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1. INTRODUCTION
With the presence of more and more data sources on the Internet, data integration systems over the
Web have been continuously growing in the last few years. These systems aim to support seamless
access to autonomous, heterogeneous data sources. A mediator-based data integration system has

A number of algorithms based on the use of either buckets or inverse rules have been proposed to
address the problem of query rewriting using views. Some inverse rule-based algorithms have
considered this problem in the presence of inclusion dependencies. However, no bucket-based
algorithms have considered the influence from inclusion dependencies, resulting in missing some
query rewritings under this condition. In a bucket-based algorithm, if a view does not contain any
subgoals of a query, then the algorithm cannot form any bucket over the view. In this paper, we
utilize inclusion dependencies to overcome this deficiency. We present two novel algorithms in the
buckets framework. In the first algorithm, we apply a chase procedure/rule to a query to get a set
of equivalent or contained queries relative to inclusion dependencies, and then generate rewritings
for each of the revised queries. In the second algorithm, we apply a chase procedure/rule to such a
view that does not contain subgoals of a query but still contains subgoals to which the chase
procedure/rule can be applied. We prove that both algorithms can find a maximally-contained
rewriting relative to inclusion dependencies. Hence, the problem of missing rewritings in the
previous bucket-based algorithms is avoided. 
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been proposed by Wiederhold (1992) to deal with the autonomy and heterogeneity of data sources.
In a mediator-based data integration system, there are two types of schemas, i.e., a mediated schema
and a set of data source schemas. The mediated schema is used to make queries and describe the
contents of data sources. Because the actual data is stored in the data sources, we need to
reformulate user queries over the mediated schema into new queries over the data source schemas.
This process is called query reformulation which is an important step of query processing in a data
integration system. In general, there are two main approaches to describing the relationships
between a mediated schema and data source schemas, i.e., Global As View (GAV for short) and
Local As View (LAV for short). As stated by Levy (2001), in the GAV approach a mediated schema
is defined over data source schemas, while in the LAV approach, data sources are defined over a
mediated schema. The LAV approach is suitable for a data integration system in a dynamic
environment because it is easy to delete/add a data source from/to a data integration system without
making major changes in a mediated schema. Query reformulation in the LAV approach is also
called query rewriting using views which has recently received considerable attention because of its
relevance to a wide variety of database applications. In this paper we take the LAV approach. 

Two assumptions can be made on view definitions, i.e., Closed World Assumption and Open
World Assumption (OWA for short). As a result, there are two types of query rewritings, i.e., equiv-
alent rewritings and contained rewritings. The former can provide the same answers as the original
query while the latter can provide only a subset of the answers to the original query. Usually, in the
Web environment, data sources are autonomous and heterogeneous. We take the OWA assumption
only since we are more interested in finding the set of contained rewritings whose union, called a
maximally-contained rewriting, can provide the best possible answers to a user query. 

The problem of query rewriting using views is: given a query Q and a set of views
V={V1,…,Vn}, a rewriting of Q is a query expression whose body predicates are from V only. There
have been several rewriting algorithms, such as the bucket algorithm (Levy et al, 1996a; 1996b),
the inverse rule algorithms (Qian, 1996; Duschka and Genesereth, 1997), the Shared Variables
Bucket (SVB for short) algorithm (Mitra, 2001), and the MiniCon algorithm (Pottinger and Levy,
2000). These algorithms are based on the use of either inverse rules or buckets. Some algorithms in
the inverse rules framework (Grant and Minker, 2002; Gryz, 1999) have considered the problem of
query rewriting using views in the presence of inclusion dependencies (INDs for short) in a
mediated schema. However, no bucket-based algorithms have considered the influence from INDs,
resulting in missing some query rewritings in the presence of inclusion dependencies as shown in
the following example.

Example 1 (from Gryz, 1999): Assume that a mediated schema consists of the following relations:
patient(name, dob, address, insurer), procedure(patient_name, physician_name, procedure_name,
time), insurer(company, address, phone), event(event_name, description, patient_name, location). 

Assume that all procedures with patients’ names are also recorded in the event table, that is,

procedure(procedure _name, patient_name) ⊆ event(event_name, patient_name).

We use the rules in the Datalog query language to represent conjunctive queries and views as used
in Ullman (1997). The left hand side of a rule is called the head of the rule while the right hand side
is called the body of the rule. Each term in the body is called a subgoal.

Suppose that there are two views (For simplicity, we assume that a view represents a data source
throughout this paper.):
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V1(X,Z,W) :- procedure(X,U1,Z,W). 

V2(X,U,S) :- patient(X,S1,U,S2), insurer(S2,S,S3).

Assume that there is a query:

Q(E) :- patient(W0,W1,W2,W3), event(E,W4, W0,W5).

The MiniCon algorithm cannot generate any rewriting of Q because no view contains the relation
event. However, as shown later, we can generate the following rewriting of Q by making use of the
given IND:

Q’(E) :- V1(W0,E,W), V2(W0,W2,S).

The key idea in this paper is to introduce a chase procedure/rule of INDs and apply it to a query
or views. We present two novel algorithms in the buckets framework. In the first algorithm, we
apply the chase procedure/rule to a query to get a set of equivalent or contained queries relative to
inclusion dependencies, and then generate rewritings for each of the revised queries. In the second
algorithm, we apply the chase procedure/rule to such a view that does not contain any subgoals of
a query but still contains subgoals to which the chase procedure/rule can be applied. 

Throughout the rest of the paper, we make the following assumptions:
1. Because the problem of interaction between functional dependencies and inclusion

dependencies is undecidable, we consider only the influence of inclusion dependencies itself.
2. Each view definition should satisfy inclusion dependencies in a mediated schema, which

follows from the papers of Gryz (1999), Grant and Minker (2002), and Duschka et al (2000).
Moreover, we do not consider how to maintain inclusion dependencies, how to compute the
closure of inclusion dependencies, etc., which are the topics in the theories of relational database
systems.

3. We consider the queries without comparisons only. Our approaches can be applied to the queries
containing comparisons as long as we make a test of comparison implication before forming a
bucket.

The rest of the paper is organized as follows. In the next section, the preliminaries for the
problem of query rewriting using views and inclusion dependencies are given. In Section 3 we give
a brief overview of related work on the algorithms for query rewriting using views in the LAV
approach. In Section 4 we present two bucket-based algorithms for the problem of query rewriting
using views in the presence of inclusion dependencies. In Section 5 we analyze our algorithms with
respect to computational complexity and correctness. In Section 6 some experimental results are
given. Finally, we conclude the paper.

2. PRELIMINARIES
2.1 Query Containment and Query Rewriting Using Views
A conjunctive query without any arithmetic comparisons has the form:

where are database relations in a mediated schema. We require that the

query be safe, i.e., . The variables in are distinguished variables, and others
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are existential ones. An existential variable is a shared variable if it appears in more than one
subgoal. A view is a named query. 

We say that a query Q1 is contained in the Q2, denoted by Q1 ⊆ Q2, if the answer to Q1 is a subset
of the answer to Q2 for any database instance. Containment mapping provides a necessary and
sufficient condition for testing query containment of conjunctive queries. A mapping ϕ from
Vars(Q2) to Vars(Q1) is a containment mapping if (1) ϕ maps every subgoal in the body of Q2 to a
subgoal in the body of Q1, and (2) ϕ maps the head of Q2 to the head of Q1. The query Q2 contains
Q1 if and only if there is a containment mapping from Q2 to Q1. The query Q1 is equivalent to Q2 if
and only if Q1 ⊆ Q2 and Q2 ⊆ Q1. 

Note that the views are not assumed to contain all the tuples in their definitions since the data
sources are autonomous. Moreover, we cannot always find an equivalent rewriting of the query
using views because data sources may not contain all of the answers to the query. Instead, we
consider a maximally-contained rewriting (Levy, 2001).

Definition 1 (Contained rewriting) Q’ is a contained rewriting of a query Q using the views
V=V1,...,Vn with respect to a query language L if the expansion of Q’, denoted by Q’EXP, is
contained in Q, i.e., Q’EXP ⊆ Q, where Q’EXP is obtained by replacing all the views in Q’ by their
definitions, and existential variables in a view definition are replaced by fresh variables.

Definition 2 (Maximally-contained rewriting) Q’ is a maximally-contained rewriting of a query
Q using the views V=V1,...,Vn with respect to a query language L if 

(1) Q’ is a contained rewriting of Q, i.e., Q’EXP ⊆ Q,
(2) there is no other rewriting Q1 of Q, such that Q1

EXP ⊆ Q and Q’EXP ⊂ Q1
EXP. 

2.2 Inclusion Dependencies:

Definition 3 (Inclusion Dependencies (Abiteboul et al, 1995))
An m-ary inclusion dependency (IND) is a formal statement of the form R[A1,..., Am] ⊆ S[B1,..., Bm]
where R and S are relation schemes, A1,..., Am and B1,..., Bm are attributes in R and S respectively.
A database obeys the IND R[A1,..., Am] ⊆ S[B1,..., Bm] if for every subtuple <a1,...,am> that occurs
in columns A1,..., Am of some tuple in relation R, there is a tuple of relation S that contains
<a1,...,am> in columns B1,..., Bm.

When the relations in a mediated schema satisfy a set ∆ of inclusion dependencies, we define
our notion of query containment as query containment relative to ∆ (Gryz, 1999). 

Definition 4 (Query Rewriting in the Context of Inclusion Dependencies)
Query Q1 is contained in query Q2 relative to ∆, denoted by Q1 ⊆∆ Q2, if for each database instance
D satisfying the inclusion dependencies in ∆, Q1(D) ⊆ Q2(D). 

Definition 5 (Maximally-Contained Rewriting in the Context of Inclusion Dependencies)
Q’ is a maximally-contained rewriting of a query Q using views V1,...,Vn with respect to a query
language L relative to ∆, if 

(1) Q’ is a contained rewriting of Q relative to ∆, i.e., Q’EXP ⊆∆ Q,
(2) there is no other rewriting Q1 of Q, such that Q1

EXP ⊆∆ Q and Q’EXP ⊂∆ Q1
EXP.
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3. RELATED WORK
3.1 Algorithms Based on the Use of Buckets
A bucket-based algorithm consists of two steps. In the first step a single-subgoal bucket is created
for a subgoal R in a query Q over a view V if the following condition (C1) is satisfied.

(C1) Any distinguished variables in Q should be mapped to distinguished variables in R. An
existential (non-shared) variable in Q could be mapped to either a distinguished variable or an
existential variable in R.

In this case, we say V covers the subgoal R in Q. When a shared variable within R in Q is
mapped to a non-distinguished variable in V, it needs to form a bucket containing multiple subgoals
which is based on the following condition (C2).

(C2) A set of subgoals of Q containing a shared variable should be covered by a view.

In the second step, rewritings are generated by combining a view from each bucket.
In fact, the bucket algorithm (Levy et al, 1996a; 1996b) considers forming a set of single-

subgoal buckets only. As a result, rewritings need to be verified using the containment test.
Compared with the bucket algorithm, the SVB algorithm (Mitra, 2001) creates the above two types
of buckets. The MiniCon algorithm (Pottinger and Levy, 2000) proceeds in the same way. The
difference between the MiniCon algorithm and the SVB algorithm is that the former introduce a
head homomorphism on a view so that it can generate more rewritings in some cases than the latter.

Now we show the MiniCon algorithm in detail because we are going to extend the algorithm.

Example 2 Suppose that there are three views.
V1(A, C) :- r(A,C), s(W1,C).
V2(B) :- s(B,U2).
V3(A) :- r(A,W3), s(W3,U3).

A query is made as follows:
Q(X) :- r(X,K), s(K,J). 

Hereafter, we denote the variables of a query Q and a view V by Vars(Q) and Vars(V)
respectively. We use subgoals(Q) to refer to the set of subgoals in Q.

In the first step, the MiniCon algorithm tries to form a set of buckets named as MiniCon
Descriptions (MCDs for short) for each subgoal of Q over Vi, i=1,2,3. An MCD over a view V is a
tuple of the form of (hC, V(Y)C, ϕC, GC ), where hC is a head homomorphism on V, V(Y)C is the
result of applying hC to V, ϕC is a partial mapping from Vars(Q) to hC(Vars(V)), and GC is a set of
subgoals of Q which are covered by hC(V) associated with ϕC. A head homomorphism hC on a view
V is a mapping hC from Vars(V) to Vars(V) that is the identity on the existential variables, but may
equate distinguished variables.

Two types of MCDs are considered. An MCD containing a single subgoal is based on the condition
(C1) while an MCD containing multiple subgoals is based on the condition (C2). In this example we
can form three MCDs, two of which contain a single subgoal while the third contains a set of subgoals.

hC(homomorphism) V(selected view) ϕC(mappings) GC(subgoal of Q)

A→A, C→C V1(X, K) X→A, K→C r(X,K)

B→B V2(K) K→B, J→ U2 s(K,J)

A→A V3(X) X→A, K→ W3, J→ U3, r(X,K), s(K,J)

Table 1: Three MCDs formed in Example 2
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In this paper, we simply treat a homomorphism as the identity operator, i.e., an identity on all
the variables of V; otherwise it may cause violation with INDs.

After all the MCDs are created, the MiniCon algorithm generates all possible query rewritings
by combining views from the MCDs as follows.

Suppose that there are k MCDs, denoted by Ci, i=1,...,k, such that i≠j, Gi ∩ Gj = ∅, and G1 ∪
G2 ∪...∪ Gk = subgoals(Q), where Gi is the field GC in Ci, then the conjunction of views from 
Ci, i=1,...,k, is a contained rewriting of Q. In this example we can generate two rewritings of Q as
follow:

Q’(X) :- V1(X, K), V2(K).
Q’’(X) :- V3(X).

There are two main advantages of the MiniCon algorithm over the bucket algorithm. The first
advantage is that the shared variables of Q are considered when unifying. The second is that none
of the obtained rewritings is redundant.

3.2 Algorithms Based on the Use of Inverse Rules
The key idea of the inverse rules algorithms is to construct a set of rules called inverse rules that
invert the view definitions. In the inverse rules, the existential variables in the view definitions are
replaced with Skolem functions in the heads of the inverse rules. The rewriting of a query is simply
the composition of the query and the inverse rules of views using either the transformation method
(Duschka and Genesereth, 1997), or the u-join method (Qian, 1996), or the resolution method
(Grant and Minker, 2002).

Gryz (1999), Grant and Minker (2002) have discussed the problem of query rewriting using
views in the presence of inclusion dependencies. In (Gryz, 1999), a chase procedure/rule for
inclusion dependencies in (Johnson and Klug, 1984) is introduced. First, Gryz minimized Q and got
a minimal query Q’ which is ∆-equivalent to Q given a query Q and a set ∆ of INDs. Second, for
each subgoal pi (i=1,2,…,n) in Q’, Gryz tried to get a set of ∆-equivalent or ∆-contained subgoals
psij (i=1,2,…,n, j=1,2,…,m). Then a set of ∆-equivalent or ∆-contained queries of Q’ are generated
by combining ∆-equivalent or ∆-contained subgoals from the sets psij (i=1,2,…,n, j=1,2,…,m).
Finally, for each of ∆-equivalent or ∆-contained queries of Q’, an inverse rule algorithm is used to
generate the ∆-equivalent or ∆-contained rewritings of Q’. These rewritings are also ∆-equivalent
or D-contained rewritings of Q.

In Grant and Minker (2002), an IND is described by a Clark Completion rule. For example, the
IND in Example 1 can be described as:

event(X’3, f1, X’1, g) ← procedure(X’1, X’2, X’3, X’4).

This rule is then used, associated with a set of Clark Completion rules of the given views and
query, to generate query rewritings by the resolution method.

In this paper, we assume that a given query and a given set of views have all been minimized,
because the minimization of a query is irrelevant to the issue of query rewriting. 

4. QUERY REWRITING USING VIEWS IN THE PRESENCE OF INCLUSION DEPENDENCIES 
In the context of databases, there exist inclusion dependencies in a database schema, which provide
special relationships between relations. As data sources in data integration systems are defined over
the relations in a mediated schema, these dependencies also reveal some relationships between data
sources. Thus, the topic in this paper has practical significance. 



A Bucket-Based Approach to Query Rewriting Using Views in the Presence of Inclusion Dependencies

Journal of Research and Practice in Information Technology, Vol. 38, No. 3, August 2006 257

As stated in Section 2, the conditions (C1) and (C2) are basic criteria for forming an MCD in the
MiniCon algorithm. We note that the MiniCon algorithm fails to form an MCD for a given query Q
over a view V if any of the following cases is true:

(1) V contains no subgoal in Q, e.g., no MCD is formed over V1 in Example 1.
(2) There is a violation of the condition (C1).
(3) There is a violation of the condition (C2).

If the case (1) above occurs, we apply a chase procedure/rule of INDs to a query or views so that
we can generate all rewritings. 

4.1 Chase Procedure/Rule of Inclusion Dependencies
In the next section, we need to be able to refer to not only the set ∆ of INDs as stated for a given
database, but also its closure ∆* which is defined as the set of all the INDs implied by ∆. Henceforth,
we assume that the set ∆ is closed under its consequences (that is ∆ = ∆*). Note that conjunctive
views are named conjunctive queries. Therefore, the following definitions are applicable to views too.

Definition 6 The Chase∆∆ Procedure/Rule (Johnson and Klug, 1984; Gryz, 1999)

The Chase∆∆ Procedure:
If an IND R[A1,..., Am] ⊆ S[B1,..., Bm] is in ∆, and R(X1,...,XM), M ≥ m, is a subgoal of a query Q,
and S(Y1,...,YN), N ≥ m, does not appear in Q, we say this IND is applicable. Each step of a chase
procedure consists of an application of the chase rule to a given IND and a subgoal R(X1,...,XM) to
which it is applicable.

The Chase∆∆ Rule:
Let an IND and a subgoal R be as above. The chase∆ rule is to add a new subgoal S(Y1,...,YN) to Q,
where S[B1,..., Bm] = R[A1,..., Am] and for S[C], C≠Bi, 1≤ i ≤ m, is a new variable that does not
appear in Q.

Definition 7 Chase∆∆ Reachable (Johnson and Klug, 1984; Gryz, 1999)
Let Q and Q’ be queries. Q is chase∆ reachable from Q’, denoted by Q=chase∆(Q’), if Q ≡ Q’ or
there exist Q1,..., Qn, such that:
(1) Q’ ≡ Q1, 
(2) Qi+1 is derived from Qi, 1≤ i ≤n-1, by applying the above single chase∆ rule to it, and 
(3) Q ≡ Qn.

Definition 8 Scope of a Subgoal (Gryz, 1999)
Let Q(X):- S1(X1),…,Sk(Xk) be a query. The scope of the subgoal Si, i=1,…,k, is the set of attributes
in Si corresponding to distinguished variables, constants, and join attributes in Q.

The concept of scope plays an important role in the application of a chase∆ procedure/rule to a
query or a view. Let us have a look at the following examples.

Example 3 Suppose that we have views and a query as follows:
(a) V1(X) :- R(X, y). // scope(R) = {X}

V2(X) :- S(X, y). // scope(S) = {X}
Q(X) :- S(X, y).
An IND is {R[X] ⊆ S[X]}. 
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It is obvious that V1(X) can provide part of the answers for Q even though it does not contain
the subgoal S. This is achieved by making use of the given IND, i.e., one query rewriting is: 

Q’’(X) :- V1(X). 
Using any previous bucket-based algorithm, we can get the rewriting: 
Q’(X) :- V2(X). 
However, we still need to consider how to get Q’’(X) because the union of Q’(X) and Q’’(X) is

a maximally-contained rewriting of Q relative to INDs.

(b) V(Y) :- R(x, Y). // scope(R) = {Y}
Q(X) :- S(X, y). // scope(S) = {X}
An IND is {R[X] ⊆ S[X]}. No rewriting can be obtained because scope(R) ∩ scope(S) = ∅. 

(c) V(X) :- R(X, y, z). // scope(R) = {X}
Q(X) :- S(X, y, z, k), T(X, y). // scope(S) = {X, y}
An IND is {R[X, Y] ⊆ S[X, Y]}. Also no rewriting can be obtained because V cannot cover the

conjunction of R and T. 

In Gryz (1999), an algorithm for minimizing a query is given. A query Q is minimal if and only
if Q does not contain both R and S if R and S appear in a IND: R[A] ⊆ S[B] or in the forms of 
R[A] ⊆ T[B], T[B] ⊆ S[C]. Due to transitivity of INDs, if R[A] ⊆ T[B] and T[B] ⊆ S[C], we have
R[A] ⊆ S[C]. As stated in Section 3, we assume that the given query is a minimal query relative to
∆. Because a view is a named query, we also assume that each view is a minimal query relative to ∆.

4.2 The BFIND_1 Algorithm
In Gryz (1999), an algorithm for finding a set of ∆-contained or ∆-equivalent queries of a given
query is given as follows.

Algorithm find_contained_query(Q, ∆∆) (or find_equiv_query (Q, ∆∆)) 

Input: Q and ∆.

Output: A set of ∆-contained (or ∆-equivalent) queries, Q1,…,QM, of Q.

1: Body(Q):=S1,…, Sk.
2: For i=1 to k do
3: A = scope(Si)
4: Atomsi←{ Si }
5: For each R[B] ⊆ Si[A] ∈ ∆ (or R[B] ≡ Si[A] ∈ ∆ ), then // B = scope(R)
6: For each attribute C of R such that C∉ B

7: R[C]:= new_var; // new_var means new variables
8: Endfor;
9: Atomsi ←Atomsi ∪{R}
10: Endfor;
11: Endfor.
12: Qj = Combine(Atomsi, i=1,…,k), j=1,…, M;
13: Return Q1,…,QM.
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In the BFIND_1 algorithm, we also use the algorithm find_contained_query(Q, ∆) (or
find_equiv_query (Q, ∆)) to find a set of ∆-contained or ∆-equivalent queries of a query Q. We then
apply the MiniCon algorithm to generate rewritings for each Qi, i=1,…,M. 

Algorithm BFIND_1: Query Rewriting Using Views in the Presence of Inclusion Dependencies

Input: A conjunctive query Q, a set of the views V1,V2,...,Vn, a set of inclusion dependencies ∆ in
the form of R[A1,..., Am] ⊆ S[B1,..., Bm]. 

Output: Q∆’, a maximally-contained rewriting of Q relative to inclusion dependencies ∆.

Method:

Step 1: Find a set of ∆-equivalent or ∆-contained queries of Q.

Call Algorithm find_contained_query(Q, ∆) (or find_equiv_query (Q, ∆)) 

Step 2: Generate a set of rewritings of each of queries obtained in Step 1 by using the MiniCon
algorithm. 

Let us continue with Example 1. First, we can get a set of ∆-contained or ∆-equivalent queries of Q
as follows:

Q1(E) :- patient(W0, W1, W2, W3), event(E, W4, W0, W5).
Q2(E) :- patient(W0, W1, W2, W3), procedure(E, W7, W0, W8).

We then use the MiniCon algorithm to generate the rewritings of Q1 and Q2, respectively, over
V1 and V2. We form two MCDs for the subgoals of Q2 over V1 and V2 as follows:

hC V ϕC GC

X→X, Z→Z, W→W V1(E,W0,W8) E→X, W7→U1, procedure 

W0→Z, W8→W

X→X, U→U, S→S V2(W0,W2,S) W0→X, W1→S1, patient 

W2→U, W3→S2

Table 2: MCDs for Q2 over V1 and V2

We can get a rewriting of Q2 as follows:

Q∆(E) :- V1(E,W0,W8), V2(W0,W2,S).

No rewriting is obtained for Q1 over V1 and V2 because neither V1 nor V2 contains the subgoal
event. Thus, the above Q∆(E) is a maximally-contained rewriting of Q.

4.3 The BFIND_2 Algorithm
In the BFIND_2 algorithm, we apply the chase∆ procedure/rule to views which contain chase∆
reachable subgoals, instead of the given query. 

Continue with Example 1. Even though V1 does not contain the subgoal event, it contains a
chase∆ reachable subgoal procedure. We apply the chase∆ procedure/rule to V1 and get a ∆-
equivalent view:

V’1(X, Z, W) :- procedure(X, U3, Z, W), event(Z, D, X, L).
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hC V ϕC GC

X→X, Z→Z, W→W V’1(W0,E,W) E→Z, W4→D, event 

W0→X, W5→L

X→X, U→U, S→S V2(W0,W2,S) W0→X, W1→S1, patient 

W2→U, W3→S2

Table 3: The MCDs for the subgoals in Q over V’1 and V2 in Example 1

We form the following MCDs over V’1 and V2:

We then generate a rewriting of Q using V’1 and V2 as follows:

Q’∆(E):- V’1(W0,E,W), V2(W0,W2,S).

From the MiniCon algorithm, we know that Q’∆(E) is a maximally-contained rewriting of Q
using V’1 and V2. However, from Definitions 6 and 7, we know that V’1(X,Z,W) is ∆-equivalent to
V1(X,Z,W). Thus, the following query obtained by replacing V’1 with V1 is a maximally-contained
rewriting of Q relative to inclusion dependencies.

Q∆(E):- V1(W0,E,W), V2(W0,W2,S).

Now we formally present the BFIND_2 algorithm.
Suppose that there is an IND: R[A1,…,Am] ⊆ S[B1,…,Bm], and for the sake of simplicity, Ai =

Bi, i=1,…,m, i.e., R[C] = S[C], C = [A1,…,Am]. Let V be a view containing a subgoal R which
appears in an IND on the left hand side. We say that V contains a chase∆ reachable subgoal R. When
a given query Q contains a subgoal S in the right hand side of an IND, we need to apply a chase∆

procedure/rule to all views that contain R. We get chase∆(V) by adding S to the body of V. However,
in order to make sure that chase∆(V) can cover S of Q, the following conditions should be satisfied:

(C3): A ⊆ C, where A = scope(S) = {a set of attributes in S corresponding to distinguished
variables, constants, and shared variables in Q}. 
(C4): A ⊆ B, where B = scope(R) = {a set of attributes in R corresponding to distinguished
variables, constants, and shared variables in V}.

In fact, this condition is also needed in the algorithm find_contained_query (or
find_equiv_query) in Gryz (1999). Otherwise, it is not guaranteed that the obtained queries are ∆-
equivalent or ∆-contained queries of the original query.

If the condition (C3) is not satisfied, then it is not necessary to consider making use of INDs
because some information of Q will be lost. If the condition (C4) is not satisfied, it does not make
sense to apply a chase procedure/rule to views because even though chase∆(V) contains the subgoal
S, the condition (C1) or (C2) of a containment mapping cannot be satisfied. 

The BFIND_2 algorithm consists of two stages described as follows.

Algorithm BFIND_2: Query Rewriting Using Views in the Presence of Inclusion Dependencies

Input: A conjunctive query Q, a set of the views V1,V2,...,Vn, a set of inclusion dependencies ∆ in
the form of R[A1,..., Am] ⊆ S[B1,..., Bm]. 

Output: Q∆’, a maximally-contained rewriting of Q relative to inclusion dependencies ∆.
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Method:

Step 1: Forming the MCDs using the MiniCon Algorithm
For each subgoal of Q, we try to form a MCD over views. If a view contains the chase∆ reachable
subgoals and the conditions (C3) and (C4) are satisfied, we apply a chase∆ procedure/rule to the
view. We then try to form a set of MCDs over the revised view. 

Step 2: Generating a maximally-contained rewriting using the obtained MCDs. 
The MCDs formed in Step 1 are used to generate query rewritings in the same way as in the
MiniCon algorithm. The union of all the query rewritings generated is a maximally-contained
rewriting relative to inclusion dependencies ∆. 

5. COMPUTATIONAL COMPLEXITY AND CORRECTNESS OF OUR ALGORITHMS
5.1 Computational Complexity of Our Algorithms
The computational complexity in Step 1 of the BFIND_2 algorithm is the same as the MiniCon
algorithm when forming the MCDs over the views to which no chase∆ procedure/rule needs to be
applied. The computation in applying a chase∆ procedure/rule to a view is to check whether the two
conditions (C3) and (C4) are satisfied. In the worst case, it is |Q|*|∆|*n, where |Q|, |∆|, and n are the
number of subgoals of Q, the number of inclusion dependencies in ∆ and the number of views
respectively. The computation in Step 2 of the BFIND_2 algorithm is the same as the MiniCon
algorithm. Thus, the total increased computation has only polynomial time complexity, i.e.,
|Q|*|∆|*n.

In Gryz (1999), the computational complexity of the algorithm find_contained_query (or
find_equiv_query) is |Q|*|∆|. However, it needs to consider query rewriting for each of the ∆-
equivalent or ∆-contained queries over a set of views. In the worst case, the total cost of computing
a maximally-contained rewriting of a query using views in the presence of INDs in (Gryz, 1999) is
M times NP-complete, where M is the number of ∆-equivalent or ∆-contained queries of Q. The
computational complexity of the BFIND_1 algorithm is the same as this.

5.2 Correctness of Our Algorithms
We now prove that our algorithms are correct in terms of soundness and completeness, which is
based on the following theorem.

Theorem 1 (Johnson and Klug, 1984) Let Q and Q’ be queries. Q ⊆∆ Q’ (or Q ≡∆ Q’) if and only
if chase∆(Q) ⊆ chase∆(Q’) (or chase∆(Q) ≡ chase∆(Q’)).

The correctness of the BFIND_1 algorithm follows from the result in Gryz (1999) and the
MiniCon algorithm. The proof is given as follows. In Step 1 of the BFIND_1 algorithm, we get a
set of ∆-equivalent or ∆-contained queries of Q, denoted by Qi, i=1,…,M. The proof is given in
Gryz (1999). For each Qi, i=1,…,M, we generate a set of contained rewritings using the MiniCon
algorithm, denoted by Q’ij, i=1,…,M, j=1,…,Ni. For any i0, 1≤i0≤M, the union of Q’i0j, j=1,…,Ni0,
is a maximally-contained rewriting of Qi0. Thus, the union of Q’ij, i=1,…,M, j=1,…,Ni, is a
maximally-contained rewriting of Q relative to INDs.

In the BFIND_2 algorithm, if a view V contains a chase∆ reachable subgoal R and the conditions
(C3) and (C4) are satisfied, we can apply a chase∆ procedure/rule (We assume that an IND is: R[C]
⊆ S[C]) to V, denoted by V’=chase∆ (V). The head of V’ is the same as the head of V. In the body
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of V’, there is a conjunction of R and S. From the Theorem 1 we have that V’ ≡∆ V. For the sake of
simplicity, we assume that when using the BFIND_2 algorithm, we apply a chase∆ procedure/rule
to the views Vi, …, Vi+j and generate an ∆-rewriting in the form of:

Q’(X) :- V’i,…,V’i+j, VR.

where V’i = chase∆(Vi),…,V’i+j = chase∆(Vi+j), VR is a set of views to which no chase∆
procedure/rule needs to be applied. Q’ is a maximally-contained rewriting of Q in terms of
answering Q using V’i, …, V’i+j, and VR, which follows from the MiniCon algorithm. After
replacing V’i,…,V’i+j with Vi,…,Vi+j, we have:

Q’’(X) :- Vi,…,Vi+j, VR.

Let Q’exp and Q’’exp be expansions of Q’ and Q’’ respectively obtained by replacing all the views
in Q’ and Q’’ by their definitions. Because V’i = chase∆(Vi),…,V’i+j = chase∆(Vi+j), we have Q’exp

= chase∆(Q’’exp). Thus, we have Q’exp ≡∆ Q’’exp. Because Q’ is a maximally-contained rewriting of
Q relative to ∆, Q’’ is also a maximally-contained rewriting of Q relative to ∆.

6. EXPERIMENTAL RESULTS
We present some experimental results (from Example 4 to Example 8) to show that the BFIND_2
algorithm can generate all the ∆-equivalent or ∆-contained rewritings of a given Q. Some of the
rewritings are generated by the algorithm using inclusion dependencies, and they cannot be generated
by any of the existing bucket-based algorithms including the MiniCon algorithm. Table 4 shows the
numbers of rewritings generated by the MiniCon algorithm and by the BFIND_2 algorithm. We use
JBuilder programming language to implement our algorithm. After a set of views and inclusion
dependencies based on the relations in a mediated schema are given, we can make arbitrary queries.

The details of these examples are listed below, along with the explanations of the experimental
results. 

Example 4 
(a)
1. V1(X,Y) :- R(X,Y,z1).

V2(X) :- T(X,y2).
2. Q(X) :- S(X, y, z), T(X, w).
3. IND: {R[X, Y] ⊆ S[X, Y]}

The MiniCon algorithm The BFIND_2 algorithm*

Example 4(a) 0 1

Example 4(b) 0 2

Example 5 1 3

Example 6 0 3

Example 7 0 1

Example 8 0 2

Table 4: The numbers of rewritings generated by the MiniCon algorithm and by the BFIND_2 algorithm respectively

* Using the BFIND_1 algorithm, we can also get the same results.
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4. We need to apply a chase∆ procedure/rule to V1 and get an MCD for subgoal S of Q over V1.
Another MCD for subgoal R of Q over V2 can be formed without considering IND. Thus, no
rewriting is generated by the MiniCon algorithm. But, one rewriting is obtained by the
BFIND_2 algorithm as follows:

Q’∆(X) :- V1(X, Y), V2(X).

(b)
1. V1(X, Y) :- R1(X, Y, z1).

V2(X, Y) :- R2(X, Y, z2, z3).
V3(X) :- T(X, y2).

2. Q(X) :- S(X, y, z), T(X, w).
3. IND: {R1[X, Y] ⊆ S[X, Y], R2[X, Y] ⊆ S[X, Y]}
4. An MCD for subgoal T over V3 can be formed without considering INDs. In addition we apply

a chase∆ procedure/rule to V1 and V2 respectively, and get other two MCDs for subgoal S of Q
over V1 and V2 respectively. Thus, no rewriting is generated by the MiniCon algorithm. But, two
rewritings are obtained by the BFIND_2 algorithm as follows:

Q’∆(X) :- V1(X, Y), V3(X).
Q’’∆(X) :- V2(X, Y), V3(X).

Example 5 
1. V1(X) :- R1(X, y1, z1), T1(y1, z1).

V2(X) :- R2(X, y2), T2(X).
V3(K) :- R3(x3,y3,z3, K), T3(K).
V4(X) :- S(X,y4).
V5(X) :- T(X), T2(X).

2. Q(X) :- S(X, y), T(X).
3. IND: {R1[X, Y] Õ S[X, Y], R2[X] Õ S[X], R3[X] Õ S[X]}
4. Two MCDs are formed by the MiniCon algorithm. However, we can form two other MCDs by

making use of INDs. Thus, there are up to four MCDs formed by the BFIND_2 algorithm. As a
result, only one rewriting is generated by the MiniCon algorithm. However, three rewritings are
obtained by the BFIND_2 algorithm; two of them are ∆-contained rewritings shown as follows:

Q’∆ (X) :- V1(X), V5(X).
Q’’∆ (X) :- V2(X), V5(X).
Q’’’(X) :- V4(X), V5(X).

Example 6 
1. V1(X) :- R1(X, y1), S2(X, y1). // B1={X, Y}

V2(X) :- R1(X, y2), R2(X, y2). // B1={X, Y}, B2={X, Y}
V3(X, Y) :- R1(X, Y). // B1={X, Y}
V4(X) :- R1(X, y4), R2(X, y5). // B1={X}, B2={X}
V5(X) :- S1(X, y6), R2(X, y6). // B2={X, Y}

2. Q(X) :- S1(X, y), S2(X, y). // A1={X, Y}, A2={X, Y}
3. IND: {R1[X, Y] ⊆ S1[X, Y], R2[X, Y] ⊆ S2[X, Y]}
4. No MCD is formed by the MiniCon algorithm. Except V4, for V1, V2, V3, and V5, the conditions

(C3) and (C4) are satisfied. Therefore, we can form four MCDs over them. Thus, no rewriting
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can be generates by the MiniCon algorithm. However, the BFIND_2 algorithm can generate
three D-contained rewritings of Q as follows:

Q’∆ (X) :- V1(X).
Q’’∆ (X) :- V2(X).
Q’’’∆ (X) :- V5(X).

In this example, using the approach in Gryz (1999) or using the BFIND_1 algorithm, there are
up to four ∆-equivalent or ∆-contained queries of Q to be obtained as follows:

Q1(X) :- S1(X, y), S2(X, y).
Q2(X) :- R1(X, y), S2(X, y).
Q3(X) :- R1(X, y), R2(X, y).
Q4(X) :- S1(X, y), R2(X, y).

Then for each of the above queries, the inverse rule algorithm in Qian (1996) or the MiniCon
algorithm is used. Altogether these algorithms will be applied four times.

Example 7 
1. V1(X) :- R1(X, y1, z1), R2(y1, k1, j1), R3( k1, m1). // B1={X, Y}, B2={Y, K}, B3={K}

V2(X) :- R1(X, y2, z2), R2(y2, k2, j2). // B1={X, Y}, B2={Y, K}
2. Q(X) :- S1(X, y, z), S2(y, k, j), S3(k, m). // A1={X, Y}, A2={Y, K}, A3={K}
3. IND: {R1[X, Y] ⊆ S1[X, Y], R2[Y, K] ⊆ S2[Y, K], R3[K] ⊆ S3[K]}
4. We can generate one ∆-contained rewriting of Q using the BFIND_2 algorithm as follows:

Q’∆ (X) :- V1(X).

Example 8 
1. V1(X,Y) :- R1(X,Y,z1).

V2(X,Y) :- R2(X,Y,z2).
V3(X) :- R3(X,y3).
V4(X) :- R4(X,y4).
V5(X) :- R5(X,y5).
V6(X) :- R6(X,y6).
V7(X) :- R7(X,y7).
V8(X) :- R8(X,y8).
V9(X) :- R9(X,y9).
V10(X) :- R10(X,y10).

2. Q(X) :- S(X, y, z).
3. IND: {R1[X, Y] ⊆ S[X, Y], R2[X, Y] ⊆ S[X, Y]}
4. Using the BFIND_2 algorithm, we apply a chase∆ procedure/rule to V1 and V2 only, and

generate two ∆-contained rewritings of Q shown as follows: 

Q’∆ (X) :- V1(X, Y).
Q’’∆ (X) :- V2(X, Y).

We do not need to apply a chase∆ procedure/rule to other views. However, using the approach
in Gryz (1999) or the BFIND_1 algorithm, we first get three ∆-equivalent or ∆-contained queries
of Q as follows:

Q1(X) :- S(X, y, z).
Q2(X) :- R1(X, Y, z).
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Q3(X) :- R2(X, Y, z).
For Qi, i=1,2,3, we have to consider its rewriting problem over the ten views.

7. CONCLUSIONS
We have extended the MiniCon algorithm to exploit inclusion dependencies in order to generate all
the rewritings for a query. A chase∆ procedure/rule is introduced in Gryz (1999). The algorithm in
Gryz (1999) is to first get a set of ∆-equivalent or ∆-contained queries of the original query, and
then to apply an inverse rule algorithm to get rewritings for each of the ∆-equivalent or ∆-contained
queries over a set of views. In this paper, we presented two algorithms to deal with the problem of
query rewriting using views in the presence of inclusion dependencies. The first algorithm is similar
to the one in Gryz (1999). That is, the query is changed while views remain unchanged. After a set
of ∆-equivalent or ∆-contained queries of the original query are obtained, the MiniCon algorithm is
used. In the second algorithm, we applied a chase∆ procedure/rule to the views that contain chase∆
reachable subgoals, instead of the given query. In other words, the query is not changed while some
views are applied by a chase∆ procedure/rule. We gave two conditions to ensure the chased views
were available for forming the MCDs over those revised views. Theoretic analysis and experimental
results have shown that the second algorithm is more efficient than the first algorithm. We proved
that the union of all the obtained rewritings is a maximally-contained rewriting with respect to
inclusion dependencies.
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