
A novel certificateless deniable authentication protocol

Chunhua Jin, Chunxiang Xu, Xiaojun Zhang, Qianna Xie, Fagen Li

School of Computer Science and Engineering,

University of Electronic Science and Technology of China, Chengdu, 611731, China

E-mail:chunhuaking@gmail.com

Abstract: Deniable authenticated protocol is a new and attractive protocol compared to the

traditional authentication protocol. It allows the appointed receiver to identify the source of a

given message, but not to prove the identity of the sender to a third party even if the appointed

receiver is willing to reveal its private key. In this paper, we first define a security model for

certificateless deniable authentication protocols. Then we propose a non-interactive certificateless

deniable authentication protocol, by combining deniable authentication protocol with certificateless

cryptography. In addition, we prove its security in the random oracle model.

Keywords: Deniable authentication, Certificateless cryptography, The random oracle model

1 Introduction

Nowadays, authentication has emerged to be an essential communication process. The aim of

this process is to ensure the validity of the parties involved in a communication system. In some

communication systems, digital signature can provide such authentication. In a digital signature,

the private key of the signer is tied to it as well as the message being signed. The signature can

be verified easily by using the public key of the signer in the verification phase. The verifier (even

any eavesdropper) can identify the source of a given message and provide the signer’s identity

proof to any third party as well. Hence, the signer will not be able to deny its participation

in this communication. Generally, this notion is known as non-repudiation. However, in other

1

communication systems, the non-repudiation property is undesirable. Such as electronic voting

systems, online shopping and secure negotiations over the Internet [1]. In an electronic voting

system, let A be a voter and B be a voting center. Suppose a third party C compels A to elect

a candidate. However, the voter A does not intend to elect the candidate. A is made to cast its

ballot m as well as the authenticator to the voting center B so that B can ensure that this ballot

is from A but not from anyone else. In addition, B cannot prove the ballot m to C even if B fully

cooperates with C. If there is full cooperation between them, yet C may be sceptical of the truth of

the evidence given by B. Thus, C cannot force A to select the candidate because A can deny that

it sent B the ballot. Hence, in order to protect the voter from coercion in electronic voting systems,

we need a protocol which enables a receiver to identify the source of a given message, but not prove

to a third party the identity of the sender. In an online shopping system, let C be a customer

and M be a merchant. Suppose that C wants to order goods from M , it will bargain with M .

After several bargaining, M will finally make a favorable price m to C. Whereas, for the benefit of

M , M will not expect the customer C to show this favorable price to other customers. Therefore,

in an online shopping system, it needs such a special requirement: the customer C can identify

the source of a given favorable price m, but cannot prove to any other customers the identity of

the sender M . These instances show that the deniable authentication protocol is very important.

It mainly has two characteristics: (1) it enables a assigned receiver to identify the source of a

given message; (2) the assigned receiver can not prove the source of a given message to a third

party even if the receiver reveals its own private key to the third party. Hence, it plays a very

important part in practice. It is imperative for us to design such a protocol. In recent years, many

related protocols [2, 3, 4, 5, 6, 7, 8, 9, 10] have been proposed. However, these protocols are based

on public key infrastructure (PKI). PKI may bring some problems, such as certificate generation,

distribution, storage and revocation which impede the development of PKI.

To simplify key management and avoid the use of public key certificates, identity-based (ID-

based) cryptography was introduced by Shamir in 1984 [11]. In an ID-based system, a user can use a

binary string which can uniquely identify the user as its public key, such as telephone number, email

address, etc. The associated private key is generated by a trusted party called private key generator

2

(PKG). The PKG is responsible for generating the user’s private key by inputting its identity and

the master private key, which is owned by the PKG. The user’s public key is just its identity, and

there is no need to use public key certificates. Therefore, in order to reduce the communication cost

and improve the communication efficiency, a number of ID-based deniable authentication protocols

have be presented [12, 13, 14, 15, 16, 17]. However, there is a basic assumption that the PKG is

unconditional trustable in ID-based cryptography. This is because the PKG can get every user’s

private key in this system. Therefore, ID-based cryptography suffers from the key escrow problem.

In order to solve the key escrow problem which is the inherent issue of ID-based cryptography,

Al-Riyami and Paterson [18] proposed a new paradigm called certificateless public-key cryptography

(CL-PKC) in 2003. In a CL-PKC, a user’s full private key is not generated by the key generation

center (KGC) alone. Instead, a user combines its partial private key produced by the KGC with

some secret information produced by the user itself to create its full private key. In this way, a

user’s private key is not available to the KGC, and its public key is also generated by combining

its secret information with the KGC’s public parameters. The system is not ID-based, because the

public key is no longer computable from an identity (or identifier) alone. Up to now, there has

been no certificateless deniable authentication (CL-DA) protocol. Therefore, it is imperative for us

to devise a provable secure deniable authentication protocol based on certificateless cryptography.

1.1 Related works

In 1998, Dwork et al. [2] developed a protocol based on concurrent zero-knowledge proof. However,

the protocol requires a timing constraint and the proof of knowledge is time-consuming. Aumann

and Rabin [3] also proposed another protocol based on the factoring problem in the same year.

Nevertheless, their protocol needs a pubic directory trusted by the sender and the receiver. In

2001, Deng et.al [4] presented two deniable authentication protocols, which were based on the

factoring problem and the discrete logarithm problem, respectively. However, these protocols also

requires a trusted public directory. To overcome this problem, Fan et.al [5] proposed a new deniable

authenticated protocol based on the Diffie-Hellman key distribution protocol in 2002. Whereas,

in 2005, Yoon et al. [6] pointed out that their protocol suffered from the intruder masqueradeing

3

attack. Then they proposed an enhanced deniable authentication protocol based on Fan et al.’s

protocol. Yet it is still an interactive protocol. Subsequently, many interactive protocols have been

proposed [7, 12, 13, 14]. However, protocols [12, 13] can not resist key compromise impersonation

(KCI) attack. The KCI attack means known-key attack. An adversary can implement it after

compromising a protocol entity’s private key.

Since the communication cost of non-interactive deniable authentication protocol is lower than

interaction deniable authentication protocol, there is a desire to design secure and efficient non-

interactive deniable authentication protocol for researchers. In recent years, a lot of non-interactive

deniable authentication protocols have also been proposed [8, 15, 16, 9, 10, 17]. In 2004, Shao et

al. [8] proposed an efficient non-interactive deniable authentication protocol based on generalized

ElGamal signature scheme. However, if a session key of the communication parties is compromised,

the receiver cannot identify the true source of a forged message. In 2005, Shi et al. [15] proposed

a non-interactive ID-based deniable authentication protocol from pairings. Nevertheless, it is low-

efficiency because an ID-based signature scheme is used to sign a session key. Cao et al. [16] also

proposed a non-interactive ID-based deniable authentication protocol using pairings. But it can

not resist KCI attack. A common weakness of above protocols is lack of formal security proof

which is of great importance for protocol design. In 2009, Wang et al. [9] defined a formal security

model for non-interactive deniable authentication protocol. Then they presented a non-interactive

deniable authentication protocol based on designated verifier proofs and proved its security in this

model. In 2011, Tian et al. [10] put forward a non-interactive deniable authentication protocol.

They defined a security model for non-interactive deniable authentication protocols and proved its

security in this model. In 2013, Li et al. [17] proposed an efficient and non-interactive ID-based

deniable authentication protocol using bilinear pairings. They defined a formal security model and

proved the protocol is secure in the random oracle model.

1.2 Our Contribution

In this paper, we first define a formal security model for the non-interactive deniable authentica-

tion protocol based on certificateless cryptography. This model captures the notion of deniability

4

and authentication of CL-DA protocol. Then we propose an efficient and non-interactive CL-DA

protocol and prove its security in the random oracle model. Our protocol comes from Zhang et

al.’s certificateless public key signature [19] and the spirit of our protocol is aroused by Li et al.’s

ID-based deniable authentication protocol [17].

1.3 Organization of this paper

The rest of this paper is organized as follows. In the next section, we will describe some basic

properties of bilinear pairings and the related hard problems. In Section 3, a formal security model

for CL-DA is given. We propose an efficient and non-interactive CL-DA protocol based on bilinear

pairings in Section 4. The proposed protocol is analyzed in Section 5. In Section 6, we conclude

the paper.

2 Preliminaries

In this section, we introduce the basic properties of bilinear pairings, the computational Diffie-

Hellman problem (CDHP) and the bilinear Diffie-Hellman problem (BDHP).

Let G1 be an additive group and G2 be a multiplicative group. P is the generator of G1. They

have the same large prime order q. A bilinear pairing is a map e : G1×G1 → G2 with the following

properties:

(1)Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ Z∗q .
(2)Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q) 6= 1.

(3)Computability: There is an efficient algorithm to compute e(P, Q) for all P, Q ∈ G1.

A bilinear map satisfying the above three properties is said to be an admissible bilinear map.

The Weil and Tate pairings associated with supersingular elliptic curves or abelian varieties can be

modified to create such bilinear maps. A more details can be referred to [20].

Definition 1. Computational Diffie-Hellman Problem (CDHP): Let G1 be an additive

circle group generated by P , whose order is a prime q. The computational Diffie-Hellman problem

is to compute abP given (P, aP, bP) with a, b ∈ Z∗q . The (t, ε)-CDH assumption holds in G1 if no

t-polynomial time adversary A has advantage at least ε in solving the CDH problem.

5

Definition 2. Bilinear Diffie-Hellman Problem (BDHP): Let G1 and G2 be two circle

groups which have the same prime order q. P is the generator of G1, and e: G1 × G1 → G2 is a

bilinear map. The bilinear Diffie-Hellman problem is to compute e(P, P)abc given (P, aP, bP, cP)

with a, b, c ∈ Z∗q . The (t, ε)-BDH assumption holds in (G1, G2, e) if no t-polynomial time adversary

A has advantage at least ε in solving the BDH problem.

3 Formal definition for CL-DA protocol

3.1 Framework of CL-DA protocol

A CL-DA protocol consists of the following seven algorithms:

Setup: It takes as input a security parameter k, and returns system parameters params and a

master private key s, where params are the global public parameters for the system, while s is only

known to the KGC. It also defines a message space M.

Partial-Private-Key-Extract: It takes as input params, s and an arbitrary IDi ∈ {0, 1}∗, and

returns the corresponding partial private key Di which is assumed to be distributed securely to the

corresponding user.

Set-Secret-Value: It takes as input params and a user’s identity IDi, and returns a secret value xi.

Set-Private-Key: It takes as input params, a user’s partial private key Di and its secret value xi,

and returns the full private key SKi.

Set-Public-Key: It takes as input params and a user’s secret value xi, and returns a public key PKi

which is publicly known.

Authenticate: It takes as input a message m, the receiver’s identity IDB, public key PKB, the

sender’s identity IDA, public key PKA and full private key SKA, and returns a deniable authen-

ticator σ.

Verify: It takes as input params, a sender’s identity IDA, public key PKA, the receiver’s identity

IDB, public key PKB, full private key SKB, a message m and a deniable authenticator σ, and

returns > for acceptance, or ⊥ for rejection.

Setup and Partial-Private-Key-Extract are run by the KGC, but Set-Secret-Value, Set-Private-

6

Key and Set-Public-Key are run by each user. Nevertheless, Authenticate is run by the sender,

Verify is run by the receiver. In order to simplify the formula, we omit all parameters params in

later chapters and sections..

For consistency, we require that if σ =Authenticate(m, IDA, PKA, SKA, IDB, PKB), then we

have >=Verify(m,σ, IDA, PKA, IDB, PKB, SKB), otherwise, we have ⊥.

3.2 Security notion

As compared with traditional authentication protocols, deniable authentication is a new authenti-

cation mechanism and mainly has the following two properties: (1) the receiver can authenticate

the source of the received message; (2) it is unable to convince a third party of the sender’s identity

even if the receiver reveals its own private key to the third party. We define the security notion of

deniable authentication protocol, borrowing the security definition of traditional digital signature

scheme. Whereas, they have different security notions. Only the sender can generate a valid signa-

ture in a traditional signature scheme. In other words, no one but the sender can forge a signature

for the message. In the verification phase, everyone can verify the validity of the signature because

the parameters of the verification equation are open to the public. However, in a deniable authenti-

cation protocol, both the sender and the receiver can generate a valid deniable authenticator. This

property is called deniability.

In certificateless cryptography, as defined in [18], there are two types of adversaries called Type

I adversary and Type II adversary with different capabilities. A Type I adversary AI does not have

access to the master key, but it has the ability to replace any user’s public key with a value of its

choice. While a Type II Adversary AII has access to the master key but cannot replace any user’s

public key. Since our deniable authentication protocol is based on certificateless cryptography,

we must require our protocol is secure in these two types of adversaries. Here we consider two

games “ game I ” and “game II ” where AI and AII interact with their challenger in these two

games, respectively. We say that a CL-DA protocol is deniable authentication against adaptive

chosen message attacks (DA-CMA), if the probability of success is negligible, for any probabilistic

polynomial time(PPT)adversary AI and AII .

7

We define two games “ game I ” and “game II ” as follows.

Game-I(for Type I Adversary):

Setup: The challenger C runs Setup algorithm that takes as input a security parameter k to obtain

the system parameter params and the master key s. C then sends params to the adversary AI

while keeps s secret.

Probing: The adversary AI can perform a polynomially bounded number of following queries in

an adaptive manner.

– Partial private key extraction queries: AI can request the partial private key of a user with

identity IDi. Once receiving such a query, C computes Di=Partial-Private-Key-Extract(s, IDi)

and responds it to AI .

– Private key extraction queries: AI can request the private key of a user whose identity is

IDi. Once receiving such a query, the challenger first computes the secret value xi=Set-

Secret-Value(IDi), and then computes Di=Partial-Private-Key-Extract(s, IDi). Finally, it

computes SKi=Set-Private-Key(Di, xi) and responds it to AI .

– Request public key queries: AI can request the public key of a user whose identity is IDi.

Once receiving such a query, C first computes xi=Set-Secret-Value(IDi), and then computes

PKi=Set-Public-Key(xi) and responds it to AI .

– Public key replacement queries: AI may replace the public key PKi with a new value chosen

by it. Note that it does not require AI to provide the corresponding secret value when making

this query.

– Authenticate queries: AI submits the requests of two identities IDi, IDj and a message m.

Once receiving such a query, C first runs the Set-Private-Key to get SKi, and then computes

σ=Authenticate(m, IDj , PKj , IDi, PKi, SKi), and responds the result to AI .

If the public key PKi and PKj have been replaced by AI , then C cannot compute SKi and

SKj . Thus the authentication oracle’s response may be wrong. In this case, we assume that

AI may additionally submit the secret information x′i corresponding to the replaced public

key PK ′
i to the authentication oracle queries.

8

– Verify queries: AI submits the requests of two identities IDi, IDj and a deniable authentica-

tor σ, C first runs the Set-Private-Key to get SKj , and then runs Verify(σ, IDi, PKi, IDj , PKj , SKj).

If the result is >, C responds m to AI . Otherwise, C responds ⊥.

Forging: Eventually, AI outputs a tuple (m∗, σ∗, ID∗
i , ID∗

j , PK∗
i , PK∗

j), We say that AI wins

the game, if the following conditions hold:

– σ∗ is a valid deniable authenticator under target identities ID∗
i , ID∗

j and the corresponding

public key PK∗
i , PK∗

j .

– AI has not request private key extraction queries for identities ID∗
i , ID∗

j .

– AI has not request both public key replacement queries and partial private key extraction

queries for identities ID∗
i , ID∗

j .

– (m∗, ID∗
i , ID∗

j , PK∗
i , PK∗

j) has never been submitted to the authenticate queries.

– (σ∗, ID∗
i , ID∗

j , PK∗
i , PK∗

j) has never been submitted to the verify queries.

The advantage of AI is defined as the probability that it wins.

Definition 3. An adversary AI is said to be an (ε, t, qpar, qpk, qda, qv)-forger of a CL-DA protocol

if AI has advantage at least ε in the above game, runs in time at most t, and makes at most qpar

partial private key extraction queries, qpk public key queries, qda deniable authentication queries

and qv verify queries. A CL-DA protocol is said to be (ε, t, qpar, qpk, qda, qv)-DA-CMA secure if no

(ε, t, qpar, qpk, qda, qv)-forger exists.

Note that the adversary AI is not allowed to make a private key query, both a replace public

key query and a partial private key query on identity ID∗
j in the above definition. This requirement

is important for the deniability. Since the receiver is also able to produce a valid deniable authen-

ticator, the sender can deny its behavior. It is the main difference between deniable authentication

in CL-DA and undeniable authentication in traditional digital signature.

Game-II(for Type II Adversary):

9

Setup: The challenger C runs Setup algorithm, takes as input a security parameter k to obtain

the system parameter params and the master key s. C then sends params and s to the adversary

AII .

Probing: The adversary AII can perform a polynomially bounded number of queries in an adaptive

manner. Here, we don’t need partial private key queries, since AII has access to the master key s

and runs the partial private key queries Di=Partial-Private-Key-Extract(s, IDi) by itself.

– Private key extraction queries: AII can request the private key of a user whose identity is IDi.

Once receiving such a query, C first computes Di=Partial-Private-Key-Extract(s, IDi), and

then computes xi=Set-Secret-Value(IDi). Finally, it computes SKi=Set-Private-key (Di, xi)

and responds it to AII .

– Request public key queries: AII can request the public key queries of a user whose identity

is IDi. Once receiving such a query, C first computes xi=Set-Secret-Value(IDi), and then

computes PKi=Set-Public-Key(xi)and responds it to AII .

– Authentication queries: AII submits the requests of two identities IDi, IDj and a message m.

Once receiving such a query, C first runs the Set-Private-Key to get SKi, and then computes

σ=Authenticate(m, IDj , PKj , IDi, PKi, SKi) and responds it to AII .

– Verify queries: AII submits the requests of two identities IDi, IDj and a deniable authentica-

tor σ, C first runs the Set-Private-Key to get SKj , and then runs Verify(σ, IDi, PKi, IDj , PKj , SKj).

If the result is >, C responds m to AII . Otherwise, C responds ⊥.

Forging: Eventually, AII outputs a tuple (m∗, σ∗, ID∗
i , ID∗

j , PK∗
i , PK∗

j), We say that AII wins

the game, if the following conditions hold:

– σ∗ is a valid deniable authenticator under target identities ID∗
i , ID∗

j and the corresponding

public key PK∗
i , PK∗

j .

– AII has not request private key extraction queries for identities ID∗
i , ID∗

j .

– (m∗, ID∗
i , ID∗

j , PK∗
i , PK∗

j) has never been submitted to the authentication queries .

10

– (σ∗, ID∗
i , ID∗

j , PK∗
i , PK∗

j) has never been submitted to the verify queries.

The advantage of AII is defined as the probability that it wins.

Definition 4. An adversary AII is said to be an (ε, t, qe, qpk, qda, qv)-forger of a CL-DA pro-

tocol if AII has advantage at least ε in the above game, runs in time at most t, and makes at

most qe private key extraction queries, qpk public key queries, qda deniable authentication queries

and qv verify queries. A CL-DA protocol is said to be (ε, t, qe), qpk, qda, qv)-DA-CMA secure if no

(ε, t, qe), qpk, qda, qv)-forger exists.

Note that the adversary AII is not allowed to make a private key query on identity ID∗
j in the

above definition. This term is of great importance to gain the deniability. Because the receiver

can also produce a valid deniable authenticator, the sender can deny its behavior. It is the main

difference between deniable authentication in CL-DA and undeniable authentication in traditional

digital signature.

Definition 5. A CL-DA protocol is secure if it is DA-CMA against two types of adversaries AI

and AII .

4 A New Certificateless Deniable Authentication Protocol

In this section, we propose a new certificateless deniable authentication protocol on pairings. we

describe our protocol using the following seven algorithms.

Setup: On input a security parameter k, the algorithm generates (G1, G2, e), where G1 and G2 are

cyclic groups of prime order q, and e : G1×G1 → G2 is a bilinear map. P is the generator of G1. Let

H1,H2 be two cryptographic hash functions, where H1: {0, 1}∗ → G1 and H2: {0, 1}∗ ×G1 → Z∗q .

The KGC selects a master key s ∈ Z∗q randomly and computes Ppub = sP . The system parameters

params=(G1, G2, e, q, P, Ppub,H1,H2) are publicly known and the master key s is keep secret.

Partial private key extraction: On input params, the master key s and a user’s identity IDi ∈
{0, 1}∗, the KGC runs the algorithm as follows.

1. Compute Qi = H1(IDi).

2. Output the partial private key Di = sQi to the user.

11

Secret value extraction: On input params and the user’s identity IDi, the user selects a random

value xi ∈ Z∗q and outputs xi as its secret value.

Private key extraction: On input params, the user’s partial private key Di and its secret value

xi, the user outputs its full private key SKi = (Di, xi).

Public key extraction: On input params, and the user’s secret value xi, the user outputs its

public key PKi = xiP .

Authenticate: On input params, a sender A’s identity IDA, its public key PKA , its full private

key SKA, a receiver B’s identity IDB, its public key PKB, and a message m ∈ {0, 1}∗, then A

follows the steps below.

1. Randomly select r ∈ Z∗q , compute U = rQA.

2. Compute h2 = H2(m,U, PKA, PKB, xAPKB).

3. Compute V = (r + h2)DA.

4. Compute S = e(V, QB).

5. Output a deniable authenticator σ = (U, S).

Verify: On input params, the sender’s identity IDA, its public key PKA, the receiver’s identity

IDB, its public key PKB, its full private key SKB, and the deniable authenticator σ, then B

follows the steps below.

1. Compute h′2 = H2(m,U, PKA, PKB, xBPKA,).

2. Compute S′ = e(U + h′2QA, DB).

3. Check whether S′ = S. If the equation holds, output >, otherwise output ⊥.

12

5 Analysis of the Protocol

5.1 Security

Consistency: The consistency can be easily verified by the following equations.

S = e(V, QB) = e((r + h2)DA, QB)

= e((r + h2)sQA, QB) = e((r + h2)QA, sQB)

= e(rQA + h2QA, DB) = e(U + h2QA, DB)

= S′

Deniability: After receiving the deniable authenticator σ = (U, S), the receiver B can identify the

source of a message m with its private key SKB = (DB, xB). To simulate the transcripts on the

message m, the receiver follows the steps below.

1. Randomly select r′ ∈ Z∗q and compute U ′ = r′QA.

2. Compute h′2 = H2(m,U ′, PKA, PKB, xBPKA).

3. Compute S′ = e(U ′ + h′2QA, DB).

The receiver can generate σ′ = (U ′, S′) that is indistinguishable from σ = (U, S). σ is generated

by the sender in terms of Authenticate algorithm in Section 4. Let σ = (U, S) be a deniable

authenticator which is randomly selected in the set of all valid sender’s deniable authenticator

appointed to the receiver.The probability Pr[σ′ = σ] is 1/(q − 1) since σ′ is generated from a

randomly selected value x′ ∈ Z∗q . Similarly, the probability Pr[σ = σ] has the same value 1/(q −
1) since it is generated from x ∈ Z∗q . That is to say, both of them have the same probability

distribution.

Then we prove our protocol satisfies DA-CMA security in the following Theorem 1.

Theorem 1. Our proposed certificateless deniable authentication protocol is DA-CMA against

type I/II adversary in the random oracle model under the BDH assumption and CDH assumption.

Proof. This theorem follows from Lemmas 1 and 2.

13

Lemma 1. In the random oracle model, If a probabilistic polynomial time (PPT) adversary AI

has an advantage ε in forging a deniable authenticator in Game I, which runs in time t, and makes

qHi queries to random oracles Hi for i=1, 2, qpar queries to the partial private key extraction oracle,

qpk queries to the public key request oracle, qda queries to the deniable authentication oracle, and

qv queries to the verify oracle. There exists a algorithm C that can solve the BDH problem with

an advantage ε ≥ 5(qda +1)(qda + qH2)qH1/(2k−1) in expected time t′ ≤ 60343qH2qH12
kt/ε(2k−1).

Proof. We use the forking lemma [21] to prove the proposed protocol. To employ the forking

lemma, we need to show how our protocol fits into the signature scheme represented in [21], the

simulation steps in which the deniable authentication can be simulated without the sender’s private

key (and thus, also without the master private key), and how we can solve BDH difficult problem

based on the forgery.

First, we observe that our protocol satisfies all the required properties described in [21]. Dur-

ing the deniable authentication of a message m, the tuple (σ1, h2, σ2) is produced which corre-

sponds to the required three-phase honest-verifier zero-knowledge identification protocol, where

σ1 = U = rQA is the commitment of the prover (σ1 can be considered to be selected randomly

from a large set since r is selected randomly from Z∗q and G2 is a cyclic group of prime order q).

h2 = H2(m,U, PKA, PKB, R) is the hash value depending on m and σ1 substituted for the verifier’s

challenge, and σ2 = S is the response of the prover which depends on σ1, h2 and the sender’s partial

private key DA.

Next, we need to show a simulation step that provides a faithful simulation to the forger AI and

how to solve the BDH problem by interacting with AI . C receives a random instance (P, aP, bP, cP)

of the BDH problem. Its goal is to compute e(P, P)abc. C will run AI as a subroutine and act as

AI ’s challenger in the Type I’s DA-CMA game. C needs to maintain lists L1, L2 which are initially

empty to keep track values asked by AI to random oracle queries H1, H2. Roughly speaking, these

answers are randomly generated. Whereas, to avoid collision and maintain consistency for answers

to these hashing oracles, C keeps two lists L1 and L2 respectively to store the answers.

Without loss of generality, we assume that AI will ask for H1(IDi) before IDi is used in

any key extraction queries, deniable authentication queries and verify queries. AI never makes

14

verify queries on a deniable authenticator, which is obtained from the deniable authentication

queries. It just makes verify queries for observed deniable authenticators. C maintains a list

L3 = (IDi, Di, PKi, xi) while AI makes queries over all the game.

C gives AI the system parameters with Ppub = cP . Notice that c is unknown to C. This value

simulates the master private key for the KGC in the game. C responds the oracle queries of AI as

follows.

H1 Queries: At first, C selects two different random numbers a, b ∈{1, 2, · · · , qH1}. AI asks a

polynomially bounded number of H1 queries on identity of its choice. At the η-th H1 request, C

responds by H1(IDη) = aP . At the γ-th H1 request, C responds by H1(IDγ) = bP . For requests

H1(IDi) with i 6= η, γ, C selects ti ∈ Z∗q at random, adds the tuple (IDi, ti) in the list L1 and

responds H1(IDi) = tiP .

H2 Queries: Suppose that AI submits the tuple (m,U, PKi, PKj , R) to oracle H2(·). C first checks

whether H2 has already been defined for that input. If so, C returns that defined value. Otherwise,

C returns a random value h2 ∈ Z∗q as the answer. Then C puts the tuple (m,U, PKi, PKj , R, h2)

into the list L2.

Partial Private Key Queries: Suppose that the query is made on an identity IDi. If IDi = IDη

or IDi = IDγ , C aborts. If IDi 6= IDη, IDγ , C looks up the list L3 and runs the algorithm as

follows.

– If the list L3 contains (IDi, Di, PKi, xi), C checks whether Di =⊥. If Di 6=⊥, C outputs Di

to AI . If Di =⊥, C recovers the corresponding tuple (IDi, ti) from the list L1 (this means

that C previously answered H1(IDi) = tiP). The partial private key Di = tiPpub = ticP is

associated with IDi. Therefore, C outputs Di to AI and adds Di into the list L3.

– If the list L3 does not contain (IDi, Di, PKi, xi), C recovers the corresponding tuple (IDi, ti)

from the list L1, and sets Di = tiPpub = ticP , then outputs Di to AI . C also sets PKi = xi =⊥
and puts the tuple (IDi, Di, PKi, xi) into the list L3.

The probability of failure in partial private key extraction queries is at most 2/qH1 .

Public Key Queries: Suppose that AI makes the query on an identity IDi.

15

– If the list L3 contains (IDi, Di, PKi, xi), C checks whether PKi =⊥. If PKi 6=⊥, C outputs

PKi to AI . Otherwise, C selects a random value ri ∈ Z∗q , and sets PKi = riP and xi = ri.

C outputs PKi to AI and puts (PKi, xi) into the list L3.

– If the list L3 does not contain (IDi, Di, PKi, xi), C sets Di =⊥, then it selects a random

value ri ∈ Z∗q , and sets PKi = riP and xi = ri. C outputs PKi to AI and writes the tuple

(IDi, Di, PKi, xi) into the list L3.

Private Key Extraction Queries: Suppose that AI requests an identity IDi. If IDi = IDη

or IDi = IDγ , then C fails and stops. If IDi 6= IDη, IDγ , C looks up the list L3 and runs the

algorithm as follows.

– If the list L3 contains (IDi, Di, PKi, xi), C checks whether Di =⊥ and PKi =⊥. If Di =⊥,

C makes a partial private key query itself to get Di. If PKi =⊥, C makes a public key query

itself to obtain PKi = riP , in which xi = ri. Then C adds these values into the list L3 and

outputs SKi = (Di, xi) to AI .

– If the list L3 does not contain (IDi, Di, PKi, xi), C makes a partial private key query and a

public key query itself on IDi, and then puts (IDi, Di, PKi, xi) into the list L3 and outputs

SKi = (Di, xi) to AI .

Public Key Replacement Query: Suppose that AI makes this query on (IDi, PK ′
i).

– If the list L3 contains the tuple (IDi, Di, PKi, xi), C sets PKi = PK ′
i and xi = ⊥.

– If the list L3 does not contain the tuple (IDi, Di, PKi, xi), C sets Di = ⊥, PKi = PK ′
i, and

xi = ⊥. Then C saves the tuple (IDi, Di, PKi, xi) into the list L3.

Deniable Authentication Queries: Suppose that AI generates a message m and two identities

IDi and IDj , C proceeds as follows.

– If IDi 6= IDη, IDγ , C gets SKi by running a private key extraction query and answers the

query by running Authenticate(m, IDi, PKi, SKi, IDj , PKj).

16

– If IDi = IDη or IDi = IDγ , but IDj 6= IDη, IDγ , C first randomly chooses r ∈ Z∗q and com-

putes U = rQi, and then C runs the H2 simulation algorithm to get h2 = H2(m,U, PKi, PKj , R)

and computes S = e(U + h2Qi, Dj) (C could get Dj from the partial private key query due

to IDj 6= IDη, IDγ). Finally, C sends σ = (U, S) to AI .

– If IDi and IDj are identities IDη and IDγ (i.e. IDi = IDη and IDj = IDγ , or IDi =

IDγ and IDj = IDη), C first randomly selects r and h2 from Z∗q and sets U = rP −
h2Qi and V = rPpub, and then C defines H2(m,U, PKi, PKj , R) as h2 and adds the item

(m,U, PKi, PKj , R, h2) into the list L2. Finally, C computes S = e(V, QIDj) and sends

σ = (U, S) to AI . C fails if H2 has been defined previously but this only happens with

probability (qda + qH2)/2k.

Verify Queries: Suppose that AI makes the query with an input σ = (U, S) for identities IDi

and IDj .

– If IDj = IDη, IDγ , then C fails and stops. The probability of failure in verify queries is at

most 2/qv.

– If IDj 6= IDη, IDγ , C gets SKj by running a private key extraction query and answers the

query by running Verify(σ, IDi, PKi, IDj , PKj , SKj).

Eventually, AI outputs a forgery quadruple (m∗, σ∗, IDa, IDb), in which σ∗ = (U∗, S∗). We

combine the identities IDc = {IDa, IDb} and the message m∗ into a “generated ” forged message

(IDc,m
∗) so as to hide the identity-based aspect of the DA-CMA attacks, and simulate the setting of

an identity-less adaptive-CMA existential forgery for which the forking lemma is proven. It follows

from the forking lemma [21], if AI is a sufficiently efficient forger in the above interaction, then we

can construct a Las Vegas machine AI′ that outputs two deniable authenticators ((IDc,m
∗), h∗2, S

∗)

and ((IDc,m
∗), h̄∗2, S̄∗) with h∗2 6= h̄∗2 and the same commitment U∗.

Finally, to solve the BDH problem given the machine AI′ derived from AI , we construct a

machine C ′ as follows.

1. C ′ runs AI′ to gain two distinct deniable authenticators ((IDc,m
∗), h∗2, S

∗) and ((IDc,m
∗), h̄∗2, S̄∗).

17

2. C ′ computes e(P, P)abc as (S∗/S̄∗)1/(h∗2−h̄∗2)

Notice that the machine C ′ is our reduction from the BDH problem. Based on the forking

lemma [21] and the lemma on the relationship between given-identity attack and chosen-identity

attack [22]. If AI succeeds in time t with probability ε ≥ 5(qda +1)(qda + qH2)qH1/(2k− 1), then C ′

can solve the BDH problem in expected time t′ ≤ 60343qH2qH12
kt/ε(2k−1). We should notice that

the coefficient is changed because the simulator should select two different identities in advance.

Lemma 2. If a PPT adversary AII has an advantage ε in forging a deniable authenticator in Game

II, which runs in time t, and makes at most qHi queries to random oracle Hi for i = 1, 2, qe queries

to the private key extraction oracle, qpk queries to the public key request oracle, qda queries to the

deniable authentication oracle, and qv queries to the verify oracle. There exists a algorithm C can

solve the CDH problem with probability

ε′ > (ε− (2/qe + qda(qda + qH2) + 2)/2k), within time t′ < t + (3qda + qv + 2qH2)te where te denotes

the time required for one pairing evaluation.

Proof. Suppose that there is a Type II adversary AII that can break our CL-DA protocol with the

probability (t, ε). Then we can construct a algorithm C with advantage at least ε′ within time at

most t′. C receives a random instance (P, aP, bP) of the CDH problem and is required to compute

abP . C will run AII as a subroutine and act as AII ’s challenger in the DA-CMA game. C needs

to maintain list L1, L2 which are initially empty to keep track values asked by AII to random

oracle queries H1, H2. Roughly speaking, these answers are randomly generated, whereas, to avoid

collision and maintain consistency for answers to these hashing oracle, C keeps two lists L1 and L2

respectively to store the answers.

Without loss of generality, we assume that C will ask for H1(IDi) before IDi is used in private

key extraction queries, public key queries, deniable authentication queries and verify queries. AII

never makes verify queries on a deniable authenticator, which is obtained from the deniable au-

thentication queries. It just makes verify queries for observed deniable authenticators. Notice that

both C and AII can compute the partial private key Di = sH1(IDi), where s is the master private

key.

C maintains a list L3 = (IDi, PKi, xi) which does not need to be made in advance, and the list

18

is populated when AII makes certain queries as follows.

H1 Queries: Suppose that AII submits IDi to oracle H1(·). C first checks if the value of H1 was

previously defined. If it was, C returns the defined value. Otherwise, C chooses ri ∈ Z∗q randomly

and sets Qi = riP . Then it puts (IDi, ri) into the list L1.

H2 Queries: Suppose that AII submits a tuple (m,U, PKi, PKj , R) to oracle H2(·). C first checks

whether H2 has already been defined for that input. If so, C returns the existing value. Otherwise,

C returns a random value h2 ∈ Z∗q as the answer. Then C puts the tuple (m,U, PKi, PKj , R) into

the list L2.

Public key Queries: Suppose that AII makes the query on an identity IDi.

– If the list L3 contains (IDi, PKi, xi), C returns PKi to AII .

– If the list L3 does not contain (IDi, PKi, xi), C selects a random value ri ∈ Z∗q . At the η-th

public key query, C answers by PKη = riaP . At the γ-th public key query, C answers by

PKγ = ribP . For queries PKi with i 6= η, γ, C answers by PKi = riP where xi = ri, and

then puts (IDi, PKi, xi) into the list L3.

Private key Queries: Suppose that AII makes the query on an identity IDi.

– If the list L3 contains the tuple (IDi, PKi, xi), C returns SKi = (Di, xi) to AII . In game II,

Di can be computed by C and AII , so Di is known.

– If the list L3 does not contain the tuple (IDi, PKi, xi), C makes a public key query on IDi

itself, and puts (IDi, PKi, xi) into the list L3. Then it outputs SKi = (Di, xi) to AII .

Deniable Authentication Queries: Suppose that AII generates a message m and two identities

IDi, IDj , C proceeds as follows.

– If IDi 6= IDη, IDγ , C gets SKi by running a private key extraction query and answers the

query by running Authenticate(m, IDi, PKi, SKi, IDj , PKj).

– If IDi = IDη or IDi = IDγ , but IDj 6= IDη, IDγ , C randomly chooses r ∈ Z∗q and com-

putes U = rQi. Without loss of generality, we assume that the list L3 contains a tuple

19

(IDj , PKj , xj), and PKj 6=⊥ (If the list L3 does not contain such an entry, or PKj =⊥,

C runs a public key query to get (PKj , xj)). C runs the H2 simulation algorithm to get

h2 = H2(m,U, PKi, PKj , R) and computes S = e(U + h2Qi, Dj).

– If IDi and IDj are identities IDη and IDγ (i.e. IDi = IDη and IDj = IDγ , or IDi =

IDγ and IDj = IDη), C randomly selects r and h2 from Z∗q and sets U = rPKi −
h2Qi and V = rsPKi. Then C defines H2(m,U, PKi, PKj , R) as h2 and adds the item

(m,U, PKi, PKj , R, h2) into the list L2. Finally, C computes S = e(V, Qj) and sends

σ = (U, S) to AII . C fails if H2 has already been defined but this only happens with

probability (qda + qH2)/2k.

Verify Queries: Suppose that AII queries the oracle with an input σ = (U, S) for identities IDi

and IDj .

– If IDj = IDη, IDγ , C fails and stops. The probability of failure in verify queries is at most

2/qv.

– If IDj 6= IDη, IDγ , without loss of generality, we assume that the list L3 contains an item

(IDj , PKj , xj), and PKj =⊥ (If the list L3 does not contain such an entry, or if PKj =⊥,

C runs a public key query to get (PKj , xj)). C runs the H2 simulation algorithm to look up

the item (m,U, PKi, PKj , R, h2). It can obtain Qj by calling H1 queries. Then C computes

S = e(U + h2Qi, Dj).

Eventually, AII outputs a valid deniable authenticator σ∗ = (U∗, S∗) from identity IDη to

identity IDγ . It is easy to show that AII will not realize that σ∗ is not a valid deniable authen-

ticator for the sender’s private key SKi and the receiver’s Qj unless it asks for the hash value

H2(m,U, riaP, ribP, r2
i abP). In this case, the solution of the CDH problem would be inserted in

the list L2. Then C looks up the list L2 for tuples of the form (m,U, riaP, ribP, R). For each of

them, C checks if e(r2
i P, R) = e(riaP, ribP). If the condition holds, C stops and outputs R = abP

as a solution of the CDH problem. If no such tuple satisfies the equality, C fails and stops.

Now we assess C’s probability of failure. We saw that C fails if AII asks the private key queries

associated to IDη or IDγ with a probability exactly 2/qe. Also, the failure probability for C is

20

at most qda(qda + qH2)/2k, since there is a conflict on H2 in a deniable authentication query. The

probability to reject a valid deniable authenticator is at most 2/2k. The bound on C’s computation

time derives from the fact that every deniable authentication query requires at most 3 pairing

evaluations, every verify query requires one pairing evaluation. The extraction of the solution from

L2 implies to compute at most 2qH2 pairings.

5.2 Performance

Table 1 shows a summary of comparing our protocol with other existing protocols [6, 12, 13,

14, 8, 15, 16, 9, 10, 17] in terms of security requirement and efficiency. We assume that these

protocols [6, 8, 9, 10] are implemented on elliptic curve, which are based on PKI . For efficiency,

suppose that |G1| = 160 bits, |G2| = 1024 bits, |q| = 160 bits, |m| = 160 bits, hash value = 160 bits

and timestamp = 160bits. we denote by M the number of point multiplication operation in G1,

MM the number of multi-point multiplication operation in G1 (which costs about 1.3 times more

than single point multiplication) and P the number of pairing operation. The other operations

are omitted because they are trivial. Among PKI-based protocols, the efficiency of [10] is the

highest. Among ID-based protocols, [17] is the most efficient, since computation of the pairing

is the most time-consuming. Our protocol is more efficient than [12, 13, 14, 15, 16], is same as

to [17], and is lower than [6, 8, 9, 10]. Nevertheless, [6, 8, 9, 10] are based on PKI cryptography.

The certificates management, such as generation, distribution, storage and revocation, are big

problems. [12, 13, 14, 15, 16, 17] are based on ID-based cryptography which has the key escrow

problems. For communication cost, since we need send an element S which belongs to G2, our

protocol is a little high. In addition, [6, 12, 13, 14] are interactive. Therefore, they have lower

communication efficiency. For security, protocols [12, 13, 16] can not resist KCI attack.

6 Conclusion

In this paper, we first defined a security model for certificateless deniable authentication protocols,

and then proposed an efficient non-interactive CL-DA protocol using bilinear pairing. Our protocol

can be shown to be provably secure under the random oracle model, with the assumptions of the

21

Table 1: Comparison of efficiency and security for existing protocols

Protocols Efficiency Size Non- Resist KCI Type

M MM P interactive attack

[6] 10.6 2 0 1140 N Y PKI

[8] 4 0 0 640 Y Y PKI

[9] 8.6 2 0 800 Y Y PKI

[10] 3 0 0 480 Y Y PKI

[12] 6 0 8 640 N N ID-based

[13] 8 0 8 800 N N ID-based

[14] 10 0 10 960 N Y ID-based

[15] 2 1 4 800 Y Y ID-based

[16] 4 0 2 480 Y N ID-based

[17] 3 0 2 1344 Y Y ID-based

Ours 3 0 2 1344 Y Y Certificateless

BDH problem and CDH problem.

References

[1] Aumann, Y., Rabin, M.: ‘Authentication, enhanced security and error correcting codes’. Ad-

vances in Cryptology 1998, Santa Barbara, California, USA, August, 1998, pp. 299–303

[2] Dwork, C., Naor, M., Sahai, A.: ‘Concurrent zero-knowledge’. Proc. Symposium on Theory of

Computing-STOC 1998, Dallas, Texas, USA, May, 1998, pp. 409–418

[3] Aumann, Y., Rabin, M.: ‘Efficient deniable authentication of long messages’. Webpage.

http://www.cs.cityu.edu.hk/dept/video.html

[4] Deng, X., Lee, C. H., Zhu, H.: ‘Deniable authentication protocols’, IEE Proceedings-

Computers and Digital Techniques, 2001, 148, (2), pp. 101–104

[5] Fan, L., Xu, C.X., Li, J. H.: ‘Deniable authentication protocol based on Diffie–Hellman algo-

rithm’, Electronics Letters 2002, 38, (4), pp. 705–706

22

[6] Yoon, E. J., Ryu, E. K., Yoo, K. Y.: ‘Improvement of Fan et al.’s Deniable Authentication

Protocol based on Diffie Hellman Algorith’, Applied Mathematics and Computation, 2005,

167, (1), pp. 274–280

[7] Tian, H., Chen, X., Wei, B., Liu, Y.: ‘Security Analysis of a Suite of Deniable Authentication

Protocols’, International Journal of Network Security, 2013, 15, (6), pp. 369–374

[8] Shao, Z.: ‘Efficient deniable authentication protocol based on generalized Elgamal signature

scheme’, Computer Standards and Interfaces, 2004, 26,(5), pp. 447–454

[9] Wang, B., Song, Z.: ‘A non-interactive deniable authentication scheme based on designated

verifier proofs’, Information Sciences, 2009, 179, (6), pp. 858-865

[10] Tian, H., Chen, X., Jiang, Z.: ‘Non-interactive deniable authentication protocols’. Proc. Infor-

mation Security and Cryptology-Inscrypt 2011, Beijing, China, November, 2011, pp. 142–159

[11] Shamir, A.: ‘Identity-based cryptosystems and signature schemes’. Advances in Cryptology

1984, Santa Barbara, California, USA, August, 1984, pp. 47–53

[12] Chou, J. S., Chen, Y., Huang, J. C.: ‘A ID-Based Deniable Authentication Protocol on pair-

ings’, Cryptology ePrint Archive, Report, 2006, (335)

[13] Lim, M. H., Lee, S., Park, Y.: ‘An enhanced ID-based deniable authentication protocol on

pairings’. Proc. Computational Science and Its Applications-ICCSA 2007, Kuala Lumpur,

Malaysia, August, 2007, pp. 1008–1017.

[14] Lim, M. H., Lee, S.: ‘Cryptanalysis on improved Chou et al.’s ID-based deniable authentica-

tion protocol’. Proc. Information Systems Security-ICISS 2008, Hyderabad, Indian, December,

2008, pp. 87–93

[15] Shi, Y., Li, J.: ‘Identity-based deniable authentication protocol’, IEE Electronics Letter, 2005,

41, (5), pp. 241–242

23

[16] Cao, T., Lin, D., Xue, R.: ‘An Efficient ID-based De-niable Authentication Protocol from

Pairings’. Advanced Information Networking and Applications-AINA 2005, IEEE Computer

Society, Taipei, Taiwan, March, 2005, pp. 388–391

[17] Li, F., Xiong, P., Jin, C.: ‘Identity-Based Deniable Authentication for Ad Hoc Networks’,

Computing, 2013, doi:10.1007/s00607-013-0321-5

[18] Al-Riyami, S., Paterson, K.: ‘Certificateless public key cryptography’. Advances in Cryptology-

Asiacrypt 2003, Taipei, Taiwan, November, 2003, pp. 452–473

[19] Zhang, Z., Wong, D., Xu J., and Feng, D.: ‘Certificateless Public-Key Signature: Security

Model and Efficient Construction’. Proc. Applied Cryptography and Network Security-ACNS

2006, Singapore, June, 2006, pp. 293–308

[20] Boneh, D., Franklin, M.: ‘Identity-based encryption from the weil pairing’, SIAM Journal on

Computing, 2003, 32, (3), pp. 586–615.

[21] Pointcheval, D., Stern, J.: ‘Security arguments for digital signatures and blind signatures’,

Journal Cryptography, 2000, 13, (3), pp. 361–396

[22] Cha, J. C., Cheon, J. H.: ‘An identity-based signature from gap Diffie-Hellman groups’. Proc.

Public Key Cryptography-PKC 2003, Miami, Florida, USA, January, 2003, pp. 18–30

24

