�
1 1 2 1 2

2 1() ()l l lb x y a x m x a x m x ut g pt g
+ ⋅ + ⋅ + + ⋅ +

= ⋅ ⋅

�

1 1 2 1 1 2

1() ()l l l lb x y a x m x b x y a x m xu ug g g t
+ ⋅ + ⋅ + + ⋅ + ⋅ ++

= ⋅ = ⋅

The above result means ((,), (,),) 1Vrfy MI m id K k id t →∪ ∪ .

Although our scheme does not allow a signer to sign more than once in an aggregate tag,

we can adopt the trick suggested in [section 3.2, 14] to handle this issue.

5 Security Analysis

Theorem 1: Assume there is an adversary A running in time t that can win the

experiment
suf-cmva

SAMACExp (, ,)A nλ with probability ε . We can construct a simulator S that is

able to solve the CDH problem over the group G equipped with bilinear mapping with

probability
/

ε ε≥ , running in time
/ ()k t Vt t O q q q= + + + , where , ,k t Vq q q are the

number of key queries, tag queries and verification queries issued by A respectively.

Proof: The simulator S takes an instance {(, ,) : , }x y

R pg g g x y Z← of the CDH problem

11

over the group G equipped with bilinear mapping as input and simulates the environment of

suf-cmva

SAMACExp (, ,)A nλ for the adversary A as follows.

At first, S receives the target message *m chosen by A . S picks R pa Z← , the

public reference
*id and implicitly defines the secret key

* *

1 2(, ,)k x x x x y= ← ← ,

where
* *x a m x← − ⋅ . With this definition of the secret key

*k , a correct tag on a message

m under
*k is of the form:

((*)) (*)(, ,)u xy u a x m m a x m mt g g g+ + − + −

= (2)

The queries issued by A are handled as follows:

()Key ⋅

 Pick a secret key ik =
() () () 3

1 2(, ,)i i i

R px x y Z← . The reference for this key is a unique

public identifier id .

{ }iKS KS id← ∪ ; return ik ;

(, ,)Tag m MI pt

If
*m m= , return ⊥ ;

If MI is empty,

 Pick pr Z← and implicitly define
*() ()u y m m r= − − + .

As 0u = implies
*()y m m r= − ⋅ , we can output the CDH solution

*()()xy x m m rg g − ⋅
= . In the following, assume 0u ≠ . A correctly distributed tag is constructed

as follows:

/ ((*)) (*)(, ,)u xy u a x m m a x m mt g g g+ + − + −

= ;

*

1

()u y rm mg g g

−

−= ⋅ ,
*((*)) (*)() ()

a

xy u a x m m y a r x m m rm mg g g g

−

+ + − ⋅ − ⋅−= ⋅ ⋅ ,

(*) *()a x m m a x m mg g g+ − −

= ⋅ ;

 { }TS TS m← ∪ ;

12

 return
/t ;

Otherwise, let 1{(,)}li i iMI id m
=

= and 1{ }li iI id
=

= be derived from MI ;

(1) If l n≥ , return ⊥ ;

(2) If iid I∃ ∈ but iid KS∉ , return ⊥ ;

(3) If
*id I∉ and each reference iid I∈ appears only once, the simulator now

constructs the rest of the required aggregate t by adding to /t the component on im

computed by running ((,), , ,)i i iAMac k id m⋅ ⋅ in turn,1 i l≤ ≤ , where ik is the secret key

of iid .

This can be accomplished because the simulator knows the registered secret keys. The

output is identical to that of
* *((,), , ,)AMac k id MI m pt on condition that the

aggregate-so-far pt is correct. This is because the positions of signers appearing in an

aggregate are interchangeable by the structure of the aggregate and our aggregation operation

involves re-randomization such that the output is uniformly distributed over the correct

aggregates. This is also the proof strategy adopted in [14].

(4) The simulator then proceeds as follows:

 If (, ,) 1Vrfy MI K pt → , return t ;

 Otherwise,

 If 1 1Gpt = , return ⊥ ;

 If 2 1()l lb a
pt g pt≠ ⋅ , compute

*

2 2 ,b R pt t g b Z= ⋅ ← ;

 If 3
lapt g≠ , compute

*

3 3 ,c R pt t g c Z= ⋅ ←

 return t ;

(,)V MI t

 Let 1{(,)}li i iMI id m
=

= and 1{ }li iI id
=

= be derived from MI ;

 If l n> , return ⊥ ;

13

If iid I∃ ∈ but iid KS∉ , return ⊥ ;

Let 1{(,)}li i iK k id
=

= , where ik is the secret key associated with iid I∈ ;

The case
*id I∉ can be handled easily. Hence we only consider the case that

*id I∈ .

Assume that each reference iid I∈ appears only once and without loss of generality

*

1id id= .

If
*

1m m= , return ⊥ ; otherwise proceed as follows:

(1) Parse the tag t as 1 2 3(, ,)t t t ,
() () ()

1 2(, ,)i i i

ik x x y= , 2 i l≤ ≤ ;

(2) Let
() () () ()

1 1 2 1 1

2 2

,
l l

i i i i

l i l

i i

a x m x b x y
− −

= =

= ⋅ + =∑ ∑ ;

(3) Compute
/ /

2 2 1 3 3(()),l l lb a a
t t g t t t g= ⋅ = ;

That is, we eliminate the parts involved with the registered secret keys to decide whether

/ /

1 2 3(, ,)t t t is a correctly distributed tag on 1m under
*id ;

(4) Assume 1 1((*)) (*))/ /

1 2 3(, ,) (, ,)xy u a x m m z a x m m wut t t g g g+ + − + + − +
= ;

(5) If 1 1Gt = or
/ *

3 ()a x m mt g g −
≠ ⋅ , outputs 0; otherwise assume

*

1() ()u y m m r= − − + for some unknown pr Z∈ ;

(6) Plugging the expression of u into /

1 2(,)t t , we have

1t =
*

1

1

()m my rg g

−

−
⋅ ;

*
1 1 1((*)) (*)/

2 ()

a

xy u a x m m z r m m m mx a r y zt g g g g g

−

+ + − + ⋅ − −⋅ ⋅
= = ⋅ ⋅ ⋅ ;

Compute
* *

1 1() ()

1

m m r m myt g g
− −

= , 1(*)/

2 1()
r m ma x zt t g g⋅ −⋅

= ⋅ .

(7) If
*

1()/

2 1 1(, ()) (,)
m ma x ye g t t e g t g

−
= , the simulator outputs 1 since this implies

0z = ; otherwise it outputs 0.

Finally, A outputs a forgery
*t on a set of message-reference pairs

14

*

1{(,)}li i iMI id m
=

= . Let
*

1{ }li iI id
=

= be the set derived from
*MI . We require

* *,id I l n∈ ≤ and each reference appears only once. Assume without loss of generality

*

1id id= and
*

1m m= since the positions of signers are interchangeable by the structure of

an aggregate.

Let
*

1{(,)}li i iK k id
=

= , where ik is the secret key associated with
*

iid I∈ .

(1) Parse
* * * *

1 2 3(, ,)t t t t= ,
() () ()

1 2(, ,)i i i

ik x x y= , 2 i l≤ ≤ ;

(2) If
*m TS∉ , proceed as follows:

Let
() () () ()

1 1 2 1 1

2 2

,
l l

i i i i

l i l

i i

a x m x b x y
− −

= =

= ⋅ + =∑ ∑ ;

The adversary A wins if * * *(, ,) 1Vrfy MI K t → , which means:

* *
1 1 1 1* * * * *

2 1 1 1 1() () () ()l l l lb a b axy x m x xy at g g t t g g t t− − − −⋅ +
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ .

(3) The simulator outputs the CDH solution as:

 1 1* *

2 1(())l lb a axyg t g t− −+
= ⋅

 The correctness of the solution can be checked as follows:

1 1

?
* *

2 1(,) (, (()))l lb a ax ye g g e g t g t− −+
= ⋅

Let E be the event “the implicitly defined randomness 0u = when answering one

tag query” and F be the event “the simulator S solves the CDH problem”. As the simulator

S provides a perfect simulation for the adversary A on condition that E occurs, the

probability
/

ε that S solves the CDH problem can be estimated as follows:

/ Pr[|]Pr[] Pr[|]Pr[]F E E F E Eε = +

 1 Pr[] Pr[] Pr[] (1)E E Eε ε ε ε= ⋅ + = + ⋅ − ≥

Although our scheme is selectively secure, it is well known that a selectively secure

cryptographic scheme implies a full secure one at the price of loss of a security degradation

15

factor by guessing the forgery. In addition, the typical message transmitted in the mobile

ad-hoc networks may be very short (e.g. 16 bit status information [11]).

6. Performance Analysis

In this section, we evaluate the performance of our sequential aggregation message

authentication code scheme and the two aggregate message authentication code schemes [11]

in terms of the computational cost to verify an aggregate and the length of an aggregate. The

result is stated in Table 1, where l is the number of signers. Exp, MAC denote one

exponentiation operation and one underlying MAC operation respectively. | |T represents

the length of a MAC tag T produced by the underlying MAC scheme. | |G represents the

length of one element of the group G . The optimized processing time of one

multi-exponentiation
a bg h is less than that of 1.5 Exp.

The KL scheme 1 in [11] requires a verifier to re-compute l MAC operations when the

length of an aggregate is fixed. On the other hand, they show constant verification time can be

achieved at the price of a tag of length | |l T . They also demonstrated that the length of one

aggregated tag is at least ()lΩ when logarithmic computation overhead is required for

verification. To address this issue, they presented an scheme, which lies between the above

two extremes, to obtain ()O l verification time and the aggregate tag has length

| | ()T O l .

As their result is obtained by assuming to aggregate MAC tags in any order and XOR

operations used by their generic construction make it difficult to take advantage of potential

algebraic properties, we present a sequential aggregated MAC scheme based on the

number-theoretic CDH assumption to improve the lower bound in [11]. As a result, we obtain

constant verification time as well as fixed length for one aggregate as shown in the table.

7. Conclusion

16

The formal study of aggregate message authentication code was not initiated until the

work of Katz et al. [11]. Aggregate message authentication codes are useful for improving the

efficiency of authenticated schemes that deal with aggregation of data in mobile ad-hoc

networks. They also demonstrated that the length of one aggregate MAC tag is at least linear

when logarithmic verification time is required. In this paper, we introduce the notion of

sequential aggregate message authentication code and provide an efficient SAMAC

construction by extending the number-theoretic message authentication code scheme MACBB

[8]. The selective security of our SAMAC scheme is proved under the CDH assumption

without random oracles. The algebraic structure underlying our construction helps to yield

constant verification time and fixed length for one aggregate.

Acknowledgement

This work is supported by Natural Science Foundation of Higher Education Institutions,

in Jiangsu Province office of education, P.R. China (Grant No. 10KJD520005).

References

[1] M. Bellare, O. Goldreich, and A. Mityagin. The power of verification queries in message

authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309,

2004. http://eprint.iacr.org/.

[2] M. Bellare, K. Pietrzak, P.Rogaway. Improved security analyses for CBC MACs.

CRYPTO 2005, LNCS 3621 (2005), 527–545.

[3] R. Bhaskar, J. Herranz, and F. Laguillaumie. Aggregate designated verifier signatures and

application to secure routing. Intl. J. Security and Networks 2(3/4) (2007) 192–201.

[4] A. Boldyreva, A. Palacio, B. Warinschi, Secure proxy signature schemes for delegation of

signing rights, Journal of Cryptology, 25(1), (2012) 57-115

[5] Boneh, D., Boyen, X., Short signatures without random oracles. EuroCrytpt 2004, LNCS,

3027(2004), 56–73.

[6] D. Boneh, C.Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted signatures

from bilinear maps, EuroCrytpt 2003, LNCS 2656 (2003) 416-432.

17

[7] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-network aggregation in sensor

networks. In ACM CCS ’06: 13th ACM Conf. on Computer and Communications Security,

pages 278–287. ACM Press, 2006.

[8] Y. Dodis, E. Kiltz, K. Pietrzak, D.Wichs, Message authentication, revisited , EuroCrytpt

2012, LNCS 7237 (2012) 355-374.

[9] S. Goldwasser, S.Micali and R. Rivest, A digital signature scheme secure against adaptive

chosen-message attacks, SIAM Journal of Computing, 17(2) (1988) 281-308.

[10] L. Hu and D. Evans. Secure aggregation for wireless networks. In Workshop on Security

and Assurance in Ad-Hoc Networks (2003), 384–394.

[11] J. Katz, Y. Lindell, "Aggregate message authentication codes", IET Information security,

to be published

[12] S.Kent, C.Lynn, K.Seo, Secure border gateway protocol (secure-BGP), IEEE J.Sel.Areas

Commun., 18(4) (2000), 582-592.

[13] E. Kiltz, K. Pietrzak, D.Cash, A. Jain, and D. Venturi, Efficient authentication from hard

learning problems. EUROCRYPT 2011, LNCS 6632 (2011), 7–26.
[14] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B.Waters, Sequential aggregate signatures,

multisignatures and verifiably encrypted signatures without random oracles, Journal of

Cryptology, 26(2), (2013) 340-373

[15] A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham, Sequential aggregate signatures from

trapdoor permutation, EuroCrytpt 2004, LNCS 3027 (2004) 74-90.

[16] M. Naor, O. Reingold. Number-theoretic constructions of efficient pseudo-random

functions. In: 38th Annual Symposium on Foundations of Computer Science, IEEE Computer

Society Press (1997) 458–467.

[17] D. Nicol, S. Smith, M. Zhao, Evaluation of efficient security for BGP route

announcements using parallel simulation, Simul.Model.Pract.Theory, 12(2004) 187–216

[18] B. Przydatek, D. Song, and A. Perrig, SIA: Secure information aggregation in sensor

networks, 1st ACM Conference on Embedded Networked Sensor Systems (SenSys) 2003,

255–265.
[19] B. Waters, Efficient identity-based encryption without random oracles, EuroCrypt 2005,

LNCS 3494(2005) 114–127.

18

Table 1. Performance comparison

Scheme Computation cost to verify

an aggregate tag

Length of an aggregate tag

KL scheme 1 [11] l MAC | |T

KL scheme 2 [11] ()O l MAC (| |)O T l

The proposed

SAMAC scheme

<2.5Exp 3 | |G

