
On Stochastic Security of Java Crypto and NIST
DRBG Pseudorandom Sequences

Yongge Wang
Dept. SIS, UNC Charlotte
Charlotte, NC 28223, USA

Email: yongge.wang@uncc.edu

Abstract—Cryptographic primitives such as secure hash func-
tions (e.g., SHA1, SHA2, and SHA3) and symmetric key block
ciphers (e.g., AES and TDES) have been commonly used to
design pseudorandom generators with counter modes (e.g., in
Java Crypto Library and in NIST SP800-90A standards). It is
assumed that if these primitives are secure then the pseudo-
random generators based on these primitives are also secure.
However, no systematic research and analysis have been done to
support this assumption. Based on complexity theoretic results
for pseudorandom sequences, this paper analyzes stochastic
properties of long sequences produced by hash function based
pseudorandom generators DRBG from NIST SP800-90A and
SHA1PRNG from Java Crypto Library. Our results show that
none of these sequences satisfy the law of the iterated logarithm
(LIL) which holds for polynomial time pseudorandom sequences.
Our results also show that if the seeds and counters for
pseudorandom generators are not appropriately chosen, then the
generated sequences have strongly biased values for LIL-tests and
could be distinguished from uniformly chosen sequences with
a high probability. Based on these results, appropriate seeding
and counter methods are proposed for pseudorandom generator
designs. The results in this paper reveal some “non-random”
behavior of SHA1, SHA2, and of the recently announced SHA3.

I. INTRODUCTION

Pseudorandom generators and pseudorandom sequences
play important roles in modern cryptography. For example, the
weakness in pseudorandom generators was employed to attack
the SSL protocol [12]. A string is said to be cryptographically
pseudorandom if no efficient observer can distinguish it from
a uniformly chosen string of the same length. Secure crypto-
graphic hash functions such as SHA1, SHA2, and SHA3 [21],
[5] are often used to generate pseudorandom sequences with
fixed length outputs (e.g., 160 bits or 256 bits). In practice it is
also important to generate long pseudorandom sequences. For
example, in the security proof of cryptographic protocols using
the “random oracle model” paradigm (see, e.g., [2], [9], [19]),
the participants and the adversaries may make polynomial
number of queries to the random oracle and the total output
from the random oracle could be several gigabytes (GBs) long.
In order for the security proof to work, it is assumed that
the random oracle output is computationally indistinguishable
from a string that is chosen with the uniform probability.
In practice, the random oracle is normally instantiated using
secure hash functions.

Though security of hash functions such as SHA1, SHA2,
and SHA3 has been extensively studied from the one-wayness

and collision resistant aspects, there has been limited research
on the quality of long pseudorandom sequences generated
by cryptographic hash functions. Recently, the authors of [4]
used the indifferentiability concept from [19] to analyze the
security of sponge function based pseudorandom generators
[4], [1] by assuming that the underlying primitives are random
permutations (or random functions). However, there is no
existing feasible approach to verify whether a given primitive
is a random permutation (or a random function). Even if a hash
function (e.g., SHA1) performs like a random function based
on existing statistical tests (e.g., NIST SP800-22 Revision 1A
[22]), when it is called many times for a long sequence
generation, the resulting long sequence may not satisfy the
properties of pseudorandomness and could be distinguished
from a uniformly chosen sequence. The experimental results
in this paper show that sequences produced by pseudorandom
generators SHA1PRNG (in Java) and hash function based
DRBG (from NIST SP800-90A) could be distinguished from
uniformly chosen sequences with a high probability (e.g., at
least 2%).

In complexity theoretic research, random sequences are con-
sidered as Brownian motions that are described by the Wiener
process. One of the important laws for the Wiener process is
the law of the iterated logarithm (LIL) which says that, for
a pseudorandom sequence ξ, the value Slil(ξ[0..n − 1]) (this
value is defined in Theorem 5.1) should stay in [−1, 1] and
reach both ends infinitely often when n increases. It is known
that polynomial time pseudorandom sequences follow LIL.
However, our experimental results show that, for sequences
generated by SHA1PRNG in Java and hash function based
DRBG in NIST SP800-90A, Slil(ξ[0..n − 1]) stays within a
proper sub-interval of [−1, 1] and does not reach either bound
when n is large.

We also observed that if seeds and counters for hash
function based pseudorandom generators are chosen in such
a way that the last message block for the hash function
(e.g., SHA1, SHA2, and SHA3) consists mainly of padded 0-
bits, then Slil for SHA1 and SHA2-generated sequences take
negative or small positive values when n is large while Slil
for SHA3-generated sequences take positive values when n is
large. These experimental results show that the newly designed
SHA3 may not provide better stochastic security compared to
SHA1 and SHA2. For hash function based DRBG in NIST
SP800-90A, the seeding information to the pseudorandom

2

generator is converted to a seedlen-bit counter, where seedlen
is 440 for SHA1/SHA256 and is 888 for SHA384/SHA512.
Thus the input to each hash function call in DRBG contains
one message block after the hash function internal padding.
Our experiments show that sequences generated by NIST
SP800-90A DRBG have relatively flat Slil value distribution
when n becomes large. Thus they could be distinguished
with a high probability from uniformly chosen sequences. In
order to avoid these deficiencies, we propose to use dynamic
changing inputs to each of the hash function call so that
the last message block has significant changes in the 0-1
distribution and the second from the last message block (which
contributes to the state of the hash function operation) changes
for each hash function call also. The dynamic inputs could
be generated using linear feedback shift registers (LFSRs)
or another pseudorandom generator. Our experiments show
that the proposed new generators produce better Slil-value
distributions.

Canetti, Goldreich and Halevi [9] showed that there exist
“artificially designed” cryptosystems for which the random
oracle cannot be realized by a family of hash functions and
Maurer, Renner, and Holenstein [19] generalized this result
by showing that a random oracle contains substantially more
entropy than a finite random string. Though these results
show the limitation of the random oracle methodology, it is
still widely used to prove the security of practical protocols
such as RSA-OAEP ([3], [7], [24]). Let HR be the family
of sequences with −0.99 ≤ Slil(ξ[0..n − 1]) < 0.99 for
n = 3×224 (= 6MB). We show that any subset of HR could
be efficiently distinguished from a set of uniformly chosen
sequences with a probability of 2%. Our experiments show
that sequences generated by NIST SP800-90A DRBG and Java
SHA1PRNG belong to HR. Thus random oracles in practical
protocols should not be instantiated using these pseudorandom
generators.

The paper is organized as follows. Section II introduces
notations. Section III reformulates pseudorandom generator
concepts in terms of martingales. Section IV compares cryp-
tographic pseudorandom sequences and complexity theoretic
pseudorandom sequences. Section V discusses the law of
iterated logarithms (LIL). Section VI proposes two LIL tests
and justifies these tests. Section VII reports experimental
results and Section VIII proposes an improved pseudorandom
generator design.

II. NOTATIONS

Classical random sequences were first introduced as a type
of disordered sequences, called “Kollektivs”, by von Mises
[26] as a foundation for probability theory. The two features
characterizing a Kollektiv are: the existence of limiting relative
frequencies within the sequence and the invariance of these
limits under the operation of an “admissible place selection”.
Here an admissible place selection is a procedure for selecting
a subsequence of a given sequence ξ in such a way that
the decision to select a term ξ[n] does not depend on the
value of ξ[n]. Ville [25] showed that von Mises’ approach

is not satisfactory by proving that: for each countable set of
“admissible place selection” rules, there exists a “Kollektiv”
which does not satisfy the law of the iterated logarithm
(LIL). Later, Martin-Löf [18] developed the notion of random
sequences based on the notion of typicalness. A sequence is
typical if it is not in any constructive null sets. Schnorr [23]
and Lutz [17] introduced p-randomness concepts by defining
the constructive null sets as polynomial time computable
measure 0 sets. The law of the iterated logarithm (LIL) plays
a central role in the study of the Wiener process and Wang
[27] showed that LIL holds for p-random sequences.

In this paper, N and R+ denotes the set of natural numbers
(starting from 0) and the set of non-negative real numbers,
respectively. Σ = {0, 1} is the binary alphabet, Σ∗ is the set of
(finite) binary strings, Σn is the set of binary strings of length
n, and Σ∞ is the set of infinite binary sequences. The length of
a string x is denoted by |x|. λ is the empty string. For strings
x, y ∈ Σ∗, xy is the concatenation of x and y, x v y denotes
that x is an initial segment of y. For a sequence x ∈ Σ∗∪Σ∞

and a natural number n ≥ 0, x[0..n] denotes the initial segment
of length n + 1 of x (x[0..n] = x if |x| ≤ n + 1) while x[n]
denotes the nth bit of x, i.e., x[0..n] = x[0] . . . x[n]. For each
string w, Cw = {wξ : ξ ∈ Σ∞} is called the basic open
set defined by w. For a set C of infinite sequences, Prob[C]
denotes the probability that ξ ∈ C when ξ is chosen by a
uniform random experiment. Martingales are used to describe
betting strategies in probability theory.

Definition 2.1: (Ville [25]) A martingale is a function F :
Σ∗ → R+ such that, for all x ∈ Σ∗,

F (x) =
F (x1) + F (x0)

2
.

We say that a martingale F succeeds on a sequence ξ ∈ Σ∞

if lim supn F (ξ[0..n− 1]) =∞.
Lemma 2.2: (Ville [25]) Let F be a martingale and Fk =

{x ∈ Σ∗ : F (x) > k}. Then Prob[Fk · Σ∞] ≤ F (λ)k−1.
Based on Lemma 2.2, Ville [25] showed that a set of infinite

sequences has probability 0 (or Lebesgue measure 0) if and
only if there is a martingale which succeeds on all sequences
in the set. For each basic open set Cx0 , define a martingale
F x0 by

F x0(x) =

 2|x|−|x0| x v x0

1 x0 v x
0 otherwise

(1)

Then F x0(λ) = 1/2|x0| = Prob[Cx0
] and, for all x ∈ x0 ·Σ∗,

F x0(x) = 1. Throughout the paper, we will use the martingale
FU for the uniform distribution by letting FU (x) = 1 for all
x ∈ Σ∗. That is, FU (x) == Fλ(x) or all x ∈ Σ∗.

A martingale ensemble {Fn}n∈N is a sequence of martin-
gales with the following properties:

1) For each n ∈ N , Fn is a martingale with Fn(λ) = 1.
2) For |x| > n, Fn(x) = Fn(x[0..n− 1]).

In other words, for a martingale ensemble {Fn}n∈N , each Fn
defines a probability distribution over Σn.

3

III. PSEUDORANDOM GENERATORS

The concept of “effective similarity” by Goldwasser and
Micali [13] and Yao [28] is defined as follows: Let X =
{Xn}n∈N and Y = {Yn}n∈N be two probability ensembles
such that each of Xn and Yn is a distribution over Σn.
We say that X and Y are computationally (or statistically)
indistinguishable if for every feasible algorithm A (or every
algorithm A), the difference dA(n) = |Prob[A(Xn) =
1] − Prob[A(Yn) = 1]| is a negligible function in n. This
concept can be rephrased in terms of martingales. First, we
note that each probability ensemble X = {Xn}n∈N can
be represented as a martingale ensemble {Fn}n∈N with the
following properties:

1) Fn(λ) = 1 and Fn(x) = 2n · Prob[Xn = x] for all
x ∈ Σn. In other words, Fn(x) = Prob[Xn|x] for all
x ∈ Σn.

2) For |x| > n, Fn(x) = Fn(x[0..n− 1]).
Definition 3.1: Let {Fn}n∈N and {F̄n}n∈N be two martin-

gale ensembles. {Fn}n∈N and {F̄n}n∈N are computationally
(respectively, statistically) indistinguishable if for any poly-
nomial time computable set D ∈ Σ∗ (respectively, any set
D ∈ Σ∗) and any polynomial p, the inequality (2) holds for
almost all n.

1

2n
·

∣∣∣∣∣ ∑
x∈D∩Σn

Fn(x)−
∑

x∈D∩Σn

F̄n(x)

∣∣∣∣∣ ≤ 1

p(n)
(2)

Let l : N → N with l(n) ≥ n for all n ∈ N and G be
a polynomial-time computable algorithm such that |G(x)| =

l(|x|) for all x ∈ Σ∗. The martingale ensemble
{
FGl(n)

}
n∈N

is defined by letting FGl(n)(x) =
∑
x0∈

∑n Fn,G(x0)(x) where

Fn,G(x0)(x) =

{
2|x|−n x v G(x0)
0 otherwise

for |x| ≤ l(n), and Fn,G(x0)(x) = Fn,G(x0)(x[0..l(n) − 1])
for |x| > l(n). It should be noted that Fn,G(x0) is different
from the martingale FG(x0) for the basic open set CG(x0).

Let {FUn }n∈N be the martingale ensemble for the uniform
distribution with FUn = FU for all n. Then the pseudorandom
generator concept [6], [28] could be rephrased in terms of
martingales as follows.

Definition 3.2: Let l : N → N with l(n) > n for all n ∈
N . A pseudorandom generator is a polynomial-time algorithm
G with the following properties:

1) |G(x)| = l(|x|) for all x ∈ Σ∗.
2) The martingale ensembles

{
FGl(n)

}
n∈N

and{
FUl(n)

}
n∈N

are computationally indistinguishable.

IV. LONG PSEUDORANDOM SEQUENCES

In cryptography, long pseudorandom sequences are often
generated using a cryptographic hash function or a block
cipher. For example, in SecureRandom class of Java Cryptog-
raphy Architecture [14], [15], the API SHA1PRNG generates
a long pseudorandom sequence using the SHA1 hash function.

NIST SP 800-90A [1] recommends three categories of random
bit generators: hash function based, block cipher based, and
elliptic curve based.

To evaluate the quality of pseudorandom sequences, NIST
SP800-22 Revision 1A [22] (software package available at
[20]) proposed a statistical test suite for pseudorandom num-
ber generators that includes 15 tests: frequency (monobit),
number of 1-runs and 0-runs, longest-1-runs, binary matrix
rank, discrete Fourier transform, template matching, Maurer’s
“universal statistical” test, linear complexity, serial test, the ap-
proximate entropy, the cumulative sums (cusums), the random
excursions, and the random excursions variants. A sequence
passes a test if the calculated P-value α for the sequence is
large than a pre-selected threshold value from [0.001, 0.01],

Computational complexity based pseudorandom sequences
have been studied extensively in the literature. For example,
p-random sequences are defined by taking each polynomial
time computable martingale as a statistical test.

Definition 4.1: (Schnorr [23], Lutz [17], and Wang [27])
An infinite sequence ξ ∈ Σ∞ is p-random (polynomial time
random) if for any polynomial time computable martingale F ,
F does not succeed on ξ.

A sequence ξ ∈ Σ∞ is Turing machine computable if there
exists a Turing machine M to calculate the bits ξ[0], ξ[1], · · · .
In the following, we prove a theorem which says that, for each
Turing machine computable non p-random sequence ξ, there
exists a martingale F such that the process of F succeeding
on ξ can be efficiently observed in time O(n2). The theorem
is useful in the characterizations of p-random sequences and
in the characterization of LIL-test waiting period.

Theorem 4.2: For a sequence ξ ∈ Σ∞ and a polynomial
time computable martingale F , F succeeds on ξ iff there exists
a martingale F ′ and a non-decreasing O(n2)-time computable
(with respect to the unary representation of numbers) function
from h : N → N such that F ′(ξ[0..n− 1]) ≥ h(n) for all n.

Proof. In order to construct a martingale F ′ and a non-
decreasing function h : N → N to satisfy the condition of the
theorem, we first construct a martingale F ′ and a polynomial
time computable function d : Σ∗ → N such that,

1) For all x v y, d(x) ≤ d(y) and F ′(x) ≥ d(x).
2) For any sequence ξ ∈ Σ∞, if F succeeds on ξ then we

have limn d(ξ[0..n− 1]) =∞.
We construct d and F ′ by induction. Without loss of

generality, we may assume that F (λ) = 1. First let F ′(λ) =
F (λ) = 1 and d(λ) = F (λ)− 1 = 0.

For induction, assume that F ′(x) and d(x) have been
defined for all |x| ≤ n. Fix a string x of length n and b ∈ Σ,
let l(xb) = F (xb)

F (x) if F (x) 6= 0 and let l(xb) = 0 otherwise.
For the definition of F ′(xb) and d(xb), we distinguish the
following two cases.

1) d(x) + 1 ≥ F ′(x): Let F ′(xb) = d(x) + (F ′(x) −
d(x))l(xb) and d(xb) = d(x).

2) d(x) + 1 < F ′(x): Let F ′(xb) = d(x) + 1 + (F ′(x) −
d(x)− 1)l(xb) and d(xb) = d(x) + 1.

It is straightforward that both F ′ and d are polynomial time

4

computable, F ′ is a martingale, d(x) ≤ d(y) for x v y, and
F ′(x) > d(x) for all x ∈ Σ∗. Next we show that for strings
x, y ∈ Σ∗, if d(x) < F ′(x) ≤ d(x)+1 and F ′(xy′) ≤ d(x)+1
for all y′ v y, then we have

F ′(xy) =
F (xy)

F (x)
· (F ′(x)− d(x)) + d(x). (3)

We use induction on y to prove (3). If y ∈ Σ, then (3)
follows from the construction. Assume that that (3) holds for
y ∈ Σ∗ and F ′(xy) ≤ d(x) + 1. Then, by the construction,
d(xy) = d(x) and

F ′(xyb) = d(xy) + (F ′(xy)− d(xy))l(xyb)

= d(xy) + (F ′(xy)− d(x))F (xyb)
F (xy)

= d(x) +
(
F (xy)
F (x) · (F

′(x)− d(x))
)
· F (xyb)
F (xy)

= d(x) + F (xyb)
F (x) · (F

′(x)− d(x)).

where b = 0, 1. Thus (3) holds for yb and the induction is
complete.

Next we show that for a sequence ξ ∈ Σ∞, if F succeeds on
ξ, then limn d(ξ[0..n− 1]) =∞. We prove by induction that,
for each k ∈ N , there exists n ∈ N such that d(ξ[0..n−1]) >
k. By the construction, d(λ) ≥ 0.

Assume that k+1 ≥ F ′(ξ[0..n1−1]) > d(ξ[0..n1−1]) = k
for some n1 ∈ N . Then, by (3),

F ′(ξ[0..n− 1]) = d(ξ[0..n1 − 1])+
F (ξ[0..n− 1])

F (ξ[0..n1 − 1])
· (F ′(ξ[0..n1 − 1])− d(ξ[0..n1 − 1]))

for n ≥ n1 until F ′(ξ[0..n−1]) > d(ξ[0..n1−1])+1 = k+1.
Since F succeeds on ξ, there exists n2 > n1 such that

F (ξ[0..n2 − 1]) >
F (ξ[0..n1 − 1])

F ′(ξ[0..n1 − 1])− d(ξ[0..n1 − 1])
.

Hence there exists n3 ≤ n2 such that

F ′(ξ[0..n3 − 1]) > d(ξ[0..n1 − 1]) + 1 = k + 1

and d(ξ[0..n3]) ≥ k + 1.
Now we are ready to construct the non-decreasing function

h from d by induction. Let h(0) = 0 and assume that h(n) is
defined already. Using the Turing machine M to search for a
string x v ξ[0..n] such that d(x) ≥ h(|x|) + 1 = h(n) + 1. If
such an x is found in n steps, then let h(s+ 1) = h(s) + 1.
Otherwise let h(s+ 1) = h(s).

It is straightforward that h is an n2-time computable (with
respect to the unary representation of numbers), unbounded,
nondecreasing function and F ′(ξ[0..n−1]) ≥ h(n) for almost
all n. This completes the proof of the Theorem. 2

In the following, we establish the relationship between
computational indistinguishability and p-randomness. Fix a
standard polynomial time computable and invertible pairing
function 〈·, ·〉 : N ×N → N such that, for each i ∈ N , there

is a real α(i) > 0 satisfying

|{m : 〈i,m〉 ≤ 2n}| ≥ α(i) · 2n for almost all n.

For each i ∈ N , use 〈i, ·〉 as a selection function to obtain a
subsequence from ξ:

ξi = ξ[〈i, 0〉]ξ[〈i, 1〉]ξ[〈i, 2〉]ξ[〈i, 3〉] · · ·

In order to establish the relationship between complexity
theoretic pseudorandom concepts and cryptographic indistin-
guishability concepts, we first define a martingale ensemble
based on the series of sequences ξ0, ξ1, ξ2, · · · derived from ξ.
Let r : N → N+ be a non-decreasing function and {F rn,ξ}n∈N
be a martingale ensemble defined by

F rn,ξ(x) = 2n · |{ξi : x v ξi, i < r(n)}|
r(n)

for x ∈ Σn and F rn,ξ(x) for other x ∈ Σ∗ is defined corre-
spondingly according to martingale ensemble requirements.

For the sake of convenience and completeness of the
description, we present the following theorem in two parts:
Martin-Löf randomness based result and p-randomness based
result. For those who are not familiar with Martin-Löf ran-
domness concepts, they may skip part one of the theorem or
check [17], [23], [27] for details.

Theorem 4.3: 1) For a Martin-Löf random sequence
ξ ∈ Σ∞, there exists a non-decreasing function r(n)
such that the martingale ensembles {F rn,ξ}n∈N and
{FUn }n∈N are computationally indistinguishable.

2) For a p-random sequence ξ ∈ Σ∞, there exist a real
number ε > 0, a polynomial p(n), and a non decreasing
function r(n) with 2εn ≤ r(n) ≤ 2p(n) such that the
martingale ensembles {F rn,ξ}n∈N and {FUn }n∈N are
computationally indistinguishable.

Sketch of Proof. We describe the proof for part one of
the theorem. The proof arguments for part two are similar
to that of part one with resource constraints and the details
could be found in the full version of this paper. We first
note that if a sequence ξ ∈ Σ∞ is Martin-Löf random, then
all of the sequences ξ0, ξ1, ξ2, · · · are Martin-Löf random.
For a contradiction, assume that there is a Turing machine
approximable martingale F that succeeds on ξi for some
i ∈ N . Then we can easily convert the martingale F to another
Turing machine approximable martingale F ′ that succeeds on
ξ, which is a contradiction. Similarly, we can show that for
any n > 0, the following sequence β is Martin-Löf random:

β = ξ0[0..n− 1]ξ1[0..n− 1]ξ2[0..n− 1] · · ·

By the fact that Martin-Löf random sequences are normal with
respect to any given n > 0, we have limn→∞ F rn,ξ(x) =
1 = FU (x) for all x ∈ Σ∗. In other words, appropriate non-
decreasing function r could be chosen such that the two given
ensembles are computationally indistinguishable. 2

The readers may wonder whether the other directions of
Theorem 4.3 hold also. By Ville’s construction of the counter
example for a von Mises’ “Kollektiv” that does not satisfy the

5

law of the iterated logarithm, the other directions of Theorem
4.3 do not hold. Indeed, if we choose independent Martin-Löf
random sequences ξ0, ξ2, ξ4, · · · and let ξ2i+1 = ξ2i for all
i ∈ N , then it can be shown that the martingale ensembles
{F rn,ξ}n∈N and {FUn }n∈N are computationally indistinguish-
able for an appropriately chosen non-decreasing function r
though the resulting sequence ξ is not random in any sense. It
is an open question whether it is feasible to build some kind
of equivalence between the cryptographic indistinguishability
concepts and the complexity theoretic randomness concepts.

V. STOCHASTIC PROPERTIES OF PSEUDORANDOM
SEQUENCES

It is shown in [27] that p-random sequences are stochastic
in the sense of von Mises and satisfy common statistical laws
such as the law of the iterated logarithm. It is not difficult
to show that all p-random sequences pass the NIST SP800-
22 [22] tests for α = 0.01 since each test in [22] could be
converted to a polynomial time computable martingale which
succeeds on all sequences that do not pass this test. However,
none of the sequences generated by pseudorandom generators
are p-random since from the generator algorithm itself, a
martingale can be constructed to succeed on sequences that
it generates.

Since there is no efficient mechanism to generate p-random
sequences, pseudorandom generators are commonly used to
produce long sequences for cryptographic applications. While
the required uniformity property (see NIST SP800-22 [22])
for pseudorandom sequences is equivalent to the law of large
numbers, the scalability property (see [22]) is equivalent to the
invariance property under the operation of “admissible place
selection” rules. Since p-random sequences satisfy common
statistical laws, it is reasonable to expect that pseudorandom
sequences produced by pseudorandom generators satisfy these
laws also (see, e.g., [22]).

The law of the iterated logarithm (LIL) describes the
fluctuation scales of a random walk. For a nonempty string
x ∈ Σ∗, let

S(x) =

|x|−1∑
i=0

x[i] and S∗(x) =
2 · S(x)− |x|√

|x|

where S(x) denotes the number of 1s in x and S∗(x) denotes
the reduced number of 1s in x. S∗(x) amounts to measuring
the deviations of S(x) from |x|

2 in units of 1
2

√
|x|.

The law of large numbers says that, for a pseudo random
sequence ξ, the limit of S(ξ[0..n−1])

n is 1
2 , which corresponds

to the frequency (Monobit) test in NIST SP800-22 [22]. But
it says nothing about the reduced deviation S∗(ξ[0..n − 1]).
It is intuitively clear that, for a pseudorandom sequence ξ,
S∗(ξ[0..n − 1]) will sooner or later take on arbitrary large
values (though slowly). The law of the iterated logarithm
(LIL), which was first discovered by Khintchine [16], gives
an optimal upper bound

√
2 ln lnn for the fluctuations of

S∗(ξ[0..n − 1]). It was showed in Wang [27] that this law
holds for p-random sequences also.

Theorem 5.1: (LIL for p-random sequences [27]) For a
sequence ξ ∈ Σ∞, let

Slil(ξ[0..n− 1]) =
2
∑n−1
i=0 ξ[i]− n√
2n ln lnn

.

Then for each p-random sequence ξ ∈ Σ∞ we have both

lim sup
n→∞

Slil(ξ[0..n−1]) = 1 and lim inf
n→∞

Slil(ξ[0..n−1]) = −1.

In other words, if we let

Yk =

{
ξ ∈ Σ∞ : Slil(ξ[0..n− 1]) > 1 +

1

k
infinitely often

}
,

and

Xk =

{
ξ ∈ Σ∞ : Slil(ξ[0..n− 1]) > 1− 1

k
finitely often

}
,

then there is a polynomial time computable martingale Flil
that succeeds on all sequences in (

⋃∞
k=1 Xk)

⋃
(
⋃∞
k=1 Yk).

VI. THE LIL TESTS

Theorem 5.1 shows that pseudorandom sequences should
satisfy the law of the iterated logarithm (LIL). In particular,
for small values of k, there are simple martingales that succeed
on all sequences in Xk of Theorem 5.1. For example, we can
show that there is an O(n5)-time computable martingale that
succeeds on all sequences in X10 (see full version of this paper
for details). Thus it is expected that pseudorandom sequences
for cryptographic applications should not be included in Xk

with k ≤ 10. Though NIST SP800-22 test suite does not
include a test for LIL, it includes three tests that are related
to cusum test [8]: “the cumulative sums (cusums) test”,
“the random excursions test”, and “the random excursions
variants”. The limiting distribution of cusum test is related
to Wiener process. But a sequence that passes the cusum test
does not necessarily satisfy LIL. Our experiments in Section
VII confirms this fact. We first propose two LIL based tests.
Weak LIL Test: For given α ∈ (0, 0.25] and n1 < n2, we
say that a sequence ξ does not pass the weak (α, n1, n2)-LIL
test if −1 +α < Slil(ξ[0..n−1]) < 1−α for all n ∈ [n1, n2].
Strong LIL Test: For given α ∈ (0, 0.25] and n1 < n2, we
say that a sequence ξ does not pass the strong (α, n1, n2)-
LIL test if Slil(ξ[0..n− 1]) > −1 + α for all n ∈ [n1, n2] or
Slil(ξ[0..n− 1]) < 1− α for all n ∈ [n1, n2].

By the definition, a sequence ξ passes the weak (α, n1, n2)-
LIL test if Slil reaches either 1 − α or −1 + α in the
testing period [n1, n2], while a sequence ξ passes the strong
(α, n1, n2)-LIL test if Slil reaches both 1− α and −1 + α in
the testing period [n1, n2].

In the following, we provide justifications for these two
tests. The DeMoivre-Laplace theorem is a normal approxima-
tion to the binomial distribution, which says that the number of
“successes” in n independent coin flips with head probability
1/2 is approximately a normal distribution with mean n/2
and standard deviation

√
n/2. We first give the variant of

DeMoivre-Laplace limit theorem in the following. To shorten
our notations, we will use S∗(ξ, n) = S∗(ξ[0..n − 1]) and

6

Slil(ξ, n) = Slil(ξ[0..n−1]) in the remaining part of the paper
unless stated otherwise.

Theorem 6.1: (DeMoivre-Laplace [10, Chapter VII.7,
p193]) Let u(n)→∞ and u(n)3/

√
n→ 0. Then we have

Prob[{ξ : S∗(ξ, n) > u(n)}] ' (u(n)
√

2π)−1e−u(n)2/2.

We first show that a uniformly chosen sequence should pass
the weak (α, n1, n1 + 1)-LIL test with a high probability.

Theorem 6.2: 1) Let α = 0.01, n1 = 3× 224 and n2 =
n1+1. A uniformly chosen sequence ξ ∈ {0, 1}∞ passes
the weak (α, n1, n2)-LIL test with probability at least
2%.

2) Let α = 0.1, n1 = 3 × 224 and n2 = n1 + 1. A
uniformly chosen sequence ξ ∈ {0, 1}∞ passes the weak
(α, n1, n2)-LIL test with probability at least 3.6%.

Proof. For given α, n1, n2, let WR(α,n1,n2) be the set of
sequences that pass the weak (α, n1, n2)-LIL test. That is,

WR(α,n1,n2) = {ξ : ∃n ∈ [n1, n2] (|Slil(ξ, n)| ≥ 1− α)} .

Furthermore, let u(n) = (1− α)
√

2 ln lnn and

R(n,α) = {ξ : |S∗(ξ, n)| ≥ u(n)} .

Then we have R(n1,α) ⊆ WR(α,n1,n2). By Theorem 6.1, we
have

Prob
[
WR(α,n1,n2)

]
≥ Prob[R(n1,α)]

' 2× (u(n1)
√

2π)−1e−(1−α)2 ln lnn1

=
1

(1− α)
√
π ln lnn1(lnn1)(1−α)2

.

(4)
Note that lnn1 ' 17.7341 and ln lnn1 ' 2.8755. By
substituting n1 = 3× 224 and α = 0.01 in (4), we get

Prob
[
WR(α,n1,n2)

]
≥ 0.02.

By substituting n1 = 3× 224 and α = 0.1 in (4), we get

Prob
[
WR(α,n1,n2)

]
≥ 0.036.

This completes the proof of the Theorem. 2

Furthermore, if we choose α = 0.01, n1 = 3×224 (= 6MB)
and n2 = 5 × 231 (' 1.34GB), then Prob

[
WR(α,n1,n2)

]
�

0.02. Indeed, by Theorem 5.1, there exists an efficient mar-
tingale that succeeds on all sequences in WR(α,n1,n2). By
Theorem 4.2, it can be effectively observed that this martingale
succeeds on WR(α,n1,n2). Based on these facts and some in-
volved analysis, it could be shown that Prob

[
WR(α,n1,n2)

]
≥

0.14. Similarly, for α = 0.1, n1 = 3×224 (= 6MB) and n2 =
5×231 (' 1.34GB), we have Prob

[
WR(α,n1,n2)

]
≥ 0.2556.

It should be noted that the above probabilities 0.14 and 0.2556
are based on the most conservative calculations. We conjecture
that these probabilities could be improved to at least 0.5 by
more accurate calculations.

Next we show that a uniformly chosen sequence should pass
the strong LIL test with a non-negligible probability.

Theorem 6.3: Let α = 0.2, n1 = 3×224, and n2 = 128n1.
With a probability of at least 0.2652%, a uniformly chosen
sequence ξ ∈ {0, 1}∞ passes the strong (α, n1, n2)-LIL test.

Proof. For given α, n1, n2, let SR(α,n1,n2) be the set of
sequences that pass the strong (α, n1, n2)-LIL test. That is,

SR(α,n1,n2) =

{
ξ :
∃n ∈ [n1, n2] (Slil(ξ, n) ≥ 1− α)
∃n ∈ [n1, n2] (Slil(ξ, n) ≤ −1 + α)

}
.

Furthermore, let u(n) = (1− α)
√

2 ln lnn and

T(n,α) =

{
ξ :

S∗(ξ, n) ≥ u(n) and
S∗(ξ, 128n) ≤ −u(128n)

}
.

Then we have T(n1,α) ⊆ SR(α,n1,n2). Now let

Dn =

{
ξ :

S∗(ξ[n..128n− 1])√
2 ln ln(127n)

≤ −0.95

}
and

En =

{
ξ : 0.8 ≤ S∗(ξ, n)√

2 ln lnn
≤ 1.5

}
.

For any sequence ξ ∈ Dn1 ∩ En1 , we have

2S(ξ[n1..128n1−1])−127n1 ≤ −0.95
√

2× 127n1 ln ln(127n1)
(5)

and
2× S(ξ, n1)− n1 ≤ 1.5

√
2n1 ln lnn1 (6)

By adding (5) and (6) together and dividing it by
√

128n1, we
get

S∗(ξ, 128n1) ≤ 1.5
√

2n1 ln lnn1−0.95
√

2×127n1 ln ln(127n1)√
128n1

' (25520.1312− 189639.4950)/80264.8799
= −2.0447
< −1.9975
' −0.8× 2.4969
' −u(128n1)

(7)
By (7), we have ξ ∈ T(n1,α). In other words, Dn1

∩ En1
⊆

T(n1,α). Thus we have

Prob[SR(α,n1,n2)] � 2× Prob[T(n1,α)]
≥ 2× Prob[Dn1

∩ En1
]

≥ 2× Prob[Dn1
] · Prob[En1

]
(8)

By Theorem 6.1 and by the symmetry property for the
distributions of 0s and 1s in ξ, we have

Prob [Dn1
] ' (u(127n1)

√
2π)−1 × e−0.952 ln ln(127n1)

=
1

0.95
√
π ln ln(127n1)(ln(127n1))0.952

' 0.0201896
(9)

7

and

Prob [En1
] ' (0.8

√
2π · 2 ln lnn1)−1 × e−0.82 ln ln(n1)

−(1.5
√

2π · 2 ln lnn1)−1 × e−1.52 ln ln(n1)

=
1

0.8
√
π ln ln(n1)(ln(n1))0.82

− 1

1.5
√
π ln ln(n1)(ln(n1))1.52

' 0.0660299− 0.0003437
= 0.0656862

(10)
By substituting (9) and (10) into (8), we get

Prob[SR(α,n1,n2)] � 2× 0.0656862× 0.0201896
' 0.002652

This completes the proof of the Theorem. 2

The probability 0.2652% in Theorem 6.3 is based on the
most conservative calculations. We conjecture that this prob-
ability could be improved to at least 5% by a more accurate
calculation. In other words, a randomly chosen sequence
should pass the strong (α, n1, n2)-LIL with a high probability.

VII. EXPERIMENTAL RESULTS

We have carried out weak LIL tests on the following
pseudorandom sequence generators: SHA1PRNG (Java), NIST
DRBG [22], and Fortuna-PRNG (Schneier and Ferguson [11]).
For the weak LIL-test, we used the parameters α = 0.01,
n1 = 3 × 224 (= 6MB) and n2 ≥ 5 × 231 (' 1.34GB).
In a summary, our experimental results provide evidence
that sequences generated by commonly used pseudorandom
generators (e.g., Java SHA1PRNG and hash function based
DRBG in NIST SP800-90A) do not pass the weak (α, n1, n2)-
LIL tests (thus they can not pass strong LIL tests either)
with above parameters. On the other hand, our experiments
show that sequences generated by NIST ECC-DRBG pass the
weak (α, n1, n2)-LIL tests with α = 0.01, n1 = 3 × 224 and
n2 = 15×226 ' 120MB. We do not know whether sequences
generated by NIST ECC-DRBG can pass the weak (α, n1, n2)-
LIL tests with α = 0.01, and larger n1, n2 (e.g., n1 ≥ 120MB)
since we do not have resources to generate large number of
longer sequences based on NIST ECC-DRBG. Furthermore,
we have not got sufficient resources to carry out the strong
LIL test on ECC-DRBG either.

Following the comments after Theorem 6.2, sequences that
do not pass the weak (α, n1, n2)-LIL tests could be distin-
guished from uniformly chosen sequences with a probability
of at least 14%. In the random oracle model, the adversary
is allowed to make a polynomial number of queries to the
random oracle. Thus in the instantiated protocol the adversary
may trigger the instantiated random oracle to output 6MB to
1.34GB bits (which is certainly feasible). The above results
show that protocols such as RSA-OAEP [3], [7], [24] in SSL
with security proof using the random oracle model should
not be instantiated with SHA1PRNG (Java) and hash function
based DRBG (NIST SP800-90A) pseudorandom generators.

We have also run NIST SP800-22 tests [22], [20] on
sequences that we have generated. The test tool [20] only

checks the first 1,215,752,192 bits ('145MB) of sequences
that we provided since the software uses 4-byte int data type
for integer variables. The initial 145MB of each sequence that
we have generated passes NIST tests with P-values larger than
α = 0.01 except for the “longest run of ones in a block” test
which failed for several sequences. NIST recommends that a
test fails if the P-value is less than a pre-selected threshold
value α ∈ [0.001, 0.01].

Though weak LIL tests require the value Slil(ξ[0..n − 1])
to reach either −1 or 1 in the given period. It does not require
the fluctuation scale for Slil(ξ[0..n−1]) when n increases. By
Theorem 5.1, for a true random sequence ξ, Slil(ξ[0..n− 1])
should take large fluctuation scales even if the testing period
[n1, n2] is not long enough to carry out the strong LIL tests.
No sequence (except NIST ECC-DRBG generated sequences)
that we have generated have the large fluctuation scale for
Slil(ξ[0..n − 1]). Figure 11 presents a sequence’s Slil curve
that has a close looking to a true pseudorandom sequence’s
Slil curve with a large fluctuation scale.

A. Java SHA1PRNG API based sequences

The pseudorandom generator SHA1PRNG API in Java
generates sequences SHA1′(s, 0)SHA1′(s, 1) · · · , where s is
an optional seeding string of arbitrary length, the counter
i is 64 bits long, and SHA1′(s, i) is the first 64 bits of
SHA1(s, i). When no seed is provided, Java provides random

Fig. 1. Typical results for Java SHA1PRNG API

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

with random seed
no seed
random counter

seeds itself. In our experiments, we generated one hundred of
sequences without seeds and another one hundred of sequences
with 32 bytes random seeds. For each sequence generation,
the “random.nextBytes()” method of SecureRandom Class is
called 226 times and a 20-byte output is requested for each
call. This produces sequences of 1.34GB long. The LIL test
is then run on these sequences and we observed similar
trend curves for all sequences. Specifically, we observed that
Slil(ξ[0..n − 1]) ≤ 0.5 for n > 5MB on average and
then −0.75 ≤ Slil(ξ[0..n − 1]) ≤ 0.3 for n > 6MB on
average. We also observed that the value Slil is smaller
than 0 for majority parts of each sequence. This means that
these sequences generally contain more zeros than ones. We
suspected that the smaller (or negative) values of Slil were
caused by sparse values in the counter since it is 64 bits
long and we only feed values between 0 to 226 to it. In

8

order to verify our conjecture, we generated one hundred of
sequences SHA1′(x1)SHA1′(x2) · · · using SHA1PRNG API
without seeds, where x1x2x3 · · · are pseudorandom sequences
generated by AES128 with different keys and each xi is 64
bits long. We then run the weak LIL test and observed that
Slil values for these sequences take larger values though they
still fail the weak LIL test. In a summary, for three kinds
of sequences (with seeds, without seeds, and with random
counters) that we have generated, none of them passes the
weak (α, n1, n2)-LIL test with α = 0.1, n1 = 6MB, and
n2 = 1.34GB.

Figure 1 shows three typical LIL test results.
The black line is for a sequence with seed
s = SHA256(0xD2029649D2029649). The blue line is
for a sequence without a seed. The red line is for a
sequence without a seed but with counters replaced by
random strings from x1x2x3 · · · = AES(k, 0)AES(k, 1) · · · ,
where k = 0x0E14533E1F056F7C7E192B3F4C4D7E6F. To
reduce the size of the figure, we use the scale 10000n2

for the x-axis. In other words, Figure 1 shows the values
Slil(ξ[0..10000n2 − 1]) for 1 ≤ n ≤ 1037. The readers
may ask: does Slil(ξ[0..m − 1]) reach either 1 or −1 for
10000n2 < m < 10000(n + 1)2? For each sequence, we
generated the curve using the scale 8n also (that is, we take
values at the end of each byte of the sequence) and the result
is similar to the scale 10000n2. The reason is that the values
of Slil change very slowly when n is large.

Fig. 2. More results for Java SHA1PRNG API

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

testieee1363NoSeed
testieee1363NoSeed1
testieee1363NoSeed2

testieee1363NoSeedDesc
testieee1363w64BSeed
testieee1363w70BSeed

Figure 2 shows another result on six sequences generated by
SHA1PRNG API using the same scale 10000n2 for the x-axis.
The first three lines (black, blue, red) are for sequences that are
generated by SHA1PRNG API without seeds. The fourth line
(purple) is for a sequence that is generated by SHA1PRNG
API without a seed but with a decreasing counter. That is, it
is for the sequence SHA1′(226)SHA1′(226 − 1) · · · . The fifth
and sixth lines (green and orange) are for sequences that are
generated by SHA1PRNG API with 64 bytes and 70 bytes of
random seeds respectively.

B. NIST SP800-90A based sequences

NIST SP800.90A [1] specifies three kinds of DRBG genera-
tors: hash function based, block cipher based, and ECC based.
For DRBG generators, the maximum number of calls between

reseeding is 248 for hash function and AES based generators
(the number is 232 for T-DES and ECC-DRBG generators).
For sequences that we have generated, no reseeding is needed
according to this rule.

1) Block cipher based DRBG: For block cipher based
generators, we generated one hundred of sequences of
the format AES128(k, V)AES128(k, V + 1) · · · and
DES(k, V)DES(k, V + 1) · · · where k is the random
key and V is derived from random seeds. The value
of V is revised after the primitive is called 212 times
according to [1]. Each sequence is 2.15GB long. The
LIL test is run on these sequences and we observed that
Slil(ξ[0..n − 1]) ∈ [−0.95, 0.95] on average. It is interesting
to mention that the values of Slil fluctuate evenly in the
interval [−0.9, 0.9] for these block cipher based sequences.
This is different from the results for hash function based
sequences for which the values Slil are more biased with
smooth fluctuation (cf. the results in Section VII-A and the
results later in this section). When n increases, the value Slil
for all block cipher based sequences tends not to go above
0.99. Thus they do not pass the weak (α, n1, n2)-LIL test
with α = 0.01, n1 = 6MB, and n2 = 2.15GB.

As an example, Figure 3 shows the LIL test results on
three sequences generated by AES128 and DES. Similarly,
we use the scale 10000n2 for the x-axis. E1(·) and E2(·)

Fig. 3. Results for AES and DES based generators

0 200 400 600 800 1000 1200

−1
.5

−0
.5

0.
5

1.
5

AES128 with big init ctr
DES with random key
DES with big init ctr

denote AES128 and DES encryption functions respectively.
These lines are for sequences E1(k, ctr0)E1(k, ctr0 + 1) · · · ,
E2(k1, 0)E2(k1, 1) · · · , and E2(k2, ctr0)E2(k2, ctr0 + 1) · · ·
respectively, where k, k1, k2 are random keys and ctr0 is a
random value of 8 bytes.

2) ECC-DRBG: NIST SP800-90A recommends a dual EC-
DBRG where the underlying elliptic curve is defined by
y2 = x3 − 3x + b (mod p). SP800-90A recommends three
curves for the random bits generation: P-256, P-384, and P-
521. The initialization parameter includes two points P and
Q on the curve. The random bits are generated from stages
and the random generator has its internal state. For simplicity,
we use a number s ∈ Fq to denote the internal state of the
generator. When the state is si, the generator first calculates a
point Ri = siQ on the elliptic curve and outputs as random
bits the least significant 240 bits (respectively, 368 bits and
504 bits) of the x-coordinate of Ri for P-256 (respectively, P-

9

384 and P-521). After outputting the random bits, the internal
state of the generator is updated to si+1 = x(siP) where
x(siP) denotes the x-coordinate of the elliptic curve point
siP . In our experiments, we generated 16 random sequences
lilDataecc0nistP256, · · · , lilDataecc15nistP256 using the curve
P-256 with the initial states s0 =SHA(0), · · · , s0 =SHA(15)
respectively. For each sequence generation, we make 222 calls
to elliptic exponentiation primitives and each call outputs 240
bits. Thus each sequence is 120MB long. Since it takes 26
hours for the DELL Optiplex 755 computer (with Bouncy
Castle ECC Library for Java Netbeans) to generate one se-
quence, we have not tried to generate longer sequences. Figure
4 shows the test results for these 16 random sequences. For
these relatively “short” sequences (120MB long each), they
pass the weak (α, n1, n2)-LIL test with α = 0.01, n1 = 6MB,
and n2 = 120MB. We have not got enough resources to carry
out the weak LIL test for large n1, n2 (e.g., n1 ≥ 120MB)
and to carry out the strong LIL test on NIST ECC-DRBG .

Fig. 4. Results for NIST ECC-DRBG

3) Hash function based DRBG: For hash function based
DRBG in NIST SP800.90A, a hash function G is used to
generate sequences G(V)G(V + 1)G(V + 2) · · · where V is
a seedlen-bit counter that is derived from the secret seeds,
seedlen is 440 for SHA1, and the value of V is revised after
at most 219 bits are output. We generated several hundreds

Fig. 5. Results for NIST SHA1-DRBG

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

testnist1
testnist2
testnist3

testnist4
testnist5
testnist6

of sequences with randomly chosen seeds for SHA1 and
SHA256 based DRBG. None of these sequences pass the
weak (α, n1, n2)-LIL test with α = 0.01, n1 = 6MB, and
n2 = 1.34GB (n2 = 2.15GB for SHA256). As an example,
Figure 5 shows the test results on six typical sequences

generated by SHA1-based DRBG with the scale 10000n2 for
the x-axis.

C. Other hash function based generators

In order to analyze the randomness properties of hash
functions from different angles, we also generated hash func-
tion based pseudorandom sequences without following the
procedures in NIST SP800.90A. We used different sizes of
seed values (e.g., 4 bytes to 100 bytes) and different counter
styles (e.g., a counter begins from 0 instead of V or use decre-
mental counters). The results show that Slil curves for SHA1-
based and SHA256-based sequences are similar. But they are
different from Slil curves for Keccak256-based sequences.
Specifically, if we use 4 bytes of seeds and 8 bytes of counters
that start from 0, then for large enough n, Slil(ξ[0..n−1]) ≤ 0
for SHA1/SHA256 based sequences and Slil(ξ[0..n− 1]) ≥ 0
for Keccak256 based sequences. These results seem to reveal
the non-random property of SHA1/SHA2/Keccak functions
and show that Keccak (SHA3) may not have better stochastic
properties than SHA1/SHA2.

Fig. 6. Results for non-NIST SHA1/SHA2/SHA3-DRBG

0 200 400 600 800 1000 1200

−1
.5

−0
.5

0.
5

1.
5

SHA1 ctr starts: 12345678
SHA2 ctr starts: 12345678
SHA3 ctr starts: 12345678

Figure 6 shows the test results on three typical sequences
generated by SHA1, SHA256, and Keccak256 using the scale
1000n2 for the x-axis. These sequences are generated with
empty seeds and with a 32-bit counter starting at 12345678.
The hash functions are called 226 times. Thus the SHA1
based sequence is 1.34GB and the SHA256/Keccak256 based
sequences are 2.15GB. It is observed that, for SHA1 and
SHA256 based sequences, we have Slil(ξ[0..n − 1]) ≤ 0
when n is sufficiently large and, for sequences generated
using Keccak256, we have Slil(ξ[0..n − 1]) ≥ 0 when n is
sufficiently large.

Figure 7 shows another LIL test result on nine sequences
based on the SHA1 hash function using the scale 10000n2

for the x-axis. Each sequence is 1.34GB long (226 calls to
the hash function). In the following, we use G1 to represent
the SHA1 hash function and all random integers and random
seeds are taken from a sequence generated by AES128 in
counter mode. The line SHA1NoSeedDesc is for the sequence
G1(ctr0) · · ·G1(0) with a 4-byte decreasing counter that starts
at ctr0 = 226 − 1. Line SHA1NoSeedLargeCtr is for the
sequence G1(ctr0)G1(ctr0 + 1) · · ·G1(ctr0 + 226 − 1) where
ctr0 is a random 4-byte integer. The line SHA1w4BR10B0
is for the sequence G1(s, v0, 0) · · · where s is a 4-byte

10

Fig. 7. Results for some sequences based on SHA1

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

SHA1NoSeedDesc
SHA1NoSeedLargeCtr
SHA1w4BR10B0

SHA1w4BR
SHA1w10BR
SHA1w70BR

SHA1w100BR
SHA1wRS64CTR
SHA14B4B

random seed, v0 is 10 bytes of 0, and ctr is a 4-byte
counter starting at 0. The line SHA1w4BR is for the se-
quence G1(s, 0)G1(s, 1) · · · where s is a 4-byte random
seed and ctr is a 4-byte counter starting at 0. The line
SHA1w10BR is for the sequence G1(s, 0)G1(s, 1) · · · where
s is a 10-byte random seed and ctr is a 4-byte counter
starting at 0. The line SHA1w70BR is for the sequence
G1(s, 0) · · · where s is a 70-byte random seed and ctr is
a 4-byte counter starting at 0. The line SHA1w100BR is
for G1(s, ctr0)G1(s, ctr0 + 1) · · · where s is a 100-byte
random seed and ctr0 is a 4-byte random integer. The line
SHA1wRS64CTR is for the sequence G1(s, 0)G1(s, 1) · · ·
with a 8-byte counter and a 8-byte random seed s. The line
SHA14B4B is for G1(s, ctr0)G1(s, ctr0 + 1) · · · where s is a
4-byte random seed and ctr0 is a 4-byte random integer.

Figure 8 shows some LIL test results on 12 sequences
based on SHA256 and Keccak256 hash functions using the
scale 10000n2 for the x-axis. Each sequence is 2.15GB long
(226 calls to the hash function). In the following, we use
G2 and G3 to denote SHA256 and Keccak256 respectively.
All random integers and random seeds are taken from ran-
dom positions of a pseudorandom sequence generated by
AES128 in counter mode with a random key. The line

Fig. 8. Results for some sequences based on SHA2/SHA3

0 200 400 600 800 1000 1200

−1
.5

−0
.5

0.
5

1.
5

SHA210BRrctr
SHA2Rctr
SHA2w30BRrctr

SHA2Desc
SHA2wAES
SHA24BR4Bctr

SHA2RS
SHA2RDDesc
SHA3Desc

SHA3w30BRrctr
SHA3wRB
SHA3wRBDesc

SHA210BRrctr is for the sequence G2(s, ctr0)G2(s, ctr0 +
1) · · · where ctr0 is a 4-byte random integer and s is a
210-byte random seed. The line SHA2Rctr is for the se-
quence G2(ctr0)G2(ctr0 + 1) · · · where ctr0 is a 4-byte
random integer. Line SHA2w30BRrctr is for the sequence
G2(s, ctr0)G2(s, ctr0 + 1) · · · where s is a 30-byte random

seed and ctr0 is a 4-byte random integer. The line SHA2Desc
is for the sequence G2(226 − 1)G2(226 − 2) · · ·G2(0) where
the counter is a 4-byte integer. The line SHA2wAES is for
the sequence G2(x0)G2(x1) · · ·G2(x226−1) where x0x1 · · ·
is a pseudorandom sequence and xi is 8 bytes. The line
SHA24BR4Bctr is for the sequence G2(s, ctr0)G2(s, ctr0 +
1) · · · where ctr0 is a 4-byte random integer and s is a 24-
byte random seed. The line SHA2RS is for the sequence
G2(s, 0)G2(s, 1) · · · where s is a 500-byte random seed the
counter is 4 bytes. Line SHA2RDDesc is for the sequence
G2(s, 226−1)G2(s, 226−2) · · ·G1(s, 0) where s is a 100-byte
random seed and the counter is 4 bytes. The line SHA3Desc is
for the sequence G3(226−1)G3(226−2) · · ·G3(0) where ctr0

is a 4-byte random integer. The line SHA3w30BRrctr is for
the sequence G3(s, ctr0)G3(s, ctr0 + 1) · · · where s is a 30-
byte random seed and ctr0 is a 4-byte random integer. The line
SHA3wRB is for G3(s, 0)G3(s, 1) · · · where s is a 4-byte ran-
dom seed and the counter is 4 bytes. The line SHA3wRBDesc
is for the sequence G3(s, 226 − 1)G3(s, 226 − 2) · · ·G3(s, 0)
where s is a 8-byte random seed and the counter is 4 bytes.

D. Fortuna PRNG
Fortuna pseudorandom number generator (Schneier and

Ferguson [11]) uses block ciphers such as AES in counter
mode and the key is changed each time after at most 1MB of
data is generated. We uses AES-128 as the underlying block
cipher to instantiate Fortuna PRNG. In total, we generated
100 sequences: fortunaAES0, · · · , fortunaAES99. Each of
these sequence is 1GB long. Specifically, for the generation
of sequence fortunaAESi, we run AES-128 in counter mode
and use keys SHA1(i‖j) for 0 ≤ j ≤ 210. Each of the AES
key SHA1(i‖j) is used to encrypt 216 consecutive counters.
Figures 9 shows the LIL-test results for the sequences fortu-
naAES0, · · · , lilDatafortunaAES15. In Figures 9, most of the
curves lie strictly within a proper sub-interval of [−1, 1] though
one line reaches −1. Thus we may or may not claim that
Fortuna-PRNG-AES passes the weak LIL test. More testing
is needed to confirm whether Fortuna PRNG passes the weak
LIL-test.

Fig. 9. Results for Fortuna-PRNG

VIII. HOW TO SEED A GENERATOR?
Results in Sections VII-B and VII-C show that the fluc-

tuation scales of Slil for SHA1/SHA256 and Keccak256

11

generated sequences are quite flat. In order to improve the
Slil fluctuation scale within the interval [−1, 1] for sequences
generated by pseudorandom generators, we need a better
seeding approach. In existing hash function designs (e.g.,
SHA1/SHA2/SHA3 [21], [5]), the input to the hash function
is padded with a bit 1 followed by 0s (and the length of
the message itself in case of SHA1 and SHA2) so that the
size of the padded message is a multiple of the hash function
message block size. The message blocks are then processed
one by one and the hash values are updated correspondingly.
If the combined inputs (based on seeds and counters) to the
generators are small (e.g., smaller than 440 bits for SHA1
and SHA256) such as in DRBG [22], then each hash function
call needs to process only one message block and there is
no chance for the initial hash values (or internal state of
the sponge function in SHA3) to be dynamically changed.
Furthermore, if counter mode is used and consecutive coun-
ters are not significantly changed, then inputs to consecutive
primitive function calls are almost identical (only a few bits
of difference). In [22], one counter V can be used for at most
219 bits of output. If the combined inputs (based on seeds and
counters) to the generators are larger than 448 bits but smaller
than 512 bits for SHA1/SHA256 based generators, then the
padded inputs have the form M1M2 where M2 consists mainly
of the padded 0-bits. Thus for each hash function call, the
hash function processes the same last message block M2 with
different first hash values (or internal hash function state). We
conjecture that these “sparse” inputs to the generators may
reduce the randomness property (or reveal the non-randomness
property) of the underlying primitives. Thus it is reasonable to
design a better seeding process for pseudorandom generators.
In [22], the seeding information is used to derive a start
counter V of seedlen bits which is 440 for SHA1/SHA2.
The length of V is chosen in such a way that each hash
function call will only have one message block to process.
The value of V is revised after at most 219-bit output using
G(V +G(0x03||V)+C+reseed counter) where C contains
the entropy of the original seeding. As we have observed in
the experiments, the generated sequences show strong non-
randomness properties with stable Slil values. We recommend
revising the seeding process in such a way that each hash
function call has significantly different last message block and
different internal hash algorithm state when the last message
block is processed. Specifically, we recommend the following
seeding approach with two choices for the value of vLen
which is defined using seedln from [22].

Approach: The seeding information is converted to a se-
ries of values V0, V1, · · · , VT using a second independent
pseudorandom generator such that each Vi is of vLen bits
and T is the maximal number of requests between re-seeding
as defined in [22]. The generated pseudorandom sequence is
G(V0) · · ·G(VT) where G is a hash function or block cipher
primitive. For the first choice of vLen, we set vLen =
seedlen. The second choice is for hash function based gen-
erators only and we set vLen = seedlen + u where u is the
hash function G’s message block size.

The values of V0, V1, · · · , VT are generated from the seeding
information using a second independent pseudorandom gen-
erator such as another block cipher or another hash function
based generator or linear feedback shift registers (LFSR). For
the first choice of vLen, we achieve the same efficiency of
[22] by having one message block for each primitive function
call. The advantage of the second choice for vLen is that if
G is a hash function, then the hash function internal states
(or the first hash values) are dynamically changed for each
hash function call and we expect this will produce better
randomness properties within the generated sequences. Our
experiments show that sequences generated with the above
proposed approach have better fluctuation scales for the value
Slil compared with the results in Sections VII-B and VII-C.

Figure 10 shows the LIL test results on 6 typical sequences
based on SHA1 hash function with the proposed seeding
approach and dynamic inputs using the scale 10000n2 for
the x-axis. Each sequence is 1.34GB long (226 calls to the
hash function). In the following, we use G1 to denote the
SHA1 hash function. The LFSRs that we used are based on
the feedback polynomial x32 + x22 + x2 + x + 1. Compared

Fig. 10. Result for SHA1 with dynamic inputs

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

testsha1w47BR8BRctr
testsha1w50BR8BRctr
testsha1w51BS8Bctr

testsha1w60BR4Bctr
testsha1w60BR4Bctr4BLFSR
testsha1w20BRS4BLFSTctrUSha1

to results in Figure 8, Figure 10 have much better Slil
fluctuation scales as we have expected and these sequences
have passed the weak (α, n1, n2)-LIL test with α = 0.01,
n1 = 6MB, and n2 = 1.34GB. The line sha1w47BR8BRctr
is for the sequence G1(x0, 0)G1(x1, 1) · · · where xi is a 47-
byte string generated from the seed s using AES128 counter
mode and the counter is 8 bytes. The line sha1w50BR8BRctr
is for the sequence G1(x0)G1(x1) · · · where xi is a 58-
byte string generated from 15 LFSRs with different initial
values based on the seed s. The line sha1w51BS8Bctr is
for the sequence G1(x, y0)G1(x, y1) · · · where x is a 51-
byte fixed seed and yi is a 8-byte counter generated from
two LFSRs with different initial values based on the seed s.
The line sha1w60BR4Bctr is for G1(x0, y0)G1(x1, y1) · · · ,
where xi is a 60-byte string generated using AES128 in
counter mode and yi is a 8-byte random string that is gen-
erated using two LFSRs with different initial values based
on the seed s. The line sha1w60BR4Bctr4BLFSR is for
G1(x0, 0, y0)G1(x1, 1, y1) · · · , where xi is a 60-byte string
generated using AES128 in counter mode, yi is a 4-byte string
generated using one LFSR with seed s, and the counter is

12

4 bytes. The line sha1w20BRS4BLFSTctrUSha1 is for the
sequence G1(x0, y0)G1(x1, y1) · · · , where xi is a 20-byte
string generated using SHA1 with counter mode and yi is
a 4-byte dynamic counter generated using one LFSR with the
seed s.

Fig. 11. Result for SHA1 with random counter mode

0 200 400 600 800 1000

−1
.5

−0
.5

0.
5

1.
5

SHA1w10BAESeachtime

As another example, Figure 11 shows the test result on a
sequence G1(x0)G1(x1) · · · where xi is a 10-byte sequence
generated by AES128 with counter mode and with key k =
0x0E14533E 1F056F7C7E192B3F4C4D7E6F. It is clear that
the LIL curve in Figure 11 has very good Slil fluctuation scale
and passes the weak (α, n1, n2)-LIL test with α = 0.01, n1 =
6MB, and n2 = 1.34GB. This example further justifies our
proposed seeding approach since we used a second AES128
based pseudorandom generator to produce the input to the
SHA1 based pseudorandom generator.

REFERENCES

[1] E. Barker and J. Kelsey. NIST SP 800-90A: Recommendation for Ran-
dom Number Generation Using Deterministic Random Bit Generators.
NIST, 2012.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigms
for designing efficient protocols. In Proc. ACM CCS, pages 62–73, 1993.

[3] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Ad-
vances in Cryptology–EUROCRYPT’94, pages 92–111. Springer, 1995.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge-based
pseudo-random number generators. CHES 2010, pages 33–47, 2010.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak
reference. NIST winning algorithm of SHA3, 2012.

[6] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudorandom bits. SIAM J. Comput., 13:850–864, 1984.

[7] D. Boneh. Simplified oaep for the rsa and rabin functions. In Advances
in Cryptology–CRYPTO 2001, pages 275–291. Springer, 2001.

[8] R.L. Brown, J. Durbin, and J.M. Evans. Techniques for testing the
constancy of regression relationships over time. J. Royal Stat. Soc. Ser.
B (Methodological), pages 149–192, 1975.

[9] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodol-
ogy, revisited. J. Assoc. Comput. Math., 51(4):557–594, 2004.

[10] W. Feller. Introduction to probability theory and its applicatons,
volume I. John Wiley & Sons, Inc., New York, 1968.

[11] Niels Ferguson and Bruce Schneier. Practical cryptography, volume
141. Wiley New York, 2003.

[12] I. Goldberg and D. Wagner. Randomness and the netscape browser.
Dr Dobb’s Journal-Software Tools for the Professional Programmer,
21(1):66–71, 1996.

[13] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Sys.
Sci., 28(2):270–299, 1984.

[14] Oracle Inc. Class SecureRandom. http://docs.oracle.com/javase/1.4.2/
docs/api/java/security/SecureRandom.html, 2004.

[15] Oracle Inc. Javatm cryptography architecture – API specification
& reference. http://docs.oracle.com/javase/1.5.0/docs/guide/security/
CryptoSpec.html, 2004.

[16] A. Khintchine. Über einen satz der wahrscheinlichkeitsrechnung. Fund.
Math, 6:9–20, 1924.

[17] J. H. Lutz. Almost everywhere high nonuniform complexity. J. Comput.
System Sci., 44:220–258, 1992.

[18] P. Martin-Löf. The definition of random sequences. Inform. and Control,
9:602–619, 1966.

[19] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle
methodology. Theory of Cryptography, pages 21–39, 2004.

[20] NIST. Statistical test suite, http://csrc.nist.gov/groups/ST/toolkit/rng/,
2010.

[21] Federal Information Processing Standards Publication. Fips pub 180-4,
secure hash standard (SHS). US Department of Commerce, 2011.

[22] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A
Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications. NIST SP 800-22, 2010.

[23] C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische
Begründung der Wahrscheinlichkeittheorie. Lecture Notes in Math. 218.
Springer Verlag, 1971.

[24] V. Shoup. Oaep reconsidered. In CRYPTO 2001, pages 239–259.
Springer, 2001.

[25] J. Ville. Étude Critique de la Notion de Collectif. Gauthiers-Villars,
Paris, 1939.

[26] R. von Mises. Grundlagen der wahrscheinlichkeitsrechung. Math. Z.,
5:52–89, 1919.

[27] Y. Wang. Resource bounded randomness and computational complexity.
Theoret. Comput. Sci., 237:33–55, 2000.

[28] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd
IEEE FOCS, pages 80–91, 1982.

