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Abstract

We study dynamic committee bargaining over an infinite horizon with discounting. In each period

a committee proposal is generated by a random recognition rule, the committee chooses between the

proposal and a status quo by majority rule, and the voting outcome in period t becomes the status quo

in period t+1. We study symmetric Markov equilibria of the resulting game and conduct an experiment

to test hypotheses generated by the theory for pure distributional (divide-the-dollar) environments. In

particular, we investigate the effects of concavity in the utility functions, the existence of a Condorcet

winning alternative, and the discount factor (committee ”impatience”). We report several new findings.

Voting behavior is selfish and myopic. Status quo outcomes have great inertia. There are strong

treatment effects, that are in the direction predicted by the Markov equilibrium. We find significant

evidence of concave utility functions.
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I Introduction

The large redistributive programs that have characterized western democracies since the end of World

War II -pension, health, and disability plans, for example- share a common characteristic. Once one of

these programs is created by a legislature, it remains in force until explicitly revised. This feature makes

the politics of redistribution an intrinsically dynamic game that can not be studied as a simple static

struggle for resources among different constituencies, or even as a sequence of independent struggles. A

policy chosen today will be the status quo tomorrow. In choosing the optimal policy, a policy maker

should not only consider the direct effect of the policy today, but also the indirect effect that the policy

has for future policy decisions. In the short run the policy maker may prefer a policy that favors only

his constituency; when the long run is considered, however, a more moderate policy may be preferred

because a moderate status quo favorable to a larger constituency will be harder to overturn in the future.

Recent theoretical work has put particular emphasis on the dynamic nature of redistributive policies,

producing a rich assortment of predictions.1 This literature raises three natural questions: To what

extent do game theoretic models accurately predict behavior in a dynamic policy game? Can the models

be improved to better explain empirical evidence? If so, how?

In this paper we take a step in answering these questions by studying equilibrium behavior in a simple

dynamic model of committee bargaining with endogenous status quo and by presenting the first laboratory

experiment on this class of games.2 We consider an infinite horizon model in which a committee of three

agents has to divide a dollar at every period. At the beginning of a period a member of the committee

is selected at random to propose a division to the committee. The committee then chooses by majority

rule between the proposal and a given status quo. The selected policy is implemented and it becomes

the new status quo. With a positive probability the game is repeated exactly as before, but with the new

status quo; with the complementary probability the game is terminated. The policy choice in period t,

therefore will affect the bargaining game at t+ 1, and indirectly in the following period as well.

We study this model because similar models have been theoretically studied by a number of authors

(Epple and Riordan [1987], Baron [1996], Baron and Herron [2003], Kalandrakis [2004] and Duggan

1Among the most recent works, see Barron and Herron [2003], Battaglini and Coate [2006, 2007a,2007b], Diermeier and
Fong [2007], Duggan and Kalandrakis [2010], Kalandrakis [2004], Penn [2009].

2Previous important experimental work on legislative bargaining games is provided by McKelvey [1991] and, more
recently, by Diermeier and Morton [2004] Diermeier and Gailmard [2006] and Frechette, Kagel and Morelli [2003, 2005a,b,c
and 2007]. All this work, however, focuses on static environments inspired by the seminal paper by Baron and Ferejohn
[1989] in which a given amount of resources is allocated only once.
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and Kalandrakis [2010]) and it is therefore a natural starting point. Despite its simplicity, a complete

understanding of behavior in this game has thus far proven elusive. When agents are risk neutral,

Kalandrakis [2004] has shown by construction that this game has a symmetric Markov equilibrium in

which committee members behave myopically, maximizing their current utility. In this equilibrium,

therefore, proposers succeed in appropriating all or almost all the dollar in every period as if the game were

a sequence of one period games. Baron [1987] and Baron and Herron [2003] however have conjectured that

with more general utilities, agents have stronger incentives for dynamic strategic behavior, suggesting

that concavity in the utility function would lead to more equitable outcomes. However, equilibrium

behavior in a legislative bargaining game with general utilities has not been characterized yet, so the

importance of this phenomenon is not known in general.3

To investigate these issues and provide a theoretical benchmark for the experimental evidence, we

proceed in two steps. First, we study a simple environment in which we can prove the existence of a

unique equilibrium with certain desirable properties, and we can fully chracterize it. In this environment

we can consider both situations in which the policy space admits a Condorcet Winner, and situations in

which a Condorcet Winner does not exist. A central principle of static models of committee decision

making is that Condorcet winners will prevail. In the environment we study, even with a Condorcet

winner we predict the stability of dynamic regimes where non-Concorcet winners prevail indefinitely.

Second, we extend the analysis to a “divide the dollar” game in which multiple equilibria may exist.

We study this game by numerical methods, showing that Baron’s conjecture is correct by computing an

equilibrium in which as concavity increases, equilibrium outcomes become more equitable.

This theoretical analysis provides a rich set of predictions that we can test in the laboratory. We

consider an experimental design that varies the environment across three dimensions. One dimension is

whether the environment is a (nearly) continuous divide the dollar setting, versus a more constrained set

of allocations. The second dimension, applied to the finite environment, is the effect of the existence of

a Condorcet winner. The third dimension, applied to the continuous environment, is the effect of long

run incentives, which we study by varying the discount factor of the committee members – comparing

“patient” legislatures or committees with “impatient” ones.

Our experimental findings allow a clear evaluation of the ability of these complex theoretical models
3Bowen and Zaharan [2009] have constructed an example of an equilibrium with these properties for a non degenerate

interval of discount factors when then the number of agents is larger than four.
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to predict empirical behavior. In environments where bargaining is over a limited set of states, the

“standard” theoretical model assumed in the literature (in which utilities are linear and agents play

according to Nash equilibrium) is consistent with many features of the data, but with some exceptions

which we discuss. The model predicts, in particular, the difference in behavior that we observe between

the case in which there is a Condorcet winner among the alternatives or not. When bargaining is over

more complicated state spaces (as in the unit simplex), however, the standard model performs less well.

The model predicts highly unequal outcomes in which in each period one agent appropriates most of the

resources: however, we rarely observe such outcomes, on the contrary, we observe a significant frequency

of allocations in which resources are evenly distributed among all participants. We can however show

that this type of behavior is not necessarily evidence of social preferences or non-strategic behavior.

Indeed, there is little or no evidence in our data indicating a preference for fairness. Rather, our main

experimental findings are consistent with selfish preferences and concave rather than linear utilities, and

we fit such a model to the data. Players tend to make proposals that maximize their payoff at the

expense of others when it is optimal to do so (as when they are favored by the status quo); and voting

behavior is overwhelmingly myopic and selfish in all treatments.

The rest of the paper is organized as follows. The next section lays out the model. Section 3

characterizes the theoretical properties of the model. Section 4 describes the experimental design. Section

5 analyzes the results and findings of the experiment. We conclude in section 6.

II Model

We consider the problem faced by a set of N agents who repeatedly bargain over a set of outcomes X. In

each period t = 1, 2, 3... a policy xt is chosen by the agents. The bargaining protocol with which policy

xt is chosen is as follows. At the beginning of each period an agent is chosen by nature as the proposer,

and proposes a policy, yt ∈ X. The floor votes on this policy following a q rule, where q ∈ [1, N ]. If

the number voting in favor is greater than or equal to q, the proposal is accepted and xt = yt is the

implemented policy at t. If the proposal is voted by less than q agents, the proposal is rejected and a

status quo policy xt = xt−1 is implemented. The initial status quo x1 is exogenously specified. Each

agent can be recognized as a policy proposer: the probability that agent i is recognized as proposer in

period t is 1
N , so the probabilities of being recognized are assumed here to be symmetric and history

invariant.
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Agents have a Von Neuman Morgenstern per period Utility Ui : X → R, which is assumed to be

continuous and (weakly) quasi concave. The policy implemented in period t, xt, therefore induces an

n-tuple of utilities (Ui(xt))
N
i=1. The utility of an infinite sequence of policies, x = {x1, .., xt, ...} is given

by Uδi (x) = (1 − δ)
∑∞
t=1 δ

t−1Ui(xt) where the non-negative discount factor, δ is assumed to be strictly

less than 1.

Many examples of this general framework can be constructed. We will focus on two:

Example 1 (Divide the Dollar). The agents have to divide a pie of size K. An allocation is vector

(xit)
N
i=1 where xi ≥ 0 ∀i and

∑N
i=1 x

i = K. Each agent is interested only in the size of the pie that he

receives.

Example 2 (Public Goods). In this case X is a collection of projects {x1, ..., xK}, where each project

xk gives utility payoffs to the agents, (Ui(xk))Ni=1.

An outcome in period t is defined by the current status quo, xt, Nature’s choice of a proposer ιt ∈

{1, ..., N}, the proposed policy yt ∈ X, the vector of votes ηt ∈ {1, 0}
N . Let ωt = {xt, ιt, yt, ηt} be

an outcome at time t ≥ 1, and xt = χ (ωt; q) is the policy implemented under the voting rule, q, if

the outcome in period t is ωt. An t-history ht is defined as ht = {ω1, ....ωt}; the set of possible t-

histories is Ht. A strategy for agent i is a set of functions sit = [ρit, σit]∞t=1: where ρit : Ht−1 → ∆X

describes the proposal strategy of agent i in period t (∆X is the set of randomizations over X); and

σit : Ht−1 × {1, .., N} ×X → [0, 1] associates to each history ht−1, proposer, and proposal a probability

to vote for the proposal.

In a sequential equilibrium the strategies are measurable with respect to the entire history set Ht.

A Markov strategy, on the contrary, is measurable only with respect to the status quo xt and the payoff

relevant events that occur in period t: ρi : X → ∆X, σi : X × X → [0, 1]. A Markov Equilibrium

is a subgame perfect Nash equilibrium in Markov strategies. The analysis in this paper focuses on

Markov equilibria. To each Markov equilibrium and each agent i, we can associate a function vi(θ)

which represents the expected continuation value of agent i when the status quo (current policy) is θ

before the proposer is randomly selected. Given this we can define the function ui(θ) = Ui(θ) + δvi(θ)

as the expected utility of agent i if policy θ is implemented in a representative period; and the function

ui(θ′; θ) as the expected utility of agent i if he proposes θ′ when the status quo is θ.

An Markov equilibrium s = {(ρi, σi)}ni=1 is symmetric if {(ρi, σi)}ni=1 if it has the following symmetry
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property. For any pair of agents i, j and for any pair of alternatives, x, y ∈ X, define xij (or yij) by

switching the ith and jth components of x (or y), e.g., x12 = (x2, x1, x3). Then we call s symmetric if

ρi(x|y) = ρj(xij |yij) and σi(x, y) = σj(xij , yij) for any i, j and any x, y ∈ X. A Markov equilibrium is

in stage undominated strategies if in each stage no agent uses a strategy that is weakly dominated given

his equilibrium value function vi(θ). From now on we will focus on symmetric Markov equilibria in stage

undominated strategies, and we refer to them simply as equilibria.

III Theoretical predictions

In this section we describe the equilibrium properties of the game described in Section 2 under additional

assumptions on the policy space. We focus exclusively on the case of N = 3 and q = 2. In Section 3.1

we study a case with a finite set of alternatives in which the equilibrium is unique. In Section 3.2 we

study equilibrium behavior in a standard divide the dollar game.

III.1 Simplified Divide-the-Dollar: Coarse grid over allocations

In this section we consider a relatively simple environment in which there is a unique equilibrium predic-

tion. We focus on two possible cases. In both cases, the 3-way equal split which we call the universal

allocation, is feasible. The two cases then differ in the other three allocations. In the first case, there

is no Condorcet winner (NCW, which stands for “No Condorcet Winner”): it only includes three ma-

joritarian allocations where the pie is divided equally between two committee members, and the third

committee member receives 0. In the second case (CW, which stands for “Condorcet Winner”), the

universal allocation is a Condorcet Winner: that is, it is myopically preferred by a majority of voters in

any pairwise comparison with the other three allocations.

III.1.1 No Condorcet Winner (NCW)

Consider a bargaining game with a set of players N = {1, 2, 3} and four states X = {x0, x1, x2, x3} that

induce payoffs described by the following matrix S:
1 2 3

x0 20 20 20
x1 0 30 30
x2 30 0 30
x3 30 30 0

 (1)
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where the rows describe the states, and the column the players: the matrix specifies the per period

utility of an agent for each state.4 In this game there are only two possibilities. Either the outcome

is egalitarian if state x0 is chosen; or the outcome is strictly majoritarian: a minimal wining coalition of

players share the dollar and leave the remaining player with nothing. There is no Condorcet winner.

When the agents are identical it is natural to consider equilibria in which agents behave and treat

the other agents in the same way. We have already assumed symmetry of the strategies, but we can also

consider a strong assumption that a strategy by i does not discriminate between other players j and k

in terms of outcomes, but only cares about the expected payoff associated with the outcomes. We sat an

equilibrium is neutral if for any θ, x, y: ui(x; θ) = ui(y; θ) implies ρi(x| θ) = ρi(y| θ), and ui(x) = ui(θ)

implies σi(x| θ) = 1
2 (where ρi(x| θ) is the probability that x is proposed by i in state θ, and σi(x| θ) is

the probability that voter i votes for x when the status quo is θ). Intuitively an agent cares only about

his expected payoff, not about the particular state that achieves the payoffs. For the coarse-grid divide

the dollar games, this refinement of the symmetric Markov equilibrium will deliver uniqueness.5

Consider a strategy profile, in which voters vote “myopically” for the alternative that offers the highest

per period payoff, mixing with equal probability when indifferent; and a proposer i proposes his favorite

alternative (xi). We call a strategy profile with these characteristics a myopic strategy. The following

result establishes that the symmetric forward-looking equilibrium strategies are myopic when payoffs are

described by (1):

Proposition 1. When payoffs are as (1), with linear utilities there is a unique neutral equilibrium. Each

agent i proposes following history independent strategy ρi (xj |x ) = ρi (xk |x ) = 1
2 ∀ j, k /∈ {i , 0} and ∀x,

and votes for the alternative that offers the highest immediate payoff, mixing with equal probability when

indifferent. This remains an equilibrium if the agents have the same strictly increasing utility function.

Proof. See Appendix.

This result provides clear-cut predictions that can be tested in the laboratory. The proposal behavior

and the voting behavior does not depend on the initial status quo. Specifically, in every round, equilibrium

proposal strategies are mixed, with equal probability on the two allocations that give the agent 30. Voting

behavior is myopic, with indifference leading to uniform mixing. This Markov equilibrium generates a

unique transition probability function. From a status quo xi the state remains at xi with probability 2
3

4In (1) we assume that the sum of payoffs is 60 because this is the size of the pie that we use in the experiments.
5Later, when we consider the continuous (or fine-grid) divide the dollar game, we do not impose the condition of

neutrality.
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and moves to a state xj with probability 1
3 , and never moves to x0. From status quo x0, the state moves

to each other state xi with probability 1
3 . Proposals of (20,20,20), therefore, never occur in equilibrium,

so votes involving (20,20,20) can only occur in the very first round, and only if (20,20,20) is the initial

status quo.

It is useful to note that concavity (γ > 0) does not destroy this equilibrium in the present case. That

is, regardless of the concavity of the utility function, the equilibrium identified in Proposition 1 persists.

To see this, note that i’s equilibrium continuation value of the universal allocation is exactly the same as

the continuation value from the i state.

III.1.2 Condorcet Winner (CW)

With finite states there can be a Condorcet winner. The bargaining game described by the following set

of four allocations is one example: 
1 2 3

x0 20 20 20
x1 30 15 15
x2 15 30 15
x3 15 15 30

 (2)

As in (1) we have a symmetric policy (x0); now, however, in policies xi i = 1, 2, 3 one agent receives a

payoff double to the payoff of the other players. The Condorcet winner is x0.

Suppose that voters have linear utilities, and consider the value function implied by myopic strategies.

The continuation value in state x0 is the simplest to find, since - by virtue of it being the Condorcet winner

- the outcome transitions out of this state with zero probability under myopic strategies. Therefore:

vi(x0) =
20

(1− δ)
∀i. (3)

Given this, the remaining value functions can also be easily found by backward induction. When the

state is xi, the value function vi(xi) of agent i is

vi(xi) =
1
3

(30 + δvi(xi)) +
2
3

[
1
2

(30 + δvi(xi)) +
1
2

(15 + δvi(xj))
]

(4)

=
2
3

(30 + δvi(xi)) +
1
3

(15 + δvi(xj))

where vi(xj) is the value function of the same agent i when the state is j /∈ {0, i}. With probability

1/3, i is the proposer and he can guarantee that xi is chosen; with probability 2/3 a different agent (say

j) is proposer and proposes xj : the proposal is accepted with probability 1/2, with probability 1/2 xi is

7



implemented again. The continuation value at xj is for i is can be computed in a similar way:

vi(xj) =
1
6

(30 + δvi(xi)) +
5
6

(15 + δvi(xj)) (5)

Solving equations (4)-(5) we have:

vi(xi) =
50− 30δ

(1− δ) (2− δ)
, vi(xj) =

35− 15δ
(1− δ) (2− δ)

. (6)

From these formulas it is easy to verify that the strategies described above induce a value function that

is monotonically increasing in the agent’s payoff. The following Proposition shows that not only these

strategies are an equilibrium, but they are the unique symmetric Markov equilibrium:

Proposition 2. When the set of allocations are those in (2) and utilities are linear, there is a unique

neutral equilibrium. In this equilibrium players play myopic strategies.

Proof. See Appendix.

The equilibrium strategies characterized in Proposition 2 imply a unique transition matrix. From a

status quo xi the state remains at xi with probability 2
3 and moves to a state xj with probability 1

3 , and

never moves to x0. From status quo x0, the state remains at x0 with probability 1.

As in the NCW case, voting behavior predicted by proposition 3 is myopic, however this leads here

to an important difference. In the NCW case, (20,20,20) is defeated in any pairwise vote against any

other allocation, but in the CW case, it will defeat any other allocation. Therefore, in the latter case, if

the initial status quo is (20,20,20), it will remain the status quo forever. Proposals of (20,20,20), while

off the equilibrium path in both the NCW and the CW case (except in the CW when it is the initial

status quo) have a much different effect, since (20,20,20) is an absorbing state in the CW game, but it is

always defeated the NCW game. This implies drastically different dynamics in Markov Quantal Response

Equilibrium (QRE) between the two tables, where because of the stochastic nature or propositions under

QRE, CW case represented by 2 will alternate between epochs of “universal” regimes and “dictatorial”

regimes, and the NCW environment represented by 1 will yield stable “majoritarian” regimes, where

there is a random rotation of two players coalitions splitting the pie. The QRE dynamics are discussed

in more detail in the results section.

III.2 The divide the dollar game

As we mentioned in Section 1, in a standard “divide the dollar” game a feasible allocation is a vector

(xit)
N
i=1 where xi ≥ 0, and

∑N
i=1 x

i is equal to a constant, the “size of the pie”; and each agent is interested
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only in the size of the pie that he receives. Despite its simplicity, there is no known characterization

of the divide the dollar bargaining game described above for general utility functions.6 To obtain

predictions that we can test using our experimental data, we turned to numerical methods. Here we

describe properties of the numerically computed equilibrium under the parameter specifications used in

the experiments: three agents, a pie of size 60 and a discount factor equal to either 0.83 or 0.75.

III.2.1 Numerical Computation of the Markov Equilibrium

We compute a Markov equilibrium for the family of utility functions with constant relative risk aversion:

Ui(xi; γ) =
1

1− γ
(xi)

1−γ ∀i = 1, 2, 3

where xi is the share received by agent i. The coefficient of relative risk aversion γ measures the curvature

of the utility function: the higher is γ, the more concave is utility. For simplicity, in this section we

discuss two polar cases: the linear case, γ = 0, and a strictly concave case, γ = 0.95.7

Equilibria were computed as the limit of Markov Logit Quantal Response Equilibria (MLE) by gradu-

ally reducing noise in the agents reaction functions. This smooths out the best response correspondence,

which is helpful in the numerical computation. In the logit version of quantal response equilibrium, as

defined for extensive form games, each player, at each information set uses a behavioral strategy where

the log probability of choosing each available action is proportional to its continuation payoff, where the

proportionality factor, λ, can interpreted as a responsiveness (or rationality) parameter. The continua-

tion payoffs are computed using the MLE strategies of all future play in the game, as, for example, in the

definition of continuation payoffs in a sequential equilibrium (Kreps and Wilson 1982).8 Markov perfect

equilibria can be found as limits of MLE because for very high values of λ players choose best responses

with probability approaching 1, so limit points of the MLE correspondence, as λ→∞ are Markov equilib-

ria. Moreover, Theorem 4.1 in McKelvey and Palfrey (1998) can be extended to the Markov equilibrium

setting to show that for generic games in which a Markov perfect equilibrium exists, there is one Markov

perfect equilibrium that is selected as the limit of the connected path in the equilibrium graph that has

a solution for every value of λ ≥ 0.

We solved the game using discrete approximation of a unit simplex where allocations are in increments
6A characterization of an equilibrium in the divide the dollar game is available only for the case of linear utilities (see

Kalandrakis [2004]). We will discuss this equilibrium below.
7In later sections we will use experimental data to obtain a maximum likelihood estimate of γ.
8A precise definition of this equilibrium concept is presented in Appendix 1.
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of 5.9 This reduces the set of states to 91. Formally, the policy space is:

X :=

{
x = (x1, x2, x3) s.t. ∀i ∃t ∈ N, xi = 5t,

3∑
i=1

xi = 60

}
.

Given the smooth properties of this MLE path, there is a simple and (relatively) fast path-following

algorithm which will find this solution. It is simple because we know the solution at λ = 0: all (behavioral)

strategies are chosen with equal probability, and this implies the unique value function. Hence, we begin

with the solution at λ = 0 and can use that solution as the starting value to find the MLE for an

incrementally larger value, say λ = ε. Because we are guaranteed that for small enough ε the starting

value obtained from λ = 0 is very close the the solution at λ = ε, the fixed point algorithm will find a

solution at ε very quickly. Then, we use the solution at λ = ε to compute the solution at λ = 2ε and

so forth, thereby tracing out the MLE path that converges to a Markov equilibrium of the game. There

are some numerically tricky issues when λ becomes very large, and the algorithm takes several hours but

conceptually it is quite simple, and convergence is not difficult to achieve.10

III.2.2 Steady State Equilibrium Dynamics

A proposal strategy associates to each status quo a vector of probabilities of proposing each state. The

voting strategies associate a probability of voting yes to each possible status quo - proposal pair. Be-

cause the equilibrium strategy space is so large, to describe the properties of equilibrium behavior it

is convenient to use the stationary distribution over outcomes induced by equilibrium strategies. The

equilibrium strategies generate a Markov process with a stationary transition matrix. This transition

matrix associates each state x′ ∈ X to a probability distribution ϕ(x |x′ ) over states x ∈ X in the fol-

lowing periods. For a given initial distribution P 0(x) over the status quos, we can therefore define the

equilibrium distribution of states at t recursively as:

P t(x) =
∑
x′∈X

ϕ(x |x′ )P t−1(x′).

The probability function P t(x) converges to a stationary distribution P ∗(x) as t→∞. This distribution

represents the frequency of the states that we would expect to observe in the long run, so it provides one

of the fundamental properties of the Markov equilibrium.
9For any discrete approximation, existence of a symmetric Markov equilibrium follows from standard fixed point argu-

ments.
10The maximum value of λ for which we compute the MLE is λ = 20, at which point the changes in the MLE have

become extremely small.[add comment about how small? what is our convergence criterion?]
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Figure 1: Allocation regions. The vertical coordinate represents Agent 1’s payoff, the horizontal represents
Agent 3’s payoff. The payoff of Agent 2 is the residual.

For descriptive purposes, we cluster the states in coarser regions. Figure 1 describes a partition of

the states in 7 regions. The D regions correspond to dictatorial allocations where one player receives

the lion’s share of the pie. The M regions correspond to majoritarian allocations where a coalition of

two players receive most of the pie, with nearly equal shares, while the third player receives only a small

amount or nothing. The U region consists of universal allocations, where the pie is equally, or nearly

equally, shared. Conditional on being, say, in D1 we can use the stationary distribution of the computed

Markov equilibrium to derive the probability of transition to state M12 (the M region corresponding to

the coalition of players 1 and 2) . Doing this for all pairs of regions gives a representation of the steady

state equilibrium dynamics of the infinitely repeated game in a simple 7× 7 matrix. This allows one to

describe the dynamics in a concise way.

Linear utilities. We start with the discussion of the equilibrium with linear utilities and δ = 0.83.

In choosing how to allocate the pie, a proposer is faced with a trade off between short run and long

run effects of the allocation. In the short run, a proposer is facing a simple problem: if the proposer

were completely myopic (δ = 0), he would attempt to form a minimal winning coalition and maximize

his immediate payoff. In the long run, however, the game is more complicated because a state that

maximizes his payoff today may reduce his payoff in the future.

To see which effect dominates when agents are risk neutral, consider the equilibrium transition matrix,
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presented in Table 1, using the states described in Figure 1.11 Given the symmetry of the equilibrium

we have only 3 regions to consider: if we are in D1, in M12 or in U: the remaining cases will be the

same. The dynamics implied by Table 1 are therefore even more simply represented in Figure 1.A which

describes the transition probabilities from these three states.

Figure 1.A makes clear that the short run effect dominates. For example, suppose the initial state is

in D1, where agent 1 receives most of the pie. In this case the state will stay at D1 with 34% probability

and move to Dj j=2,3 with 33% probability; that is, with 100% probability the state will remain in the

extreme regions. This occurs because in D1 each agent will propose almost all the payoff for himself,

with a minimal share going to a single coalition partner. The probability that we remain in D1 is higher

because some of these proposals can be rejected with positive probability

.

SQt+1

SQt

D1 D2 D3 M12 M13 M23 U
D1 0.34 0.33 0.33 0 0 0 0
D2 0.33 0.34 0.33 0 0 0 0
D3 0.33 0.33 0.34 0 0 0 0
U 0.01 0.01 0.01 0.31 0.31 0.31 0.03

M12 0.33 0.33 0.25 0.08 0 0 0
M13 0.33 0.25 0.33 0 0.08 0 0
M23 0.25 0.33 0.33 0 0 0.08 0

Table 1: Theoretical Transition Matrix of the 7 regions δ = .83 γ = 0

It is interesting to note the dynamics evolving from a status quo in U. In this case the state does not

jump directly to a region Di i=1,2,3 with high probability (in total only 3% of the time). Much more

likely the state will transition to a state Mij i,j=1,2,3. This because it is very difficult for i to convince

any other agent to vote for a Di proposal. This can only happen if the state in U is bordering a region

Dj, j 6= i, by offering to k /∈ {i, j} (a currently disadvantaged agent) a more advantageous payoff in Di.

From a state Mij, however, the system moves to a D state with very high probability, more than 90% of

the time. From U, the system moves with high probability to Mij.

In the long run, therefore we would expect the state to rotate around regions D1, D2 and D3. This

myopic behavior can be clearly seen in the stationary distribution of outcomes represented in Figure 3.A.

In the long run most of the mass of the distribution of states is on the extremes: that is on states in

which a single agent receives a payoff between 50 and 60. When agents are risk neutral, therefore, they

behave as if they were myopic, simply choosing allocations that maximize their current payoff.
11In Table 1, transition probabilities may not sum to one due to rounding errors. SQt is the status quo in period t.
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Figure 2: δ = 0.83. The left graphs (A) are for the linear utility equilibrium and the right graphs (B)
are for the concave utility (=.95) equilibrium. The top graphs illustrate transitions from D regions; the
middle graphs from U; the bottom graphs from M.

This finding is consistent with the analysis in Kalandrakis [2004] who characterized an equilibrium of

the bargaining game when the state space is the unit simplex (and so the unit of account is infinitesimal).

There is, however, a slight difference. Kalandrakis [2004] shows that in the long run only the most

extreme states are chosen (i.e., only states in which one agent receives 60). In the equilibrium presented

above, this does not occur: indeed with a strictly positive probability at least one of the other agents

receives a positive payment. This difference is due to the fact that in the model studied here the proposer

must divide the pie in discrete units of 1/12 of the total size. With a continuum, the equilibrium must

have voters voting in favor of the proposal when they are indifferent. (Otherwise, the proposer would

have an incentive to sweeten the offer by and infinitesimal amount.) With a discrete pie, this no longer
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Figure 3: Stationary distribution of allocations (δ = .83). The top graph is for γ = 0 and the bottom
graph is for γ = 0.95.

must be the case.12 In the Markov equilibrium selected as the limit in our computations, the proposer

does not want to make offers that leave the other players just indifferent, because in the quantal response

equilibrium, they would vote in favor of the proposal only 1/2 of the time even for large values of λ,

while they would accept all better offers (including the cheapest one) with probability 1. The proposer

therefore has an incentive to offer something to his coalition partner. Of course as the grid becomes

arbitrarily fine, these equilibria become essentially identical.
12A similar property arises in looking at subgame perfect equilibrium of the ultimatum game. With a perfectly divisible

pie, the only subgame perfect equilibrium is for the proposer to offer zero and the responder to accept any offer. However,
with a discrete grid, there is also a subgame perfect equilibrium where the proposer makes the smallest positive offer, and
the responder accepts only positive offers.
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It is interesting to compare these results with Proposition 1, which characterizes the equilibrium in

the CW case. As in Proposition 1, the equilibrium proposals have minimal winning coalitions. As in the

case with a coarse policy space, equilibrium behavior of agents mimics myopic behavior, behaving exactly

as agents with a zero discount factor, even though all agents are in fact strategic and forward looking.

The result, however, here is more extreme because the proposer is less constrained by the coarseness of

the state space, and can fully extract almost all the resources.

Concave utilities With strictly concave utility functions, agents are averse to sequences of outcomes

in which the status quo - and hence their own share of the pie - changes at every period. Hence the

incentives for more symmetric distributions are greater because such distributions generate less variance

across time. Among the least efficient outcome would be the one where a single voter, the proposer,

appropriates the entire pie in each period. Though in this case an agent is receiving 20 on average (60

one-third of the time and 0 two-thirds of the time), this gives a lower discounted utility than receiving

exactly 20 in every period. Proposers can avoid such “rotating dictator” outcomes by choosing a division

that is closer to the centroid of the simplex. By allocating a higher share to an agent, the proposer

exposes himself less to expropriation in the future, because it makes it harder for a future proposer to

extract a larger share of the surplus by forming a coalition with an excluded agent. A proposal close to

the centroid is harder to overturn and reduces the volatility of the proposer’s future payoffs.

.

SQt+1

SQt

D1 D2 D3 M12 M13 M23 U
D1 0 0 0 0.27 0.27 0.27 0.19
D2 0 0 0 0.27 0.27 0.27 0.19
D3 0 0 0 0.27 0.27 0.27 0.19
U 0 0 0 0.01 0.01 0.01 0.98

M12 0 0 0.02 0.77 0.01 0.01 0.19
M13 0 0.02 0 0.01 0.77 0.01 0.19
M23 0.02 0 0 0.01 0.01 0.77 0.19

Table 2: Theoretical Transition Matrix of the 7 regions δ = .83 γ = 0.95

To see that the myopic behavior is no longer optimal in equilibrium consider Table 2, which describes

the 7 region transition matrix in the case with γ = 0.95, and Figure 2.B which represents the 3 leading

cases. The differences between Figure 2.B and Figure 2.A (γ = 0) are striking. Starting from a D state,

when γ = 0.95 we never stay in a D state, but usually move to a state M12, M13 or M23 (over 80% of

the time) and occasionally to region U. When the state is in a majoritarian region we usually remain

in the same region but again move to U with significant probability, 20% of the time. Once region U is
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reached, it is essentially an absorbing state, staying there 98% of the time, rarely moving to the M region.

Also of some independent interest is that the only Mij states that are visited with positive probability

divide the pie equally between i and j, with the third voter receiving zero. Such states also have high

persistence, not only in the sense of usually staying in an M region (i.e., rarely moving to a Di region or

U), but also in the stronger sense that there is essentially no transition probability from Mij to Mik or

Mkj .

The long run incentives to move toward the center are clear in the stationary distribution represented

in Figure 3.B. While with linear utilities the probability that agent i receives a payoff between 20 and

40 in the stationary distribution is .00, it is over .96 with γ = 0.95.

The tendency of outcomes to cluster around the centroid confirms the phenomenon identified in Baron

[1996]) for a unidimensional case.

IV Laboratory Experiment

We use controlled laboratory experiments to study behavior in these dynamic committee bargaining

environments with endogenous status quo allocations. In our experimental design, we vary the discount

factor and the set of feasible allocations. We conduct two sessions with discrete allocations, as in the

theoretical section and three sessions with allocations with a very fine grid, as a finite approximation to

the continuous-state divide the dollar game. We refer to the fine grid sessions as “continuous.” In all

sessions the sum of the three agents’ allocations equals 60.

IV.1 Procedures

Discount factors were induced by a probabilistic endpoint. After each t, a fair die was rolled by the

experimenter at the front of the room, and the game continued to period t+ 1 if and only if the die roll

belonged to a pre-announced subset of the possible faces. For example, to implement δ = .75, we rolled

a twelve-sided die, and the game ended if and only if a 10, 11, or 12 was rolled.13 If the die came up

with a number less than 10, the game proceeded to round t + 1, with the status quo being determined

by the majority rule winner in round t. In all except one session we used a discount factor of δ = .75.

The remaining session used δ = .83 and a six-sided die.

The experiments were all conducted at the Princeton Laboratory for Experimental Social Science and
13In some sessions we used an 8-sided die to implement δ = .75. In the δ = .83 session, we used a 6-sided die.
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used registered students from Princeton University. Each subject participated in exactly one session.

Each of the discrete allocation sessions was divided into two subsession, each of which lasted for 10

matches. Each match corresponded to one play of the infinitely repeated game, using the die-termination

rule described above.14 The set of feasible allocations was different in the two subsessions. The two sets

of allocations are exactly the ones previously described as the NCW and CW cases in (1) and (2).

In the continuous allocation sessions, proposals could be any non-negative integer division of the 60-

unit pie. Because this was a more difficult task, subjects took a long time deciding on their proposals.

Consequently, we only ran 10 matches in each of the three continuous sessions.

.

Session δ Set of Feasible Allocations # Subjects

1
2
3
4
5

.75

.75

.83

.75

.75

Matches 1-10 Matches 11-20
Table 1 Table 2
Table 2 Table 1

Continuous
Continuous
Continuous

9
12
12
12
12

Table 3: Experimental Design

Instructions were read aloud and subjects were required to correctly answer all questions on a short

comprehension quiz before the experiment was conducted. Subjects were also provided a summary

sheet about the rules of the experiment which they could consult. The experiments were conducted via

computers.15

At the beginning of each match, subjects were randomly divided into committees of 3 members each.

In each committee, members were assigned to be either Committee Member 1, Committee Member 2,

or Committee Member 3 and this member assignment remained the same for all rounds of a match. An

initial status quo was randomly chosen by the computer, using a uniform distribution of the set of feasible

allocations. Initial status quo assignments were independent across matches and across committees.

After being informed of the initial status quo, each committee member was prompted by the computer

to enter a “provisional proposal”. After all members had entered a provisional proposal, one was selected

at random to become the “active proposal”. The active proposal was then voted on against the status quo,

which was referred to as the “standing alternative”. Whichever received more votes was the policy that

was implemented in that round, and each member received earnings accordingly. After all committees
14As a result, there was a lot of variance in the length of the matches, which ranged from 1 round to 23 rounds.
15Sample instructions and the computer program used for the experiment are available from the authors. The computer

program was an extension to the open source Multistage game software. See http://multistage.ssel.caltech.edu.
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had finished the round, a die was rolled to determine whether to continue. If the match continued, then

the winning proposal in the previous round became the standing alternative for the new round. This

continued until a die roll terminated the match.

This was repeated with the group membership shuffled randomly after each match. Each subject was

paid the sum of his or her earnings over all rounds of all matches in cash at the end of the experiment.

Average earnings were approximately $30 (including a $10 show up fee), with each session lasting about

90 minutes.

V Experimental Results

We analyze the results separately for the discrete allocation sessions and the continuous allocation sessions.

V.1 Coarse Grid Bargaining Committees

V.1.1 State Transition Probabilities

State transition probabilities provide a clear summary of the dynamics of outcomes since they provide a

synthetic description of aggregate behavioral data on both proposal making and voting.16 The transitions

and outcomes for the two coarse grid games are summarized in Table 4. For each table, the last row is

obtained by summing each of the columns corresponding to the t+1 status quo. These frequencies give the

overall outcome frequencies, excluding the initial round 0 status quos, which were decided randomly by

the computer to start each match. Because the game is symmetric, it is useful to look at the transitions

from the two key possible cases: when the status quo is the universal allocation or not. Figure 4
16Note that this does not obviously follow, unless voting and proposal making strategies are stationary.
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represents these transition probabilities.

NCW Committees
SQt+1

SQt

30-30-0 30-0-30 0-30-30 20-20-20
30-30-0 0.77 (14) 0.16 (16) 0.05 (5) 0.02 (2)
30-0-30 0.13 (7) 0.79 (73) 0.05 (5) 0.02 (2)
0-30-30 0.11 (5) 0.11 (7) 0.75 (46) 0.02 (1)
20-20-20 0.19 (1) 0.16 (6) 0.14 (5) 0.51 (19)

Freq (SQ) 0.36 (27) 0.35 (102) 0.21 (61) 0.08 (24)

.

CW Committees
SQt+1

SQt

30-15-15 15-30-15 15-15-30 20-20-20
30-15-15 0.44 (14) 0.09 (3) 0.09 (3) 0.38 (12)
15-30-15 0.17 (7) 0.54 (22) 0.02 (1) 0.27 (11)
15-15-30 0.17 (5) 0.03 (1) 0.53 (16) 0.27 (8)
20-20-20 0.01 (1) 0.03 (3) 0.03 (3) 0.94 (105)

Freq (SQ) 0.13 (27) 0.13 (29) 0.11 (23) 0.63 (136)

Table 4: Empirical Transition Matrices in the NCW and CW Games

Several features of the outcome data are noteworthy. First, there is a striking difference between

the outcomes of the two coarse grid treatments: in the NCW treatment, the universal outcome was

the committee decision only 24 out of 291 times (8%). In contrast, majoritarian outcomes prevailed

nearly always: 92% of the time. For the CW treatment, this is reversed. There were 136 out of 215

(63%) universal outcomes, while non-universal outcomes were chosen 37% of the time. The theoretical

prediction of more universal outcomes in CW than NCW, therefore, is strongly supported by the data,

and is significant at any conventional level.

Second, as also predicted by the theory, there is strong “persistence of regimes”. For the CW treatment

non-universal allocations should usually map into non-universal allocations and universal allocations map

into universal allocations. This we find, with persistence rates of 70% in the case of the non-universal

regime and 94% in the universal regime. In the NCW committees, the universal regime is not part

of the equilibrium, so there should be less persistence, which is what we find: universal outcomes map

into universal outcomes significantly less often (51%) than in the CW committees. And we find nearly

100% persistence of majoritarian allocations in the NCW committees, as predicted. Hence, in all cases

except for non-universal outcomes in the NCW committees, both universal or non-universal allocations

are significantly more likely to persist than not, except in the case where they are not part of the Markov

equilibrium (the case of universal allocation in NCW committees).
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Figure 4: Empirical transition probabilities for the NCW and CW game from the universal and ma-
joritarian allocations. The numbers in parenthesis are the predictions of the equilibrium with linear
utilities.

Figure 4, however, suggests a potentially interesting systematic departure from equilibrium behavior.

In particular, the non-universal regime is somewhat less stable than predicted in the CW committees,

and universal allocations are somewhat more stable than predicted in the NCW committees. However,

the latter is only 50% meaning that in NCW committees, universal allocations are as likely to be replaced

by non-universal allocations as they are to persist.17

To investigate the origin of these dynamic patterns, in the next two sections we decompose the

determinants of the transition probabilities by analyzing in detail proposal and voting behavior. As

we will show, the departure from the equilibrium observed above appears to be mainly due to small
17We note that this is based on a very small number of observations, since universal allocations are rare (8%) events for

NCW committees, so its significance is in doubt.
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deviations from equilibrium in proposal strategies rather than voting strategies.

V.1.2 Proposal Making and Outcomes

Table 5 displays the aggregate proposal frequencies as a function of the status quo and the position of

the player, for the CW (left) and NCW (right) treatments, respectively. The table is “anonymized” for

data-pooling purposes, in the sense that a proposal of (20,20,20) by member 1 when the status quo is

(30,30,0) is treated the same as a proposal of (20,20,20) by member 2 when the status quo is (0,30,30), and

so forth. Furthermore, allocations that give an agent the equivalent share are combined. For example,

in the CW treatment, observations of 15-15-30 and 15-30-15 are merged together for player 1 into the

category “15”. This anonymization leads to a very simple 3 × 3 matrix representation of the aggregate

proposing data. For example, the entry 0.07 (7) in the CW table for row 30 column 20 indicates that 7%

of subjects who receive 30 in the status quo under the CW treatment propose 20-20-20 (7 observations).

These tables show several features. First, subjects almost never offer to receive the lowest payoff

(either 15 or 0). The rarity of these events (2%) suggests that subjects understand the basic task, and

such events are simply trembles that can be ignored.

Second, the proposal strategies in the NCW treatment closely track to the theoretical predictions.

If the status quo is majoritarian, then all proposals are majoritarian more than 90% of the time (100%

is the prediction). In the relatively rare instances where the universal allocation is the status quo, that

probability is more than 70%.

Third, in contrast, the strategies in the CW treatment are not as close to the linear utility Markov

equilibrium predictions. In one respect, it is consistent with the theory: just as in NCW, a favored

committee member receiving 30 almost always (93%) proposes to continue being the favored committee

member. Both members receiving low payoffs in a non-universal status quo also usually (57%) propose

to be the new favored member, but still propose the universal allocation more than one-third of the

time (37%). However, in the universal status quo, subjects are equally likely to propose their favorable

allocation as they are to propose to stay at the universal outcome18. This is not in contrast with

equilibrium behavior since in state x0 a proposer is indifferent between proposals since x0 defeats all

proposals.

Thus, there are some sharp differences between the two treatments, the most important being the
18The remaining 6% is accounted for by a few cases where a member proposed to be on the short end of an unequal

allocation. This also happened in 5% of cases when the status quo was universal. In the NCW treatment there were also a
few cases (<5%) where a subject proposed an allocation where they would receive 0.
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greater frequency of proposing 20 in the CW treatment, which is predicted by theory. However, in

both treatments, subjects propose their myopically best allocation, but the probability of making such

a proposal varies with the status quo, being most likely if it is already the current status quo, and least

likely if the status quo is 20-20-20.19

NCW Proposal

SQ

30 0 20 # Obs
30 0.94 (1.00) 0.01 (0.00) 0.04 (0.00) 508
0 0.89 (1.00) 0.01 (0.00) 0.10 (0.00) 254
20 0.70 (1.00) 0.01 (0.00) 0.29 (0.00) 111

CW Proposal

SQ

30 15 20 # Obs
30 0.94 (1.00) 0.00 (0.00) 0.07 (0.00) 103
15 0.57 (1.00) 0.06 (0.00) 0.37 (0.00) 206
20 0.47 (0.00) 0.05 (0.00) 0.48 (1.00) 336

Table 5: Empirical Proposal Strategies (Theoretical Strategies in Parenthesis)

V.1.3 Voting Decisions

Voting decisions are overwhelmingly myopic and selfish for both treatments (meaning that agents vote

for the alternative that offers the highest short run payoff), as predicted. Overall, in the two coarse

grid sessions voters voted myopically 96% of the time (723/751). This is broken down in more detail, as

follows. See Table 6.

In the CW treatment, when a member is faced with a choice a large share of a non-universal allocation

(30) versus any other allocation (where their share would be either 20 or 15), they vote for the favorable

allocation 96% of the time (180/187), and this does not depend on whether the favorable allocation was

the status quo or the new proposal. When faced with a choice between the universal allocation and the

smaller share of the non-universal allocation (15), a member voted for the universal allocation 95% of the

time (195/206).20

In the NCW treatment, when faced with a choice between the alternative where they were out of the

coalition and received 0, versus any other alternative, the member voted for the other alternative 99% of
19While not apparent from the anonymized tables, we found statistically significant evidence of non-anonymous proposal

making in the NCW treatment. This arises when there is a majoritarian status quo. The two current coalition members
are more than three times as likely (76% vs. 24%) to propose the same coalition, rather than proposing to switch partners.
In contrast, no so such asymmetry is observed in the proposal strategy of the ”out” member (or in the case of majoritarian
proposals when the status quo is universal) with respect to which partner they propose to form a coalition with in a
majoritarian outcome.

20This is evidence against a hypothesis of pro-social preferences playing a role in behavior here. On the whole, subjects
in this experiment are not motivated by concerns for fairness.
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the time (272/276). When faced with a choice between receiving 30 in a majoritarian allocation versus

receiving 20 in the universal allocation, they voted myopically for the majoritarian allocation 85% of the

time (68/80).

The similarity between the voting behavior in the two treatments is remarkable. The only real

differences between the two tables is in the number of observations, not in the frequency of voting for

one’s myopically preferred alternative. Hence this leads us to conclude unambiguously that proposal

behavior, not voting behavior, is what drives the differences in outcomes between the CW and NCW

treatments.

NCW Standing Proposal

SQ

30 0 20 # Obs
30 0.25 (0.50) 0.03 (0.00) 0.17 (0.00) 508
0 1.00 (1.00) 0.41 (0.50) 1.00 (1.00) 254
20 0.86 (1.00) 0.00 (0.00) 0.28 (0.50) 111

CW Standing Proposal

SQ

30 15 20 # Obs
30 0.44 (0.50) 0.00 (0.00) 0.06 (0.00) 103
15 1.00 (1.00) 0.42 (0.50) 0.96 (1.00) 206
20 0.93 (1.00) 0.06 (0.00) 0.23 (0.50) 336

Table 6: Voting Behavior. Entries are Pr{vote for proposal} (Theoretical Strategies in Parenthesis)

V.1.4 Quantal Response Equilibrium: Markov Logit Equilibrium (MLE)

As discussed earlier, because there are two regimes in the CW treatment, a quantal response equilibrium

analysis will produce a somewhat different dynamic compared to the Markov Nash equilibrium. In the

Markov Nash equilibrium, depending on the randomly assigned initial status quo, each committee will

find itself stuck forever in exactly one regime, either the regime of the static Condorcet winner (where the

universal outcome occurs every round) or the rotation regime, where outcomes randomly rotate around

the three non-universal allocations. That is, they “lock in” on one regime from the very start and stay

there forever, and this is entirely determined by the initial status quo. In a quantal response equilibrium,

stochastic choice will result in long run alternation between the two regimes, with the expected duration

of a regime depending on the response parameter.

Table 6 reports the fitted and actual choice probabilities for all the different behavior strategies of

the players, under the assumption of anonymity (e.g., the probability voter 1 votes for (30,15,15) over

(20,20,20) equals the probability voter 2 votes for (15,30,15) over (20,20,20), etc.). The fitted choice
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probabilities are the MLE choice probabilities at the maximum likelihood value of lambda, estimated

separately for the two treatments.21 The estimated choice probabilities track the data reasonably well in

the following sense. Figure 5 presents a scatter plot of the predicted and actual choice probabilities, and

also shows the regression line, which has slope close to 1 and intercept close to 0, and R2 = .85.22

NCW Treatment
SQ Prop Pr(proposal) Pr(yes)

0
0
0
20
20
20
30
30
30

0
20
30
0
20
30
0
20
30

Fitted Data
0.03 0.02
0.11 0.15
0.86 0.85
0.01 0.01
0.19 0.31
0.81 0.68
0.02 0.02
0.35 0.08
0.63 0.90

Fitted Data

0.82 1.00
0.97 1.00
0.18 0.00

0.81 0.84
0.03 0.03
0.19 0.17

Lambda: 0.19
Log likelihood:-867.33

CW Treatment
SQ Prop Pr(proposal) Pr(yes)

30
30
30
20
20
20
15
15
15

30
20
15
30
20
15
30
20
15

Fitted Data
0.77 0.93
0.14 0.07
0.09 0.00
0.70 0.47
0.19 0.48
0.11 0.05
0.74 0.57
0.18 0.37
0.09 0.06

Fitted Data

0.21 0.06
0.10 0.00
0.79 0.93

0.32 0.06
0.89 1.00
0.68 0.96

Lambda: 0.24
Log likelihood:-905.05

Table 7: Empirical vs MLE Proposing and Voting Probabilities

Figure 5: MLE vs. Actual Choice Probabilities.

21Recall that each treatment obtained data from two separate sessions, one in which it was the first subsession and
another where it was the second subsession. Lambdas estimated separately for each session are not significantly different.

22We also estimated a model that included a concavity parameter for the utility function. That led to a small improvement
in fit, but the predicted strategies were very close to the QRE estimated strategies with linear utility. This is not surprising.
Recall from proposition 1 that the equilibrium with in the NCW treatment does not depend on concavity of the utility
function.
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V.2 Continuous Allocation Sessions

We analyze continuous Session 1 separately from Sessions 2 and 3, because the discount rate was different.

Several interesting comparisons emerge, in spite of the fact that the Markov equilibria are identical with

linear preferences. As we will see, many of these differences can be explained extending the analysis to

Markov QRE and considering concave utilities.

V.2.1 Empirical distribution and transition Probabilities

Table 8 shows the transition frequencies, in percentages for each status quo, using the 7-region grid

described in Section III.1.2 (see Figure 1).23 Regions D1, D2, and D3 are the dictatorial regions; M12,

M13, and M23 are the majoritarian regions, and U is the universal region. The top half is for patient

committees and the bottom half for impatient committees. The last row in each half gives the relative

frequencies of outcomes in each region. The left panel of Figure 6 represents the empirical transition

probabilities (as done in Figure 2).

These tables yield the following results. From the last rows of the upper and lower half of Table 8, this

clearly refutes the Markov equilibrium prediction based on linear utilities that the committees outcomes

will approximate a rotating dictatorship (Table 2 and Figure 3A). We observe outcomes in the D regions

only 10% of the time in the patient committees, and only 26% of the time in impatient committees. It

is worth noting, however, that there is still a lot of persistence to dictatorial outcomes. Conditional on

the status quo being in a D region, the outcome in the next period is almost twice as likely to be in one

of these regions compared to non-D outcomes, with this persistence strongest for impatient committees.

The reason so few outcomes are observed in these regions overall is that they are only occasionally reached

from any other regions (less than 11% of the time).

In the patient committees, the remaining outcomes are divided equally between majoritarian outcomes

and the universal outcome (approximately 45% of the time each). The transition matrix gives some

indication of the dynamics of the patient committees. The universal outcomes function nearly, but not

quite, as an absorbing state. The empirical probability of moving away from U is only 12%. In the linear

utility equilibrium, this probability is 100%, and it should be defeated by majoritarian proposals. Indeed
23The actual implementation in the laboratory was finite, with 1891 possible states (proposals to divide 60 into three

nonnegative integer allocations). For computational reasons, the Markov QRE, and the Nash equilibrium benchmarks
were computed assuming the grid described in Section III.1.1 where the unit of measure is 5 (which implies 91 states). To
compare the results, the states in the experimental state space were aggregated associating each of them to the closest state
(in euclidean norm) in the coarser 91-state space. Nearly all (over 90%) proposed allocations observed in the experiment
are divisible by 5, so the impact of this approximation is minimal.
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the latter property of equilibrium is observed to an extent in our data: i.e., when U is defeated, it is

almost always by a majoritarian (2-person coalition) proposal. Majoritarian status quos are less stable

than U, with the probability of transitioning to a new region being 44%. The theoretical (with linear

utilities) probability of a majority status quo being defeated is 100%, and it should be defeated only by

dictatorial proposals. In fact, we find the opposite: when an M status quo is defeated, it is usually by

U, not by a dictatorial proposal. The D status quos are by far the least stable, in contrast to the linear

utility model, which predicts them to be the most stable (being defeated only 33% of the time, always by

another D outcome). In the experiment, they are defeated almost 2/3 of the time – essentially whenever

one of the non-dictators is chosen as the proposer.

.

δ = 0.83 SQt+1

SQt

D1 D2 D3 M12 M13 M23 U
D1 0.33 (3) 0.22 (2) 0.11 (1) 0.00 (0) 0.00 (0) 0.33 (3) 0.00 (0)
D2 0.14 (1) 0.14 (1) 0.14 (1) 0.00 (0) 0.43 (3) 0.14 (1) 0.00 (0)
D3 0.06 (1) 0.06 (1) 0.44 (8) 0.33 (8) 0.00 (0) 0.00 (0) 0.11 (2)

M12 0.02 (1) 0.06 (3) 0.00 (0) 0.55 (28) 0.14 (7) 0.12 (6) 0.12 (6)
M13 0.06 (3) 0.00 (0) 0.04 (2) 0.10 (5) 0.67 (34) 0.08 (4) 0.06 (3)
M23 0.00 (0) 0.04 (1) 0.11 (3) 0.11 (3) 0.18 (5) 0.39 (11) 0.18 (5)

U 0.00 (0) 0.01 (1) 0.00 (0) 0.07 (9) 0.02 (3) 0.02 (2) 0.88 (107)
Freq(SQ) 0.03 0.03 0.05 0.18 0.18 0.09 0.43

.

δ = 0.75 SQt+1

SQt

D1 D2 D3 M12 M13 M23 U
D1 0.33 (7) 0.10 (2) 0.14 (3) 0.05 (1) 0.00 (0) 0.33 (7) 0.05 (1)
D2 0.18 (3) 0.18 (3) 0.35 (6) 0.18 (3) 0.12 (2) 0.00 (0) 0.00 (0)
D3 0.13 (5) 0.16 (6) 0.42 (16) 0.16 (6) 0.00 (0) 0.00 (0) 0.13 (5)

M12 0.05 (4) 0.10 (8) 0.00 (0) 0.31 (25) 0.27 (22) 0.25 (20) 0.02 (2)
M13 0.06 (4) 0.00 (0) 0.03 (2) 0.22 (15) 0.46 (31) 0.18 (12) 0.04 (3)
M23 0.00 (0) 0.11 (7) 0.17 (11) 0.21 (13) 0.22 (14) 0.27 (17) 0.02 (1)

U 0.00 (0) 0.00 (0) 0.00 (0) 0.21 (11) 0.28 (15) 0.09 (5) 0.42 (22)
Freq(SQ) 0.07 0.08 0.11 0.22 0.25 0.18 0.10

Table 8: State Transition Probabilities.Continuous data converted to 7-region grid

The distribution of outcomes for the impatient committees is different. D outcomes are somewhat

more common, but still occur only slightly more than one-quarter of the time. Outside the D regions,

outcomes are significantly more likely to lie in M than in U (64% vs. 10%), compared with the patient

committee outcomes where there is almost no difference (45.5% vs. 43.1%). The reason for a difference

in transition probabilities between the treatments is that U region is essentially absorbing in the patient

committees, while in the impatient committees, a status quo of U is usually defeated immediately by an

M proposal. The D and M regions all have strong persistence for impatient committees, stronger than

in the patient committees. Conditional on being in a D region, the empirical probability of staying in
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some D region is 67% (for the patient committees it was 53%). Conditional on being in a M region, the

empirical probability of staying in that region or transitioning to a different 2-person coalition is over

80% (for the patient committees, it was 79%, so the difference in this case is not significant). In contrast,

the U region is unstable: the probability of transitioning away from U is nearly 60%, compared to 12%

in patient committees.

We now decompose the data into proposal and voting behavior. To compare the evidence with the

coarse grid treatments discussed earlier, it is useful to represent the 7 regions of Figure 1 in terms of

just 5 “anonymously equivalent” regions. For example, for player 1, D2 and D3 are combined and M12

and M13 are combined. We have relabeled the 5 regions: D,DX,M,MX,U . If we take agent i as a

reference, D is the region where a proposer i receives the most and corresponds to Di in the 7 region

partition; DX is composed by Dj and Dk for j, k 6= i; M is Mij and Mik ; MX is Mjk; and U is the

same as in the seven region partition.

V.2.2 Proposal making and voting behavior

Table 9 shows the aggregate proposing behavior for continuous committees for each status quo. The

top half of the table is for the “patient” committees (δ = .83). The bottom half of the table is for

the “impatient” committees (δ = .75). The entries in the table are the frequencies of proposal in that

category, given the status quo, pooling across all committees, rounds, and members.

.

δ = 0.83 Provisional Proposal

Status Quo

D DX M MX U # Obs
D 0.88 0.00 0.09 0.00 0.03 34

DX 0.34 0.01 0.51 0.00 0.13 68
M 0.19 0.00 0.66 0.01 0.14 260

MX 0.00 0.08 0.71 0.00 0.21 130
U 0.01 0.01 0.33 0.00 0.66 366

.

δ = 0.75 Provisional Proposal

Status Quo

D DX M MX U # Obs
D 0.78 0.00 0.18 0.01 0.03 76

DX 0.58 0.00 0.35 0.01 0.07 152
M 0.28 0.01 0.65 0.00 0.06 422

MX 0.00 0.05 0.90 0.00 0.05 211
U 0.03 0.01 0.78 0.01 0.18 159

Table 9: Proposal Probabilities, Conditional on Status Quo.

There are several notable features. First, as in the coarse grid data, subjects almost never propose

to have the smallest allocation. That is, we see essentially no observations of a subject proposing an
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allocation in DX or in MX. Second, if a member is receiving a dictatorial allocation (i.e., the status quo

is in D), then they almost always propose to stay in D - as predicted by the theory, and also consistent

with the evidence from the discrete treatment. Interestingly, U proposals are almost never made by a

subject in the D, DX, or M states. There is a lot of persistence of proposals in both the M and the D

regions in both kinds of committees; subjects usually propose to stay in the same region, about 2/3 of

the time.

In the patient committees, when the status quo is in the U region, U proposals are proposed 2/3 of

the time and M proposals are made 1/3 of the time. While the linear utility equilibrium predicts almost

all proposals in the U regions should be outside U, this is no longer true for γ > 0. Depending on the

concavity of the utility function the equilibrium proposal when the status quo is in U can be in either

region U or M. In the DX region (as seen in the analysis of the cases with γ =0 and γ =0.95 of Section

III.1.2), the Nash proposals are either in D or M, which is true 93% of the time in our data. For MX

status quos we never see D proposals, which is consistent with equilibrium behavior because D proposals

will always be defeated. In the M region, the non-M proposals are equally split between D and U.

The proposing behavior is different in the impatient committees compared to the patient committees,

especially in the U region. In impatient committees, U allocations are rarely proposed at any status

quo. Intuitively, this makes sense because the U allocation only is valuable under two conditions, first

utilities must be sufficiently concave, and second, the continuation probability must be high enough to

make the value of an equal share tomorrow be higher than a more than equal share today. To see this,

consider the case where δ is very small, so that value is determined almost entirely by your current share

in the allocation. Then you would most prefer D (≈ 60), next most prefer M (≈ 30), and U (≈ 20) is

least preferred. This is reflected in the data where over 90% of proposals are in M or D. Clearly the

M proposals are most likely in the MX region, because these are the only proposals that can make the

proposer better off and also make one other coalition partner better off.

Voting decisions are somewhat less myopic in the continuous allocation committees than in the CW

and NCW committees with only 4 states. While 96% of voting decisions were myopic in those coarse-grid

treatments, only 83% of voting decisions were myopic for δ=.83 and 92% of the decisions are myopic

for δ=.75. Still, an overwhelming fraction of voting decisions are myopic. Part of the lower frequency

of myopic decision making in the continuous allocation committees is probably attributable to the fact

that often subjects were faced with a choice between two alternatives that were quite close in terms
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of their share of the allocation. In the coarse grid treatments, no such pairs exist; a voter is either

completely indifferent or receives a significantly higher share in one of the alternatives. But there is

another factor that is also important. In contrast to the discrete sessions, the value functions in the

continuous treatments are not monotone increasing in a members own allocation.

.

δ = 0.83 Active Proposal

Status Quo

D DX M MX U
D 0.91 (11) 0.00 (7) 0.00 (2) 0.08 (12) 0.50 (2)

DX 1.00 (7) 0.83 (29) 1.00 (26) 0.50 (2) 1.00 (4)
M 0.89 (18) 0.11 (18) 0.78 (135) 0.09 (47) 0.45 (42)

MX − (0) 0.83 (18) 1.00 (47) 0.57 (44) 1.00 (21)
U 0.75 (4) 0.13 (8) 0.66 (70) 0.09 (35) 0.86 (249)

.

δ = 0.75 Active Proposal

Status Quo

D DX M MX U
D 0.91 (22) 0.00 (27) 0.40 (5) 0.13 (16) 0.33 (6)

DX 1.00 (27) 0.70 (71) 0.97 (37) 0.60 (5) 1.00 (12)
M 1.00 (39) 0.05 (41) 0.80 (204) 0.09 (116) 0.32 (22)

MX 1.00 (1) 0.92 (39) 1.00 (116) 0.41 (44) 1.00 (11)
U 1.00 (1) 0.00 (2) 0.84 (90) 0.04 (45) 0.67 (21)

Table 10: Prob{Vote for Proposal}, (# of observations).

The top half of Table 10 shows the aggregate voting behavior for (status quo, active proposal) pairs

with patient committees for each status quo, using the 5-region grid. The entries in the table are the

empirical fraction of yes votes (in favor of the active proposal), pooling across all committees, rounds,

and members. The bottom table shows the relative frequencies of the active proposals for each status

quo category.

There are several results that follow from these tables. First, members almost always vote for D

outcomes over any alternative. Second, members tend to vote for majoritarian outcomes, against any

alternative, except when the status quo is being the dictator. Even in that case, members vote for the

majoritarian outcome 1/3 of the time, but these kinds of elections are rare events. Third, members

tend to vote for U over other alternatives, except majoritarian outcomes, where the two members of

the majoritarian coalition usually vote against U. Indeed, the predominance of U votes in the U state

accounts the bulk of the non-monotonic voting behavior in the session.

The bottom half of Table 10 shows the aggregate voting behavior for (status quo, active proposal)

pairs in impatient committees for each status quo, again using the 5-region grid. The results are much

the same as the voting behavior in patient committees. The only difference is that impatient committees
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tended to vote for M proposals over U proposals with slightly greater frequency, but the difference is rather

small in magnitude. This finding is similar to what we observed in the discrete allocation committees,

where the main differences in behavior across treatments was in proposal behavior, not voting behavior.

V.3 Comparison with theory: QRE and Concave Utilities

For the continuous allocation environments, the predictions of the Markov equilibrium with linear pref-

erences (γ =0 ) is clearly rejected by the data, for at least three reasons. First, in both treatments the

dictatorial outcomes are infrequently observed (26% in the .75 treatment and 12% in the .83 treatment).

Overall, more than 80% of outcomes are either Majoritarian or Universal. Second, as it can be seen by

comparing Figure 2 with the left panel of Figures 6 and 7, the transition probabilities are quite different

for the two sessions: the .83 treatment has many more U observations and more persistence in the U

state but less persistence in the D and M states. But the Markov equilibrium with linear preferences

predicts no treatment effect. Third, we observe many transitions (and proposals) that are predicted never

to happen according to the Markov equilibrium with linear preferences.

A possible explanation for this finding is that agents have altruistic preferences. This hypothesis,

however, seems contradicted by voting behavior, which is predominantly myopic and selfish, and proposing

behavior: since, as we have seen in the previous section, proposers seem to take advantage of proposal

power whenever the status quo allows them to do it.

Based on the theoretical analysis earlier in the paper, we can suggest an alternative explanation for the

findings which is based on more standard assumptions on utility: that individuals have strictly concave

utility functions. To test this hypothesis, we estimate the value of γ in each treatment, and also estimate

a constrained value of γ, assuming it to be the same in both treatments, and assuming it to be the same

across subjects. In order to obtain such an estimate, we use the Logit equilibrium as a structural model

of the errors, and therefore simultaneously estimate λ and γ. The QRE model is a natural one to use for

the error structure to estimate γ, because evidence from past experiments indicate a significant stochastic

component of choice, which is correlated with equilibrium expected payoffs (McKelvey and Palfrey 1995,

1998). Because the stochastic choice affects expected payoffs, it will generally have additional equilibrium

effects. The estimation is done using standard maximum likelihood methods. Using the path following

algorithm used earlier to compute Nash equilibria, we trace out the logit solution to the game; that is,

we trace out a unique connected family of MLEs, {ρ(λ, γ), σ(λ, γ)} for increasing values of lambda and
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γ ranging from 0 to 1. This defines a likelihood function L(ρ̂, σ̂; γ, λ), where (ρ̂, σ̂) are the observed

proposal and voting choice frequencies in the data, using the 91 state grid defined earlier in the paper.

Table 11 below gives the results of the estimation for the continuous sessions. In both treatments, the

concavity parameter is highly significant.24 The estimates we obtain are also in the same range (between

0.40 and 0.70) as concavity estimates from many other sources of data, including auction experiments

(Goeree, Holt, and Palfrey 2002), to abstract game experiments (Goeree, Holt, and Palfrey 2003), lottery

choice experiments (Holt and Laury (2002)), and field data from auctions (Campo, Guerre, Perrigne, and

Vuong 2000). The Chi-square test shows a significant difference between (λ̂, γ̂) for the two treatments.

However, the differences between the constrained (pooled) estimates and the separate estimates in terms

of the fit to voting and proposing behavior are small. The improvement in likelihood with the separate

estimates is less than one-third of one percent, compared to the constrained (pooled) estimates. While

the estimates of λ̂ appear quite different across the two treatments, this is exaggerated by a ridge in the

likelihood functions, where slightly higher values of γ̂ lead to much higher estimates of λ̂, especially with

the .83 data, but with virtually no change in the likelihood function. For example, in the .83 data, -ln

L[γ̂ = .65, λ̂=3.01] = 3832 and -ln L[γ̂ = .70, λ̂=8.01] = 3827.

δ γ̂ λ̂ -ln L
.83 0.70 8.01 3827
.75 0.40 1.20 3792

Pooled 0.50 1.68 7643

Table 11: MLE Parameters

Figure 6 compares the empirical transition matrices for the two treatments, using the 7-state grid with

the theoretical transition matrices implied at the estimated values of γ̂ and λ̂. The empirical transitions

are obtained by using symmetry to condense the 7 regions in Table 8 into five regions (as in Table 10).

Thus, for example in the upper left triangle diagram, we represent all transitions from D as transitions

from D1. Transition frequencies from D to DX are equal to the sum of the two numbers in the arrows

of that diagram from D1 to D2 and D1 to D3 and these two numbers are always equal by symmetry.

Empirical transitions elsewhere in the left side triangles of that figure are represented similarly.

The theoretical transitions for this coarser grid are derived in the following way. First, using the

91-state grid, the estimated parameters directly imply estimated proposal and voting strategies in the
24A likelihood ratio test rejects the bγ = 0 model in both treatments, and in the pooled data, at very high significance

(p < 0.001).
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Figure 6: Empirical vs Theoretical Transition Matrices, δ = 0.83.

(γ̂,λ̂) Markov logit equilibrium. We then use those estimated proposal and voting strategies to obtain

a 91 × 91 transition matrix, for the states shown in Figure 1. In order to condense this into a 7 × 7

transition matrix, we need to weight the states within each of the 7 coarsened states according to the

probability those states would theoretically occur. The apparently obvious way to do this by using the

stationary distribution implied by the theoretical transition matrix turns out to be incorrect, because in

our experiment we used a random stopping rule rather than playing the game an infinite number of times.

Hence the actual distribution is influenced by the initial status quo allocations, which were uniformly

distributed on the simplex. Thus, we compute the expected distribution, given that we start round 1

with a uniform distribution over the allocations, and then compute the implied distribution over future

allocations, given the stationary stopping rule (either .83 or .75). These weights are then used to coarsen
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the transition matrix to 7× 7.25

There are some apparent similarities between the theoretical transition matrices and the empirical

ones, but also some differences. First, for both the theoretical and empirical transitions, the status quo

has a lot of persistence in all regions of both treatments, with the single exception being the D regions

of the .83 treatment. Specifically, the probability of staying in a D region is 53%, while the theoretical

probability is only 3%. This is the one case where the fitted QRE transitions track the empirical transitions

poorly, but it is based on very few observations. In .75 treatment, for the theoretical transitions at the

(λ̂, γ̂) estimates, the probability of staying in a D region, give the status quo is a D outcome is nearly

70%; it is 60% for the M regions; and 56% for the U region. The corresponding empirical probabilities

are 66%, 80%, and 42%, respectively. For the .83 treatment, these theoretical persistence probabilities

for the M and U regions are 79% and 96%, respectively compared with the empirical findings of 78%

and 88%, respectively. For the exceptional case of the D regions in the .83 treatment, the theoretical

persistence probability is 3% and the observed finding is 55%. This is the one case where the fitted QRE

transitions track the empirical transitions poorly, but it is based on very few observations.26

There are also similarities between the empirical and theoretical non-persistent transitions (D → M

or U, M → D or U, and U → D or M). For the .83 committees, when the status quo transitions out of a

D region, we find that when the status quo is D it goes to an M allocation 88% of the time, identical to

the theoretical transition probability from D to M; when the status quo leaves the U region, we observe

it going to an M region over 90% of the time, where the theoretical conditional transition probability is

100% to an M region; from an M region we observe it occationally going to both U and D, but somewhat

more frequently to U, consistent with the theoretical transition probabilities. For the .75 committees

the non-persistent transitions also track the theoretical transitions reasonably well: from D we observe

transitions to M three times more often than transitions to U, where the theoretical ratio is two to one;

from M, transitions to D account for 81% of the non-persistent transitions in our data, compared the

a theoretical transition probability of 79%; from U, transitions to M are more likely than transitions to

D theoretically, and we observe this in the data. However, in the latter case, we actually observe zero

transitions from U, which is not consistent with the fitted estimate of 81%.
25To avoid clutter, the figure only shows the transitions from D1 (top), U (middle), and M12 (bottom). By symmetry,

the theoretical transitions (right half of figure) from D2 and D3 are identical to the one illustrated for D1; transitions from
M13 and M23 are identical to the one illustrated for M12. The empirical transitions illustrated from D1 (top left) represent
the average across all three D regions; similarly for the empirical transitions from M12 (bottom left).

26There were only 36 observations of a status quo in D, out of a total of 288 observations in the δ = .83 treatment
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Figure 7: Empirical vs Theoretical Transition Matrices, δ = 0.75.

From this estimation we conclude two main results. First, we can reject the hypothesis that the

utility of the agents is linear with very high significance. In the distributive problem under analysis,

concavity of the utility function seems to be an essential ingredient for an explanation that accounts for

the empirical behavior that we observe in the lab. Second, the MLE model with concave preferences

can account for much of the the qualitative empirical evidence, on the basis of comparing the observed

transitions with the fitted theoretical transitions implied by the estimated MLE model.

VI Concluding Remarks

We studied dynamic committee behavior in multiperiod environments that are linked dynamically by a

sequence of endogenous status quo outcomes, where the status quo outcome in period t is determined
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by the committee decision in period t+1. Such models of repeated bargaining dynamics are intended

to study the inertia that is naturally consequence of procedures used by many standing committees or

legislatures. Specifically, outcomes in earlier periods have long run effects that are created simply by the

powerful and special status quo position embodied in past decisions.

Several parametric versions of these environments were studied in the laboratory, and the environments

were varied along three dimensions. First, we consider both continuous divide the dollar environments

and highly constrained allocations. Second, for highly constrained settings, we consider Condorcet and

non-Condorcet environments. Third, we look at the effect of committee “patience”, or long run incentives,

by varying the effective discount factor.

Many specific findings were reported in the data analysis. These findings can be boiled down to six

main results.

• Result 1: Outcomes have strong persistence, and this persistence roughly follows the theoretical

prediction, but with significant stochastic variation, as captured in the QRE model.

• Result 2: Voting behavior in all the different environments is selfish and myopic.

• Result 3: To the extent that the outcomes deviate from equilibrium predictions, it is mainly due to

differences between actual proposal behavior and observed proposal behavior.

• Result 4: Patient committees exhibit substantially different proposal behavior than impatient com-

mittees.

• Result 5: We observe more universal and majoritarian outcomes than predicted by the Markov

equilibrium with linear preferences.

The fact that in all treatments, we see more universal outcomes than expected based on the “standard”

Markov equilibrium theory with linear preferences might tempt some to interpret as evidence of fairness

and prosocial preferences. However, evidence from voting and proposal behavior does not seem to support

such an interpretation. Voters consistently vote selfishly for outcomes that are extremely lopsided and

unfair – provided they gain personally by doing so. Proposers tend to take advantage of their proposal

power whenever the status quo allows them to do it.

We are able to show theoretically that universal outcomes will arise more often over time if preferences

are concave. Using quantal response equilibrium we estimate the concavity of the utility function, and
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find it to be a significant factor. The coefficient of constant relative risk aversion is estimated on the

pooled continuous data to be .5, similar estimates of utility function curvature in a variety of other

economics experiments. Based on a comparison of the empirical state transitions and the theoretical

transition probabilities generated by the model estimates, we find:

• Result 6: The data reject the model of linear utility, and the concave utility model accounts for

several prominent features of behavior and the trajectory of allocations in our dynamic distributive

politics environment.

The specific framework in this paper focused on dynamic distributive politics, but in principle it could

be generalized to more complex political environments. In practice, in addition to purely distributive

allocations, there are public good decisions, some of which have important dynamic components. Leg-

islative committees make important decisions about the production and accumulation of real resources,

for example public infrastructure and other durable public goods, and may finance these expenditures

by running public debt, all of which has long run implications for future policy decisions.27 The next

step of our research program is to extend the theoretical model in this direction and to collect and study

experimental data in such environments.

VII Appendix 1

VIII Markov Quantal Response Equilibrium

In this appendix, we define a Markov Quantal Response Equilibrium for the case of J feasible alternatives

(states) and N legislators. We will focus on a particular version in which the quantal response function is

logit, which we call Markov Logit Equilibrium (MLE ). As in the Markov Nash equilibrium, the state of the

system is given by the status quo, and hence the state space is equal to the set of feasible alternatives.28

VIII.0.1 Expected Utilities

We define vji to be the expected continuation utility of agent i in state j (so before the proposer is

chosen), and a J ×N matrix collecting all these values. All the following equations take V as inputs.

27For a theoretical analysis of some of these issues, see Battaglini and Coate [2006], [2007a] and [2007b] and Battaglini,
Nunnari, and Palfrey [2009].

28For an extensive discussion on the concept of Quantal Response Equilibrium in normal and extensive form games see
McKelvey and Palfrey [1995] and [1998].
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We define σjik (V ) to be the probability of voting yes to a proposal xk in state xj by agent i. Let P iy (V )

and F iy (V ) be the probabilities that the proposal, respectively, passes or fail if i votes yes in an equilibrium

in which the value function is V . When, as in the experiment, N = 3 we have P iy (V ) = 1 − Πl 6=i(1 −

σjlk (V )) and F iy (V ) = Πl 6=i(1 − σjlk (V )). The expected utility from voting yes is (xki + δvki)P iy (V ) +

(xji + δvji)F iy (V ) . Similarly we can define the probabilities the proposal passes or fail if you vote no

P in (V ) and P in (V ) that in the N=3 case are P in (V ) = Πl 6=iσ
jl
k (V ) and F in (V ) = 1 − Πl 6=iσ

jl
k (V ) . The

expected utility from voting no is (xki + δvki)P in (V ) + (xji + δvji)F in (V ) . Since we are using Logit

equilibrium, we use the logit quantal response function, which yields the following collection of MLE

conditions characterizing the voting stage:

σjik (V ) =
expλ

{
(xki + δvki)Py (V )

+ (xji + δvji)Fy (V )

}
expλ

{
(xki + δvki)Py (V )

+ (xji + δvji)Fy (V )

}
+ expλ

{
(xki + δvki)Pn (V )

+ (xji + δvji)Fn (V )

}
where σjik (V ) is the probability that committee member i would vote for proposal xk if the status quo is

xj .

VIII.0.2 Proposal equilibrium conditions

We define ujik (V ) the expected utility of agent i in state xj when xk is proposed (before the vote):

ujik (V ) = (xki + δvki)
[
σjik (V )P iy (V ) +

(
1− σjik (V )

)
P in (V )

]
+ (xji + δvji)

[
σjik (V )F iy (V ) +

(
1− σjik (V )

)
F in (V )

]
.

Hence, the equilibrium conditions for the proposal stage are given by ρjik (V ) =
exp(λuji

k (V ))
J∑

k′=1

exp(λuji

k′ (V ))
, where

ρjik (V ) is the probability that committee member i would propose xk in state xj .

VIII.0.3 The fixed point problem

The following expression defines a N × J equations that map expected utilities V to expected utilities

V .

vji =
N∑
l=1

αl

[
J∑
k=1

ρjlk (V )ujik (V )

]
(7)

where αl is the probability that agent l is selected as proposer. The fixed points of this equation are

MLE of the bargaining game. The fixed-point of (7) at a given λ◦ is computed by homotopy methods.

We know the fixpoint of (7) at λ = 0. Though (7) is not a contraction, it behaves as a contraction in
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a neighborhood of a fixed-point. We can therefore find the fixed-point at λ◦ by tracing the fixed-points

of (7) as λ gradually increases. Obviously one cannot compute the equilibrium for all positive values of

λ, and one must cut off the computation at some maximum λ◦. In the analysis of an approximate Nash

equilibrium in Section III we compute the equilibrium up to λ◦ = 20. Changes in MLE strategies beyond

λ = 10 were extremely small.

VIII.1 Proof of Proposition 1

We first show that the strategies described in the proposition are an equilibrium for any strictly increasing

utility U . We can normalize utility by U(0) = 0, U(30) = 1, and U(20) = a ∈ (0, 1). Then the value

functions for player i can be written:

ui(x0) = a+ δvi(x0), ui(xi) = δvi(xi), ui(x−i) = 1 + δvi(x−i), (8)

where vi(x) is the continuation expected utility of being in state x. The continuation values are determined

by the recognition probabilities (1/3 each) and the proposal strategies, and the voting strategies. By

hypothesis, these strategies are as stated in Proposition 1, and therefore we get

vi(x0) = 1
3ui(xi) + 2

3ui(x−i), vi(xi) = 2
3ui(xi) + 1

3ui(x−i), vi(x−i) = 1
6ui(xi) + 5

6ui(x−i). (9)

From here, it is straightforward to show that, for all a ∈ (0, 1), the value functions are ordered

ui(x−i) > ui(x0) > ui(xi), (10)

which is sufficient to show that the strategies described in Proposition 1 form an equilibrium. There are

two steps. First, we show that ui(x−i) > ui(xi). To see this, subtract the second equation in 8 from the

third equation, to get

ui(x−i)− ui(xi) = 1 + δ [vi(x−i)− vi(xi)] = 1 +
1
2
δ [ui(x−i)− ui(xi)]

with the second step resulting from the substitution of the last two equations of 9. Hence: ui(x−i) −

ui(xi) = 2
2−δ > 0. To see that ui(x−i)− ui(x0) > 0, observe that from 8 we get:

ui(x−i)− ui(x0) = (1− a) + δ [vi(x−i)− vi(x0)] .

Using 9, the result follows immediately. It is also easy to show, using exactly the same line of argument,

that the same result (rotating minimum winning coalitions) extends to any odd number N of committee
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members, where the set of alternatives includes all equal-split minimum winning coalitions, plus the

universal outcome.

Note that in any equilibrium in which (10) is true, strategies must be as described in the proposition.

So to establish uniqueness when utilities are linear, we only need to show that (10) must be satisfied in

an equilibrium (as defined in Section II). It is easy to see that in any (symmetric) equilibrium the utility

of each agent is identical in state x0: ui(x0) = uj(x0) ∀i, j. Moreover, by symmetry, we also have that

ui(xj) = uk(xj) for i, k 6= j, and ui(xi) = uj(xj) for ∀j, i. Finally note that, with linear utilities, for any

state x we must have
3∑
i=1

ui(x) = 60
1−δ for any x. Together with symmetry, these conditions imply that

ui(x0) = 20
1−δ ∀i.

We first show that ui(xj) ≥ ui(x0) in any equilibriium. Suppose to the contrary that in some

equilibrium ui(xj) < ui(x0) for j 6= i. This would imply that ui(xi) < ui(xj). For, if instead we had

ui(xi) ≥ ui(xj) then the worst continuation utility for agent i in state xj would be ui(xj). This would

imply ui(xj) ≥ 30 + δui(xj), i.e. ui(xj) ≥ 30
1−δ >

20
1−δ = ui(x0), a contradiction. Now ui(xi) < ui(xj)

implies

60 = (1− δ)
3∑
i=1

ui(xj) = (1− δ) [2ui(xj) + uj(xj)] < 3 (1− δ)ui(xj)

since uj(xj) = ui(xi) by symmetry, which in turn would imply ui(xj) > ui(x0), a contradiction. We

conclude that ui(xj) ≥ ui(x0).

We next show that ui(xj) > ui(x0). Suppose to the contrary that ui(xj) = ui(x0). There are two

possible cases. Case 1 arises if ui(xi) ≥ ui(x0). In this case, the continuation utility for agent agent i in

state xj is never below ui(x0), so ui(xj) ≥ 30 + δui(x0) = 10 + ui(x0) > ui(x0), a contradiction. Case 2

arises if ui(xi) < ui(x0). Then, for j 6= 0, we have

60 = (1− δ)
3∑
i=1

ui(xj) = (1− δ) [2ui(xj) + uj(xj)]

< (1− δ) [2ui(xj) + uj(x0)] = 3 (1− δ)ui(x0)

which implies that ui(x0) > 20
1−δ , again a contradiction. Hence we have shown that ui(xj) > ui(x0).

Finally, we show that ui(xi) < ui(x0). Suppose to the contrary that ui(xi) ≥ ui(x0). Then, using

the same logic as before, we have that for j 6= 0: 60 = (1− δ) [2ui(xj) + uj(xj)] > (1− δ)
3∑
i=1

ui(x0), a

contradiction. We conclude that ui(xj) > ui(x0) > ui(xi), which proves the result. �

39



VIII.2 Proof of Proposition 2

If strategies are myopic as defined in Section III.2.2 the value function is described by (3) and (5). It

is easy to verify that vi(xi) > vi(x0) > vi(xj). This implies that the voting behavior described in a

myopic strategy profile is optimal. Given this, the weakly stage undominated strategy for an agent i is

always to propose xi in state xi or x0. Consider now the case of an agent i in state xj . It is easy to

verify that it is never optimal to propose xk for k 6= i, 0: this choice would certainly yield a lower utility

than proposing, for example, x0, which would always win. When the state is xj , it is optimal for agent

i to propose xi if it yields higher expected utility than x0, that is if:
(

45
2 + δ

2 (vi(xi) + vi(xj))
)
≥ 20

(1−δ) .

The right hand side of this inequality is the utility if x0 is proposed (given that it wins with probability

one), and the left hand side is the expected utility of proposing xi, which wins only with probability 1
2 .

Given (5), it can be verified that this inequality is true for all δ ∈ [0, 1]. We conclude that the myopic

strategies described in Section 3.2.2 are an equilibrium.

We now prove that they must be the unique equilibrium. Proceeding as in Proposition 1, we can

show that a symmetric equilibrium must be monotonic: so ui(xi) > ui(x0) > ui(xj). We therefore only

need to prove that any monotonic equilibrium must adopt myopic strategies as defined in Section III.2.2.

It is easy to see that any monotonic equilibrium must have the same voting behavior as described in the

myopic strategies. Given this it is also immediate to see that proposal behavior must be as described

in myopic strategies for each agent i in states xi and x0. Consider now proposal behavior of agent i in

state xj . As before we can rule out the case in which xk for k 6= i, 0 is proposed. Assume that the agent

proposes x0 with positive probability, say with probability a. In this case it must be that:(
45
2

+
δ

2
(vi(xi) + vi(xj))

)
≤ 20

(1− δ)
. (11)

Moreover it must be that in any state the sum of payoffs sums up to 60
(1−δ) , so by symmetry:

vi(xi) + 2vi(xj) =
60

(1− δ)
. (12)

From (11)-(12), we obtain: vi(xj) ≥ 15δ+5
δ(1−δ) . Using this fact, we note that: ui(xj) = 15 + δvi(xj) ≥

20
(1−δ) = ui(x0), a contradiction. We conclude that a symmetric equilibrium must be in myopic strategies.

�

40



References

[1] Baron, David P. (1996) “A Dynamic Theory of Collective Goods Procedures,” American Political

Science Review, 90(June):316-30.

[2] Baron, David P. and John A. Ferejohn (1989) “Bargaining in Legislatures,” American Political

Science Review, 83(June):1181-1206.

[3] Baron, David P. and Michael Herron (2003) “A Dynamic Model of Multidimensional Collective

Choice.” in Computational Models of Political Economy, K. Kollman, J. Miller and S. Page eds.

MIT Press: Cambridge: 13-47.

[4] Bowen Renee and Zaki Zahran (2009) “On Dynamic Compromise,” Research Paper No. 2020, Stan-

ford Graduate School of Business.

[5] Battaglini, Marco and Stephen Coate (2006) “Inefficiency in Legislative Policymaking: A Dynamic

Analysis,” American Economic Review, 97(March):118–49.

[6] Battaglini, Marco and Stephen Coate (2007a) “A Dynamic Theory of Public Spending, Taxation

and Debt,” American Economic Review, March 2008, v. 98, iss. 1, pp. 201-36

[7] Battaglini, Marco and Stephen Coate (2007b) “Fiscal Policy over the Real Business Cycle: A Positive

Theory,” NBER Working Paper No. 14047.

[8] Battaglini, Marco, Salvatore Nunnari, and Thomas Palfrey (2009) “Political Institutions and the

Dynamics of Public Investment,” Social Science Working Paper #1318, California Institute of Tech-

nology.

[9] Campo, Sandra., Emmaneul Guerre, Isabelle Perrigne, and Quang Vuong (in press) “Semipara-

metric Estimation of First-Price Auctions with Risk Averse Bidders,” Review of Economic Studies,

Forthcoming.

[10] Diermeier, D. and P. Fong (2009), “Dynamic Legislative Bargaining with Reconsideration,” mimeo.

[11] Diermeier, Daniel and Rebecca Morton (2006) “Experiments in Majoritarian Bargaining,” in Social

Choice and Strategic Decisions: Essays in Honor of Jeffrey S. Banks, D. Austen-Smith and J.

Duggan eds. Springer: Heidelberg: 201-26.

41



[12] Diermeier, Daniel and Sean Gailmard (2006) “Self-Interest, Inequality, and Entitlement in Majori-

tarian Decision-Making,” Quarterly Journal of Political Science, 1: 327–350.

[13] Duggan, John and Tasos Kalandrakis (2010) “Dynamic Legislative Policy Making,” working paper,

University of Rochester.

[14] Frechette, Guillaume, John H. Kagel and Steven F. Lehrer (2003) “Bargaining in Legislatures: An

Experimental Investigation of Open versus Closed Amendment Rules” , American Political Science

Review, 97(May): 221-32.

[15] Frechette, Guillaume, John H. Kagel and Massimo Morelli (2005a) “Gamson’s Law versus Non-

Cooperative Bargaining Theory”, Games and Economic Behavior, 51(May): 365-90.

[16] Frechette, Guillaume, John H. Kagel and Massimo Morelli (2005b) “Nominal Bargaining Power, Se-

lection Protocol, and Discounting in Legislative Bargaining”, Journal of Public Economics, 89(Au-

gust): 1497-1517.

[17] Frechette, Guillaume, John H. Kagel and Massimo Morelli (2005c) “Behavioral Identification in

Coalitional Bargaining: An Experimental Analysis of Demand Bargaining and Alternating Offers”,

Econometrica, 73 (October): 1893-1938.

[18] Frechette, Guillaume, John H. Kagel and Massimo Morelli (2010) “Pork Versus Public Goods: An

Experimental Study of Public Good Provision Within a Legislative Bargaining Framework.” working

paper, NYU.

[19] Goeree, Jacob K., Thomas R. Palfrey, and Charles A. Holt (2002). “Quantal Response Equilibrium

and Overbidding in First Price Auctions,” Journal of Economic Theory 104(1): 247-72.

[20] Goeree, Jacob K., Thomas R. Palfrey, and Charles A. Holt (2003). “Risk Averse Behavior in Gen-

eralized Matching Pennies Games” Games and Economic Behavior 45(1): 97-113.

[21] Holt, Charles A. and Susan Laury (2002). “Risk Aversion and Incentive Effects.” American Economic

Review 92(5): 1644-1655.

[22] Kalandrakis, Tasos (2004). “A Three Player Dynamic Majoritarian Bargaining Game”, Journal of

Economic Theory, 16(2): 294-322.

42



[23] McKelvey, Richard D. (1991). “An Experimental Test of a Stochastic Game Model of Committee

Bargaining,” in Laboratory Research in Political Economy, T. Palfrey ed. University of Michigan

Press: Ann Arbor: 139-69.

[24] McKelvey, Richard D. and Thomas R. Palfrey (1995) “Quantal Response Equilibria for Normal Form

Games,” Games and Economic Behavior, 10(July):6-38.

[25] McKelvey, Richard D. and Thomas R. Palfrey (1998) “Quantal Response Equilibria for Extensive

Form Games,” Experimental Economics, 1, 9-41.

[26] Penn, Elizabeth M. (2009) “A Model of Farsighted Voting” American Journal of Political Science,

53(1): 36-54.

43


