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1. INTRODUCTION
Incremental association mining research concerns the maintenance of the set of frequent itemsets,
F, in an evolving dataset. Given FDi, the set of frequent itemsets generated from the evolving dataset
Di, where i signifies an evolutionary step of D, the incorporation of an increment dataset δ (such
that |δ |« |Di |) will affect the degree of element presence in the combined dataset D1 = D0 + δ. The
naive computation of FDi involves re-mining Di using a classic association mining algorithm,
however this results in process replication as a significant part of the knowledge produced by the
mining of Di is already available in FDi–1. Hence incremental mining attempts to facilitate the
inclusion of δ into FDi by using currently available information in FDi–1 and Di–1. This evolution
results in the alteration of participant states, summarised in Table 1, where the participants are the
elements in D and the itemsets in F.

State Description

Static No relative change in participant presence.
Strengthened The presence of the participant increases.
Weakened The presence of the participant decreases.
Emergent An infrequent participant becomes frequent.
Declined A frequent participant becomes infrequent.

Table 1: Alteration of Participant state
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This paper presents a novel technique that advances the state of increment association rule
mining. The algorithm, Maintained Closed-set Lattice, MCL, like previous approaches, uses
currently available information. Unlike previous algorithms however it uses the concept of the
closure of the Gauloise connection (Ganter and Wille, 1999), or closed-sets, to base the incremental
mining upon a condensed representation lattice from which F can be inferred.

This approach shows promise in both process optimisation and in facilitating the user
interpretation of results. The processing is optimised, especially in highly correlated datasets, as
increment datasets are applied to a smaller maintained lattice, reducing the search space. The
maintenance of a closed-set lattice also aids user interpretation due to its reduced size. The other
significant contribution of this algorithm is the production of an increment lattice I during the
mining process. This provides the user with insight to the increment’s effect upon the maintained
lattice L and also provides an effective means of incorporating windowing functionality (Cheung
et al, 1997), or the removal of previous increments, without further mining.

The rest of this paper is organised as follows: Section 2 discusses previous incremental mining
algorithms. Section 3 presents the concept of closed-sets and discusses the CHARM algorithm that
is incorporated within MCL. Section 4 presents MCL and Section 5 concludes the paper. 

2. INCREMENTAL MINING ALGORITHMS
Cheung et al (1996) proposed the first incremental association mining algorithm, FUP (Fast
UPdate), which defines a set of incremental inclusion rules to incorporate incremental functionality
within the Apriori algorithm (Agrawal et al, 1993). This was subsequently extended in FUP2
(Cheung et al, 1997) to handle increment removal and to use statistical sampling to decide when to
incorporate increment datasets. Like Apriori, these algorithms require k scans of D, where k
represents the length of the largest frequent itemset Fi. Ayan et al (1999) propose UWEP (Update
with Early Pruning) that provides further optimisation by scanning D at most once and the
increment dataset δ exactly once. UWEP incorporates tidlists and look-ahead strategies to improve
pruning, however it only promotes candidate itemsets if they are frequent in both D and δ, resulting
in the possible removal of valid itemsets.

Other incremental extensions to the classic association mining algorithms have been proposed,
for example Partition (Savasere et al, 1995) and FP-Growth (Han and Pei, 2000) and also to the
notion of negative borders (Toivonen, 1996). An incremental Partition extension is proposed by
Omiecinski and Savasere (1998) and a fundamentally equivalent foundation is used as the basis for
Lee et al’s sliding window filtering algorithm, SWF, (Lee et al, 2001) and its proposed extension
FI_SWF (Chang and Yang, 2003). Two incremental extensions to FP-Growth have been proposed,
both of which avoid rebuilding the FP-tree structure when relative frequencies change. This is
achieved through the development of a modified tree structure CATS-Tree (Cheung and Zaïane,
2003) and the development of an associated Pattern Repository structure from which FP-tree can be
derived by Relue et al (2001). Negative borders are used in ULI (Thomas et al, 1997) that requires
at most one scan of D and k scans of δ. Ganti et al (2001) extend ULI by using tidlists and
introducing data stream monitoring to determine when to update. They also present a generic model,
GEMM, which provides a general framework through which incremental algorithms can be
extended to incorporate windowing. 

More recently, incremental extensions (Veloso et al, 2001; 2002) have been proposed for
maximal frequent set algorithms, MFS, in which only the largest frequent itemsets are maintained
(Bayardo Jr, 1998). Although this results in process optimisation, the derived rules are
approximations only as the actual support of smaller frequent itemsets is unknown. PELICAN,
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(Veloso et al, 2001), extends MaxEclat, (Zaki, 2000), using the concept of prefix-based equivalence
relations. Subsequent work by the same team proposed ZIGZAG, (Veloso et al, 2002), that extends
GenMax, (Gouda and Zaki, 2001), using naive backtracking for searching and introducing two
novel quality heuristics. ZIGZAG was further extended in WAVE (Veloso et al, 2002) to incorporate
estimation techniques and trend analysis to efficiently maintain an approximate data model, which
although further improving processing time comes at an additional cost to accuracy. Although not
based upon the principle of MFS, MAAP (Zhou and Ezeife, 2001) is similar in its approximate
inference of small frequent itemsets. The algorithm uses an Apriori based framework whereby
given the high-level FD, it is able to compute the equivalent high-level Fδ, and also infer some of
the lower-level Fδ.

In contrast, MCL presents a novel closed-set approach to incremental association mining that
presents a significantly smaller footprint than previous classic incremental algorithms, while still
allowing the derivation of accurate support for all valid itemsets, unlike MFS approaches. This is
especially true in dense dataset environments due to the increased compression of closed-set lattice
representations. Furthermore MCL presents novel insight into the effect of the increment (δ) upon
the lattice by generating a closed-set increment lattice as part of the update process, and which is
also used to facilitate the subsequent removal of appended increments. 

3. CLOSED SETS
Closed-set mining algorithms produce a condensed representation of the frequent itemsets within a
dataset from which the complete set of F can be accurately derived. The theoretical foundation of
closed-sets is based upon the closure of the Gauloise connection (Ganter and Wille, 1999) in which
a closed pattern is the largest pattern common to a set of objects within a dataset. Non-closed
patterns therefore have the same presence (support (σ)) as their closures, but are a subset thereof.
Therefore the closure of itemset i, denoted c(i) is the smallest closed pattern containing i. 

Given that D is comprised of elements X and the objects O within which they participate, the
identification of the closure of i, c(i) is based upon the collaboration of two functions t(i) and g(o),
where t(i) returns the set of objects in which i participates and g(o) identifies the set of elements
common to all objects o|o∈O. The closure of i is found through g(t(i)), whereby the set of objects
in which i participates is identified (t(i)) and then the set of elements common to this set of objects
is derived. From this g(t(i))=c(i), as the elements that always occur with i are identified, hence
c(i)⊇ i and σ (c(i))=σ(i). For example, an itemset {xy} is not closed if every transaction containing
{xy} also contain z. 

Closed set algorithms (Pasquier et al, 1999; Pei et al, 2000; Zaki and Hsiao, 2002) identify the
closed itemsets, L, within D using different techniques. The additional constraints incorporated
within these association mining algorithms significantly reduce the search space, especially in
highly correlated datasets, improving efficiency. Once L is generated the derivation of F and the
subsequent association rules is simple. However since L implies F, the generation and presentation
of closed rules can facilitate user interpretation, where closed rules (Pasquier et al, 1999) are a
reduced set of association rules derived from L, of the form i1 ⇒ i2 – i1 | i1 ⊂ i2 ∧ i1, i2 ∈ L the
confidence of which is available, (σ (i2)/ σ (i1)). 

The closure properties adapted within MCL were first developed by Zaki and Hsiao (2002), in
CHARM, a closed-set algorithm based upon the concept of equivalence classes (Zaki et al, 1997),
in which two itemsets belong to the same k-class if they share a common prefix of |k|. The closure
properties, Figure 1, are based upon the relationship between two itemsets tidlists, or objects within
which the itemsets exist, within an equivalence class. Properties 1 and 2 result in equivalence class
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reduction and hence facilitate closed-set convergence, whilst 3 and 4 result in new equivalence class
information that generally requires additional processing. 

An equivalence class is comprised of a set of frequent itemset members that share a common k-
prefix. New k+1 equivalence classes are derived from existing classes by merging each member
with all members that lexicographically occur after it. If the merged pair results in a frequent itemset
i, the closure properties are applied to control i’s influence upon the generation of the closed-set
equivalence class lattice. Each class c is then appended to L if it is not subsumed by a class c', such
that c⊂ c' and t(c)= t(c'). 

4. MAINTAINED CLOSED-SET LATTICE ALGORITHM
MCL provides a novel and efficient incremental association mining method through the maintenance
of a closed-set lattice L, from which the set of frequent itemsets F, can be easily derived. The
maintenance of Li uses an increment closed-set lattice I that is derived from the increment dataset δ
in the presence of Di– 1 and Li– 1. I is then appended or removed from Li– 1 resulting in Li, an evolution
of the maintained closed-set lattice. By assuming that an increment dataset must be appended to the
maintained lattice before it can be removed, the removal process can be optimised by using the
previously derived I, alleviating the need to remine δ. Furthermore the generation of I during the
append process provides the user with an effective insight to δ’s effect upon L. 

The algorithm assumes an initial L0 and D0. The internal representation of the increment dataset
δ, referred to as d (see Section 4.1), and Di are vertically organised tidlists and the subsumption
table, used as part of closed-set validation takes the tuple form {tidlist, Array[Li]}. The lattice
structures L and I are prefix trees, of node form {itemset, tidlist} that use lexicographic ordering to
maintain consistency during evolution. The output from both the append and remove process is an
updated Li and Di, the append process also produces I and d to facilitate user interpretation and
subsequent increment removal. 

The following discussion is divided into four sections. The first three discuss the main steps in
the append process: generate, merge and strip, while the last section discusses the removal process.
The generate stage prepares the required data structures including the increment lattice, I, while
merge and strip perform the update, focusing respectively upon the update of existent and emergent
closed-sets. Figure 2 presents L0 and D0, from Zaki and Hsiao (2002), which is used as the running
example. 

Figure 1: CHARM closure properties
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4.1 Generate
This stage prepares for the subsequent merging of L and I through the preparation of data structures
and the subsequent generation of I and X. Data structure preparation requires a scan of the increment
dataset δ which is used to update D ∀ e ∈ δ, generating D1 from D0. During this traversal the data
structures d and ext are also populated. Given σ (De

0) > minsup and σ (De
1) > minsup then all objects

containing e ∈ δ are appended to d, resulting in the list of δ objects which already exist in L. If
σ (De

0) < minsup and σ (De
1) > minsup then e is an emergent element and its context within D1,

namely De
1, is appended to ext, resulting in the list of emergent elements in D1 that may extend L0.

The subsequent closed mining of d and ext, using the closure principles identified by Zaki and
Hsiao (2002) in CHARM, see Section 3, result in the generation of the lexicographic tree's I and X
respectively. While the mining of ext incorporates quality heuristics (eg. support), this does not
apply to the mining of d, as all itemsets founded upon current frequent elements, those existant
within L0, must be reported in I to accurately update all itemsets in L. Once constructed I and X,
presented in Figure 3 with δ, contain all the information required to accurately update L. 

Figure 2: Dataset and resulting closed set lattice (Zaki and Hsaio, 2002)

4.2 Merge
The incorporation of I and X within L requires a scan of L for which all pertinent x ∈ X and i ∈ I are
applied to l ∈ L. Given that |δ |« |Di | and the set of elements e ∈ E is common to both D and δ,
relatively few new itemsets are appended to L during any given increment. The result of this is that
an increment’s effect upon L will often be internal to the lattice as most frequent itemsets are already
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represented. However, although less common, lattice boundary extension does occur through
emergent itemsets and superset extension. Therefore each l must be tested against X for emergent
supersets and against E to update its tidlist and to discover any emergent subsets. This process is
optimised by considering only relevant X and E for each l by dynamically reducing these structures
during processing. 

Each l ∈ L0 is checked (preorder traversal) against X and I, resulting in the construction of a new
closed lattice L1. The construction of this new lattice was found to significantly reduce update
complexity in comparison to updating the original lattice. The set of emergent itemsets (X) applied
to l is the subset of X that was found valid for lparent, this set is denoted Xl

– and therefore Xroot = X
(given that l = Lroot then Xl = X ). For example, given X={{x},{xz}} and the resultant processing of
l={a} finds that Xa = {x}, then this subset of X is the extension set passed to the children of a.
Implementing the downward closure principle upon this process,  Xl quickly reduces as the traversal
deepens. Hence each l is merged with Xl

– and if frequent and not subsumed (closed set pruning), it
is appended to L1, Xl and R (discussed in Section 4.3). 

The increment lattice is pruned during processing, see Section 4.3, so that the pertinent i ∈ I for
the current l are the first nodes encountered using a preorder traversal. Thus I is traversed until i
lexicographically exceeds l at which point no subsequent i are pertinent to l. 

The inclusion of further search space reduction depends upon the effect of I and X upon l and
the relationship between i and l. For each pertinent i, if i ⊇ l then L is updated with i.tidlist and i’s
descendents are removed from the search space as the tidlists (all supersets of i) are subsets of

Object Elements

7 a,c,d,t,z,x

8 a,t,x

9 c,d,z,x

Figure 3: Increment dataset and derived I and X

Figure 4: Partial L and I

(a) Partial L (b) Partial I
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i.tidlist and cannot further affect l. If i ⊂ l then transcend to i’s children, with no action taken upon
l. If i is neither a superset, a subset nor equal to l, then its subtree is not processed. For example,
given the partial lattices in Figure 4, l = {ad} is first compared against i = {a}, since {a} is a subset
of {ad} no update occurs. i then transcends to {adt}, which being a superset of {ad} results in an
update of l, but any descendants of i are not processed. Comparison then proceeds to i = {adw} also
a superset therefore resulting in the update of l. Given that the next i lexicographically exceeds l
then the update of l = {ad} is complete. Since {ad} incurred a valid update, its descendents are
processed (namely {adw}). i is reset to Lroot  or i = {a}, as i = {a} is a subset of {adw} no update is
undertaken and the descendants of {a} are processed. i = {adt} is unrelated to l = {adw}, therefore
it and its descendants are ignored. i becomes equal to {adw} which is equivalent to the current l,
and therefore updated. 

The inclusion of these search constraints optimises the update (strengthening and weakening) of
existing l ∈ L0. If there is no change to l, then no superset of l will be modified by X or I due to the
Downward Closure Principle (DCP) (Agrawal et al, 1993). Hence the subtree of l is appended to
L1, without further comparison against I or X. However before any l is appended to L1 a final check
against minsup is made to identify declined itemsets, where if l has declined then l and its subtree
(supersets) are eliminated from consideration. Pseudo 2 presents the merge process, including the
update method that details the traversal of pertinent I for l. 

4.3 Strip
Strip is instigated from merge when a level-1 node is encountered during the traversal of L0. It
provides two functions, the reduction (stripping) of I to eliminate unwanted elements and the
discovery of all remaining emergent itemsets. Prior to instigation a copy of I is made, denoted R,
which provides the ability to both report the increments effect upon L0 and to facilitate the removal
process (Section 4.4). Therefore any emergent itemsets appended to L1 are also inserted into R. 

Due to lexicographic ordering, once all l ∈ L0 that begin with a particular element e have been
merged with I and X, all subsequent l must exceed e. Since e will take no further part in the update
of L0 it is stripped from all i ∈ I, allowing the progressive reduction of I. 
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Strip occurs before the merge of level-1 L0 nodes, removing all elements from I that
lexicographically precede the first element of the current l. Once the preceding elements have been
removed, the modified itemsets, if not subsumed, are re-inserted into I. For example, given a level-1
l = {d} and I = {{ac},{cd},{dw}}, then after stripping I = {{d},{dw}}. This dynamically reduces I
and facilitates the update of L0 by ensuring that the relevant increment closed-sets are the first
encountered during merge, See Pseudo 3:Strip #1- #6.

The discovery of emergent closed-sets is undertaken in conjunction with stripping due to the
focus upon the relevant structures. All candidate emergent set information is represented within I
and X, and by removing their discovery from the traversal of L significant process duplication is
avoided. The emergent closed-sets comprised of frequent elements in D0 are represented in I, while
emergent elements are represented in X. 

The candidate emergent sets in which the stripped elements, S, participate are identified by
deriving the set of itemsets from the closed-sets in I in which an s ∈ S participates. For example,
given I = {{ac},{awx},{cd},{dw}}, and S = {a} then the set of candidate emergent itemsets
C = {{ac},{aw},{ax},{awx}}, See Pseudo 3:Strip #2. The potential candidate emergent itemsets p
are generated through a preorder traversal of I, incorporating DCP. If p ∉ C, its support in D1 is
discovered and it is appended to C, irrespective of whether σ ( p ) > minsup. The representation of
all p in C irrespective of support optimises processing as duplicate p can be quickly removed
without calculating support. 

The resulting C is then appended to L1 and R where each c ∈ C is frequent and not subsumed.
Furthermore, if appended to L1, c is then checked against the emergent elements X in like 
manner to l, see Section 4.2, to possibly generate further emergent supersets, See
Pseudo 3:generateEmergent. The identification of the emergent closed-sets, although algo-
rithmically complex consumes relatively little process time due to the small number of candidate
sets generated and the pruning techniques incorporated.

After L0 has been updated through the merge process the remaining emergent closed-sets are
discovered by applying the same process to what remains of I. Finally the emergent elements, x ∈ X,
are appended to L1 and R if they are not subsumed. 

4.4 Removal
The creation of the increment lattice, I, facilitates the removal of previous increments from L by
alleviating the need to re-mine the increment dataset, significantly reducing the removal process
through the reuse of information. The maintained dataset D is first updated by removing the

JRPIT 39.1.QXP  4/4/07  2:18 PM  Page 42



Incremental Association Mining using a Closed-Set Lattice

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 43

increment dataset, δ, from it. The subsequent updating of the maintained closed-set lattice, L, is
similar to the merge stage of append, in that it is based upon the traversal of L and uses the
consistent ordering to reduce the search space.

For each l ∈ L,I is traversed until i lexicographically exceeds l or i ⊃ l. If i ⊃ l then itidlist is
removed from ltidlist, which may result in the subsequent declination and removal of l and its
supersets from L. If l remains frequent, its presence within the subsumption table is altered to reflect
its new tidlist and if l subsumes its parent, the parent is replaced by l in L. 

5. RESULTS AND CONCLUSION
This paper presents MCL, a novel and efficient algorithm that maintains a closed-set lattice in an
evolving dataset environment. The maintained lattice L and increment lattice I resulting from this
process are presented in Figure 5.

Some experimental results are presented in Figure 6, which compares processing time and
lattice size between a naive algorithm and MCL as dataset density increases. These graphs are based

Figure 5: Resultant L and I

Figure 6: Experimental results (log10)
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upon results from an artificial dataset, | D0 | = 35K and |δ | = 2K, in which density is manipulated by
adjusting the number of elements from which the objects are generated. Figure 6(a) illustrates the
efficiency of MCL over the naive re-mining of D1, using Apriori, and also presents the time taken
to construct the initial lattice L0 using CHARM. Figure 6(b) illustrates, from the same result set, the
relative lattice size reduction of the maintained and increment lattices, L and I, over the regular
(non-closed) lattice as density increases.

The contributions of MCL to incremental association mining are twofold. First, through the use
of closed-sets a condensed representative lattice is maintained that facilitates efficient update,
especially for dense dataset environments, through reduced processing. Second, the creation of a
closed-set increment lattice allows insight to the increment’s effect upon the maintained lattice and
reduces the processing required for subsequent increment removal. 

The results to date support the theory of closed incremental mining and its contribution to data
mining, especially within dense datasets environments. Further testing, against other incremental
association mining algorithms, is underway to discover the extent of these contributions.
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