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Abstract

We derive closed-form expansions for the asymptotic distribution of Hansen and Scheinkman [1995. Back to the future:

generating moment implications for continuous-time Markov processes. Econometrica 63, 767–804] moment estimators

for discretely, and possibly randomly, sampled diffusions. This result makes it possible to select optimal moment

conditions as well as to assess the efficiency of the resulting parameter estimators relative to likelihood-based estimators, or

to an alternative type of moment conditions.
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1. Introduction

Hansen and Scheinkman (1995) (HS thereafter) derived moment conditions for estimating the parameters
of continuous-time Markov processes using discrete time data. The HS moment conditions are correctly
centered, so the resulting parameter estimators are consistent. One impediment, however, to the wide
application of HS moment conditions in practice is the fact that the asymptotic variance of the resulting
parameter estimators is not known explicitly, beyond its generic GMM expression (see Conley et al., 1997,
p. 540). Indeed, the intervening matrices in the asymptotic variance take the form of expected values which
cannot be calculated explicitly. Since the HS moment conditions involve the choice of a set of ‘‘test functions’’,
the selection of optimal test functions would be greatly facilitated if one could, for instance, analyze their
impact on the variance of the parameter estimators in closed form. So would the comparison with alternative
estimation strategies, such as likelihood-based inference. These are the objectives of this paper.

Furthermore, in typical quote or transaction-level financial data, not only are the observations sampled
discretely in time, but it is often the case that the time separating successive observations is itself random. In
e front matter r 2007 Elsevier B.V. All rights reserved.
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Aı̈t-Sahalia and Mykland (2003), we developed methods to analyze the distribution of likelihood-based
estimators for diffusions under these circumstances, compared the relative impact of discrete vs. random
sampling, and in Aı̈t-Sahalia and Mykland (2004) provided a general approach to deriving explicitly the
asymptotic properties of estimators based on arbitrary moment conditions. In regular circumstances that
are satisfied by the HS moment conditions, the estimator b̂ of the parameter vector b0 is consistent andffiffiffiffi

T
p
ðb̂� b0Þ converges in law to Nð0;ObÞ as the time span T over which observations occur tends to infinity.

For any such estimator, the corresponding asymptotic variance Ob are generally unknown in closed form.
The solution we proposed is to derive Taylor expansions for Ob starting with a leading term that corresponds
to the limiting case where the sampling is continuous in time. The expansion is with respect to a parameter �
which indexes the sampling intervals separating successive observations, as in D¼L �D0, where D0 is possibly
random with a given fixed distribution. Sampling at a deterministic constant interval corresponds to the
special case where Var½D0� ¼ 0. Our Taylor expansions are of the form

Ob ¼ Oð0Þb þ �O
ð1Þ
b þ �

2Oð2Þb þOð�3Þ. (1)

While the limiting term as � goes to zero corresponds to continuous sampling, by adding higher-order terms in
�, we progressively correct this leading term for the discreteness of the sampling. This method can then be used
to analyze the relative merits of different estimation approaches, by comparing the order in � at which various
effects manifest themselves, and when they are equal the relative magnitudes of the corresponding coefficients
in the expansion.

In this paper, we apply and extend these tools to the specific set of HS moment conditions for diffusions,
analyze the properties of the estimators and compare them to the Cramér–Rao lower bounds. In particular, we
give explicit expressions for the asymptotic variance matrix of the HS estimators in the Taylor series form
(1) for arbitrary test functions. We then turn to the determination of optimal test functions and the relative
efficiency of the resulting estimators compared to likelihood benchmarks. Both are made possible by the
explicit computation of (1).

Let the parameter vector be written as b0 ¼ ðy; gÞ where y is the parameter entering the drift function and g
that entering the diffusion function. HS propose two sets of moment conditions, called C1 and C2,
respectively, whose definition we will recall below. C1 is based on the stationary distribution of the process
only, while C2 involves its transitions over the time interval corresponding to the frequency of observation.

A quick summary of our results is as follows:
�
 In the case of estimating y, for known g, our message is upbeat. The C1 and C2 estimators are fully efficient
to first order in �, confirming the result of Conley et al. (1997): based on the leading term in our expansion,
namely the continuous record limit, the distinction between fixed and random sampling is irrelevant.
Moreover, they are also very close to being efficient to second order in �. There, the asymptotic variance is
proportional to Var½D0�. Therefore that result is inherently dependent on the randomness of the sampling.
On the other hand, a perhaps disappointing result is that up to second order in �, the C2 estimator is no
more efficient than the C1 estimator.

�
 For estimating g, however, the efficiency is substantially inferior to that of the likelihood estimate (by an

order in �). Assuming one is not going to use the likelihood, it would seem that a good way of using the C1
and C2 estimators is therefore to estimate g by some other method, and then to estimate y using C1 or C2.
In view of the existing results on volatility inference for high frequency data, this is a feasible approach: a
related estimation strategy is proposed by Phillips and Yu (2005).

The paper is organized as follows. Section 2 sets up the model and summarizes our approach to analyze the
asymptotic variance of general estimators in the context of discretely and possibly randomly sampled
estimators of diffusions. Section 3 then applies the method to derive closed-form expansions for the
asymptotic variance of HS estimators. In Section 4, we use these expressions to study the choice of optimal test
functions and the efficiency of HS estimators relative to likelihood-based estimators. An application of these
results to a specific example of a diffusion process is contained in Section 5. Section 6 concludes, while proofs
are in the Appendix.
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2. The setup

This paper shares a common setup with our earlier work on the topic of estimating discretely and randomly
sampled diffusions using either likelihood or generic moment conditions (Aı̈t-Sahalia and Mykland, 2003,
2004). We start by briefly summarizing this theory in a special case (consistent estimators, exact identification,
restrictive choice of moment functions, scalar parameters) that will be sufficient for its application to the HS
moment conditions.

Suppose that we observe a stationary diffusion process

dX t ¼ mðX t; yÞdtþ sðX t; gÞdW t (2)

at discrete times in the interval ½0;T �, and we wish to estimate the parameter vector b0 ¼ ðy; gÞ which lies in an
open and bounded set.

For simplicity of notation only, we assume that both y and g are scalars. Going from one to d parameters in
each of the drift and diffusion functions presents no conceptual difficulties, although it complicates the
expression of the various results. Subject to basic smoothness of the drift and diffusion functions, all the drift
(resp. diffusion) behave identically as far as the rates of convergence—hence ultimately their efficiency—are
concerned; the important difference is between drift and diffusion parameters, and is already made apparent in
the one-parameter-in-drift, one-parameter-in-diffusion, case we are focusing on here.

We make the same primitive assumptions on ðm;sÞ as in Aı̈t-Sahalia and Mykland (2004, Assumption 1,
pp. 2188–2189). Note that these assumptions imply the existence of a weak solution of the differential
equation (2), see for example Karatzas and Shreve (1991, Chapter 5.3). We emphasize that all the probability
measures are defined on the same sample space, which can be taken to be the set of continuous functions on
½0;T �, or any extension thereof. Likelihood ratios (Radon–Nikodym derivatives) are therefore well defined
subject to measure theoretic equivalence. In fact, such likelihood ratios, in conjunction with Girsanov’s
Theorem, are a key tool to show existence and uniqueness of the stochastic differential equation, as discussed
in Karatzas and Shreve (1991).

The assumptions made also imply that the diffusion process is stationary; its stationary density is then

pðx; bÞ ¼
xðbÞ expf2

R x
ðmðy; yÞ=s2ðy; gÞÞdyg

s2ðx; gÞ
, (3)

where the lower bound of integration is an arbitrary point in the domainS ¼ ðx; x̄Þ of the diffusion and xðbÞ is
a constant designed to make p integrate to 1.

The observation times on the X process are t0 ¼ 0, t1, t2; . . . ; tNT
, where NT is the smallest integer such that

tNTþ14T . In other words, we observe Y 0;D1;Y 1;D2;Y 2; . . . ;DNT
;Y NT

where Y i ¼ X ti
. We assume

Assumption 2 in Aı̈t-Sahalia and Mykland (2004, p. 2190): the sampling intervals Dn ¼ tn � tn�1 are
independent and identically distributed, Dn is drawn from a common distribution which is independent
of Y n�1 and of the parameter b, and E½D2

0�oþ1. This assumption is undoubtedly restrictive in light of
the empirical fact that durations appear to be serially correlated, and causally related to the price process
(see Renault and Werker, 2003 for an analysis of the impact of this on volatility measurement).

The analysis that follows is nevertheless a first step away from sampling at a fixed time interval. And as we
shall see, even under our restrictive i.i.d. sampling assumption, random sampling can have non-trivial effects
on the estimators.

Throughout the paper, we denote by D a generic random variable with the common distribution of the Dn’s
and write

D ¼ �D0, (4)

where D0 has a given fixed (but unknown) distribution (independent of �), and � is deterministic. While we
assume that the distribution of the sampling intervals is independent of b, it may well depend upon its own
nuisance parameters (such as an unknown arrival rate, for instance). An important special case occurs when
the sampling happens to take place at a fixed deterministic interval D̄, corresponding to the distribution of Dn

being a Dirac mass at D̄ and Var½D0� ¼ 0.
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We shall see below that in some cases the first-order term in the asymptotic variance is proportional to
Var½D0�, so as soon as one goes beyond the limit of continuous sampling, the randomness of the sampling is
the next order effect.

We consider moment conditions hðy1; y0; d; b; �Þ, which are continuously differentiable in b. As we discuss
below, the HS method cannot fully identify all the parameters jointly, so we will estimate y with g known, or
vice versa, but not both together. To avoid unnecessary notation, consider a single moment condition at a
time; we extend this to the overidentified case in Section 4.4. In standard GMM fashion, we form the sample
average

mT ðbÞ � N�1T

XNT�1

n¼1

hðY n;Y n�1;Dn;b; �Þ (5)

and obtain b̂ by setting mT ðbÞ to 0 in this exactly identified case. Consistency of b̂ is achieved if

ED;Y 1;Y 0
½hðY 1;Y 0;D;b0; �Þ� ¼ 0, (6)

where we denote by ED;Y 1;Y 0
expectations taken with respect to the joint law of ðD;Y 1;Y 0Þ at the true

parameter b0, and write ED;Y 1
, etc., for expectations taken from the appropriate marginal laws of ðD;Y 1Þ, etc.

Under regularity assumptions on h discussed below, and satisfied in particular by the HS moment functions,
we have that

ffiffiffiffi
T
p
ðb̂� b0Þ ! Nð0;ObÞ, with

O�1b ¼ ðE½D�Þ
�1D0bS�1b Db, (7)

where

Db � ED;Y 1;Y 0
½ _hðY 1;Y 0;D;b0; �Þ�,

Sb;j � ED;Y 1;Y 0
½hðY 1þj ;Y j ;D;b0; �ÞhðY 1;Y 0;D; b̄; �Þ

0
�

and Sb �
Pþ1

j¼�1 Sb;j � Sb;0 þ Tb.
To compute these expected values, we rely on the standard infinitesimal generator Ab0 . This is the operator

which returns

Ab0 � f ¼
qf

qd
þ mðy1; y0Þ

qf

qy1

þ
1

2
s2ðy1; g0Þ

q2f

qy2
1

(8)

when applied to functions f that are continuously differentiable once in d, twice in y1 and such that qf =qy1 and
Ab0 � f are both in L2 and satisfy

lim
y1!x

qf =qy1

sðy1; bÞ
¼ lim

y1!x̄

qf =qy1

sðy1; bÞ
¼ 0, (9)

where sðx; bÞ � expf�2
R x
ðmð; yyÞ=s2ðy; gÞÞdyg is the scale density of the process (see Hansen et al., 1998). We

denote by L2 the Hilbert space of measurable real-valued functions f on S such that kf k2 � E½f ðX 0Þ
2
�o1

with the expectation computed at the true value b0. We define D to be the set of functions f which have these
properties and are additionally continuously differentiable in b, and �.

To calculate Taylor expansions in � of the asymptotic variances when the sampling intervals are random, we
introduced in Aı̈t-Sahalia and Mykland (2003) the generalized infinitesimal operator Gb0 for the process X in
(2). Our operator Gb0 is defined by its action on f 2 D as follows1:

Gb0 � f � D0Ab0 � f þ
qf

q�
. (10)

Note that Gb0 is a random operator which takes a fixed (or random) function into a random one. Define DJ as
the set of functions f which with J þ 2 continuous derivatives in d, 2ðJ þ 2Þ in y1, such that f and its first J

iterates by repeated applications of Ab0 all remain inD and additionally have J þ 2 continuous derivatives in b
and �.
1That operator in general contains an additional term which is zero under (6), as will be the case throughout this paper.
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The Taylor expansion of a function f ðY 1;Y 0;D; b̄; �Þ 2 DJ is

EY 1
½f ðY 1;Y 0;D; b̄; �ÞjY 0;D� ¼

XJ

j¼0

�j

j!
ðGj

b0
� f ÞðY 0;Y 0; 0;b0; 0Þ þOpð�

Jþ1Þ. (11)

Note that D ¼ �D0, and both � and D0 appear on the right-hand side of the equation, the latter as part of the
random operator Gb0 . All the expectations are taken with respect to the law of the process at the true value b0.

The usefulness of this approach lies in its ability to deliver closed-form expressions for the terms of the
Taylor series in (11) for arbitrary choices of h, including the special case of HS moment functions. Relative to
Assumption 3 in Aı̈t-Sahalia and Mykland (2004, p. 2193), HS moment conditions are a special case that does
not exhibit a singularity, so H ¼ 0 there, and Assumption 3 reduces to h 2 DJ for some JX3, which we
assume here.

Let us close this section with a remark on the asymptotics. Even though we create a Taylor expansion in �,
the asymptotics is of the standard ‘large T ’ variety. The expansion in � is just a convenient way of analyzing
the asymptotic results. This is different from the form of asymptotics where T !1 and �! 0 at the same
time. A third form of asymptotics lets �! 0 for fixed T. The latter two are also useful means of analysis. One
of the advantages of the approach we have adopted is that it allows for explicit calculations of the asymptotic
variance expansion.

In any event, we view these different types of asymptotics as complements rather than substitutes. And
given the current state of our knowledge, we cannot say with confidence that one type of asymptotic analysis is
necessarily superior to another. Ultimately, they are all approximations to the real small-sample situation.
Comparing them would be very useful, but undertaking this would go substantially beyond the scope of the
present paper, as it would require the development of a different machinery to compute the distributional
properties of the estimators under those alternative asymptotics.

3. Estimators based on HS estimating equations

We now make these results specific in the special case of the HS class of moment functions, and compare
them to efficient estimators. The HS moment conditions are in the form of expectations of the infinitesimal
generator, one unconditional and one conditional, that can be applied to test functions. HS give two ways
of forming estimating functions in the case of sampling at a fixed deterministic D, which are referred to as the
C1 and C2 moment conditions. In what follows, we apply our general theory to determine the asymptotic
properties of estimators using these estimating equations; our results give these properties when the sampling
intervals are fixed and deterministic, but also when they are random.

The simplifying feature of the method of moments approach, which is not specific to the context of
discretely sampled diffusions, is that it requires only the specification of a set of moments rather than the full
conditional density of the diffusion. The flip side of this simplification, however, is that it will not, in general,
make efficient use of the entire information contained in the sample. We will characterize precisely this loss of
information in our specific context of discrete sampling from a diffusion.

Also, unlike the typical use of the method of moments, one cannot in general select as moment conditions
within this framework the ‘‘natural’’ conditional moments of the process since explicit expressions for the
conditional mean, variance, skewness, or first-order Euler equations from an optimization problem, etc. are
not available in closed form. Rather, the moment conditions, i.e., our h functions, are in the form of the
infinitesimal generator of the process applied to arbitrary test functions. As a result, it is useful to be able to
obtain explicit expressions for the asymptotic variance of the estimator based on given test functions, as our
methodology will allow, with an eye towards selecting optimal test functions. We will address the efficiency
question in Section 4.

Kessler and Sørensen (1999) proposed to use the eigenfunctions of the infinitesimal operator as test
functions; unfortunately, these are not explicit either, except in special cases. Duffie and Glynn (2004)
introduced a family of GMM estimators with Poisson sampling occurring at an arrival intensity that can
depend on X and on b. However, the method is specific to the type of random sampling assumed: in particular,
it does not allow for the important special case where sampling occurs at fixed time intervals.
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One additional aspect of the HS method is that it does not permit full identification of all the parameters of
the model since multiplying the drift and diffusion functions by the same constant results in identical moment
conditions. So parameters are only identified up to scale. For instance, in the Ornstein–Uhlenbeck example of
Section 5, only the stationary variance g=ð2yÞ can be identified, but not y and g separately. Because of this
limitation of the method, we will use the method to estimate y with g known, or vice versa, but not both
together.

3.1. The C1 moment condition

Let us start by analyzing C1, as in the empirical implementation of the method in Conley et al. (1997). The
C1 method takes a sufficiently differentiable function cðy0;bÞ in the domain of the operator Bb defined below
and forms the estimating function which in our notation is given by

hC1ðy1; y0; d;b; �Þ ¼ hC1ðy0;bÞ � Bb � cðy0; bÞ � mðy0; yÞ
qc
qy0

þ
1

2
s2ðy0; gÞ

q2c
qy2

0

. (12)

This is a function of ðy0;bÞ only. Note that the operator Bb differentiates with respect to the backward state
variable y0 as opposed to the forward state variable y1 (as in our definition of Ab).

The C1 estimating equation relies on the fact that we have the unbiasedness condition

EY 0
½Bb0 � cðY 0; bÞ� ¼ 0. (13)

Once Bb is evaluated at b0, this is true for any value of b in c, including b0. A consequence of this is that the
estimator is consistent because hC1 evaluated at b0 has unconditional mean zero: recall (6).

Eq. (13) follows from the fact that X is a stationary process, hence the unconditional expectation of any
function of X t, such as EX t

½cðX t; bÞ�, does not depend upon the date t at which it is evaluated: thus
ðq=qtÞEX t

½cðX t;bÞ� ¼ 0, from which the result follows.
In our setup, hC1 only depends on ðy0;bÞ, and not on ðy1; d; �Þ. It follows that

ðGb0 � hC1Þðy1; y0; d;b; �Þ � 0 (14)

identically, and hence the expansions of hC1 (for the function q1),
_hC1 (for Db) and hC1 � hC1 (for Sb;0) will stop

at their leading term and be exact.
Of course, we could equivalently have taken the moment function to be of the form

~hC1ðy1;bÞ � Ab � cðy1;bÞ ¼ mðy1; yÞ
qc
qy1

þ
1

2
s2 ðy1; gÞ

q2c
qy2

1

(15)

i.e., as a function of y1 instead of y0. We would get the same result since the unconditional expectation of any
function f ðY 1; bÞ 2 DJ is obtained by computing in our method

EY 1
½f ðY 1;bÞjY 0;D� ¼

XJ

j¼0

�j

j!
ðGj

b0
� f ÞðY 0;b0Þ þOpð�

Jþ1Þ. (16)

Next, ðGj
b0
� f ÞðY 0;b0Þ ¼ Dj

0ðA
j
b0
� f ÞðY 0;b0Þ since qf =q� ¼ 0 and qb=q� ¼ 0 given that the estimating

equation is unbiased. When taking unconditional expectations, we have

EY 0
½ðA

j
b0
� f ÞðY 0;b0Þ� ¼ 0 (17)

for all jX1 because the expected value of the generator applied to any function is zero—this is indeed (13).
That is, the expansion for the unconditional expectation over the law of Y 0 will stop after the leading ðj ¼ 0Þ
term. Therefore, computing EY 1

½f ðY 1;bÞ� as prescribed by our method, i.e., through the law of iterated
expectations in the form ED;Y 0

½EY 1
½f ðY 1; bÞjY 0;D��, will produce the same result as writing down directly

EY 0
½f ðY 0;bÞ�. In other words, using (12) or (15) as moment functions will yield the same results. The form (12)

gives the result directly, and we will therefore use it.
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Because of the form of hC1, the only difference between estimating y and estimating g appears in Db. Also,
because hC1ðy0; y0; 0; b0; 0Þ is non-zero, we have aC1 ¼ 0. The specific expressions are

qC1ðY 0; b0; �Þ ¼ qC1ðY 0;b0; 0Þ ¼ Bb0 � cðY 0; b0Þ (18)

and

Db ¼ D
ð0Þ
b ¼

Dy ¼ EY 0

qmðY 0; y0Þ
qy

qcðY 0;b0Þ
qy

� �
when estimating y;

Dg ¼
1

2
EY 0

qs2ðY 0; g0Þ
qg

q2cðY 0;b0Þ
qy2

� �
when estimating g;

8>>><
>>>: (19)

Sb;0 ¼ S
ð0Þ
b;0 ¼ �

1

2
EY 0

s2ðY 0; g0Þ
qmðY 0; y0Þ

qy

qcðY 0;b0Þ
qy

� �2
" #

þ
1

4
EY 0

s4ðY 0; g0Þ
q2cðY 0;b0Þ

qy2

� �2
" #

. ð20Þ

The more difficult calculation involves the time series term Tb ¼ Sb � Sb;0. As part of the proof of the
following theorem, we show that

Tb ¼ �
�1T

ð�1Þ
b þ T

ð0Þ
b þOð�Þ, (21)

where

T
ð�1Þ
b ¼

2

E½D0�
EY 0
½ðhC1 � rC1Þ�, (22)

T
ð0Þ
b ¼
ðE½D2

0� � 2E½D0�
2Þ

4E½D0�
2

EY 0
s4

q2c
qy2

� �2
" #

� 2EY 0
s2

qc
qy

� �2qm
qy

" #( )
. (23)

We then put together the expansions of Db, Sb;0 and Tb to obtain the expansion for Ob. The terms of order
�0 are given by

Oð0Þy ¼ T
ð�1Þ
b =ðDð0Þy Þ

2; Oð0Þg ¼ T
ð�1Þ
b =ðDð0Þg Þ

2, (24)

when estimating y or g, respectively, while the terms of order �1 are

Oð1Þy ¼ E½D0�ðS
ð0Þ
b;0 þ T

ð0Þ
b Þ=ðD

ð0Þ
y Þ

2; Oð1Þg ¼ E½D0�ðS
ð0Þ
b;0 þ T

ð0Þ
b Þ=ðD

ð0Þ
g Þ

2. (25)

The specific expressions, which characterize the asymptotic properties of the estimators based on the
moment condition hC1, are now given in Theorem 1. This and all subsequent theorems are subject to
Assumptions 1–3 in Aı̈t-Sahalia and Mykland (2004, pp. 2188–2190, 2193), with H ¼ 0 (see the last paragraph
in Section 2 in this paper).

Theorem 1 (Properties of the estimators based on the C1 condition). The asymptotic variance has the form

Ob ¼ Oð0Þb þ �O
ð1Þ
b þOð�2Þ, (26)
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where, when estimating y,

Oð0Þy ¼

EY 0
s2ðY 0; g0Þ

qcðY 0;b0Þ
qy

� �2
" #

EY 0

qmðY 0; y0Þ
qy

qcðY 0; b0Þ
qy

� �2 ,

Oð1Þy ¼

Var½D0� EY 0
s4ðY 0; g0Þ

q2cðY 0;b0Þ
qy2

� �2
" #

� 2EY 0
s2ðY 0; g0Þ

qmðY 0; y0Þ
qy

qcðY 0;b0Þ
qy

� �2
" # !

4E½D0�EY 0

qmðY 0; y0Þ
qy

qcðY 0; b0Þ
qy

� �2 ð27Þ

and, when estimating g,

Oð0Þg ¼

4EY 0
s2ðY 0; g0Þ

qcðY 0;b0Þ
qy

� �2
" #

EY 0

qs2ðY 0; g0Þ
qg

q2cðY 0; b0Þ
qy2

� �2 ,

Oð1Þg ¼

Var½D0� EY 0
s4ðY 0; g0Þ

q2cðY 0;b0Þ
qy2

� �2
" #

� 2EY 0
s2ðY 0; g0Þ

qmðY 0; y0Þ
qy

qcðY 0;b0Þ
qy

� �2
" # !

E D0½ �EY 0

qs2ðY 0; g0Þ
qg

q2cðY 0; b0Þ
qy2

� �2 . ð28Þ

It is interesting to note that the first-order term Oð1Þb in the asymptotic variance is proportional to Var½D0�, so
the effect of the random sampling can be non-trivial, even under our restrictive sampling assumptions. That is,
as soon as one goes beyond the limit of continuous sampling (order 0 in �), the randomness of the sampling is
the next order effect. The same effect will occur with the C2 moment condition, although with an additional
term independent of Var½D0�, as we shall now see.
3.2. The C2 moment condition

Consider now the C2 moment condition. The C2 method takes two functions c0 and c1, again satisfying
smoothness and regularity conditions, and forms the ‘‘back to the future’’ estimating function

hC2ðy1; y0; d;b; �Þ ¼ hC2ðy1; y0; bÞ ¼ fAb � c1ðy1;bÞg � c0ðy0; bÞ � fBb � c0ðy0;bÞg � c1ðy1;bÞ. (29)

In general, Bb should be replaced by the infinitesimal generator associated with the reverse time process, A�b.
But under regularity conditions, univariate stationary diffusions are time reversible (see Kent, 1978) and so
the infinitesimal generator of the process is self-adjoint and so we can define hC2 above using the operator Bb

(itself defined in (12)).
The C2 estimating equation relies on the fact that, when the operators Ab and Bb are evaluated at the true

parameter b0, then

EY 0;Y 1
½fAb0 � c1ðY 1;bÞg � c0ðY 0;bÞ � fBb0 � c0ðY 0;bÞg � c1ðY 1;bÞ� ¼ 0. (30)

Once Ab is evaluated at b0, this is true for any value of b in c, including b0. As a result, estimators based on the
C2 moment condition are consistent (recall (6)).

Eq. (30) is again a consequence of the stationarity of the process X . Namely, the expectation of any function
of ðX t;X tþdÞ, such as EX t;X tþd ½c0ðX t;bÞc1ðX tþd; bÞ�, does not depend upon the date t (it can of course depend
upon the time lag d between the two observations): hence

q
qt
EX t;X tþd ½c0ðX t;bÞc1ðX tþd;bÞ� ¼ 0 (31)
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from which (30) follows. Incidentally, C2 can alternatively be obtained, as shown in Aı̈t-Sahalia (1996),
by combining the Kolmogorov forward and backward equations characterizing the transition function
pðy1jy0;D;bÞ in a way that eliminates the (unobservable with discrete data) derivatives of p with respect to
time.

When considering this case, it is worthwhile to be explicit about how the Db, Sb and Ob matrices depend on
the distributions of D0 and Y 0.

Theorem 2. If hC2 is used to estimate either b ¼ y or ¼ g, then

D
ð0Þ
b ¼

~Dð0Þb D
ð1Þ
b ¼ E½D0� ~D

ð1Þ
b ,

S
ð�1Þ
b ¼

1

E½D0�
~Sð�1Þb S

ð0Þ
b ¼

~Sð0Þb þ
Var½D0�

E½D0�
2

S
ð0Þ
b;0, ð32Þ

where ~Dð0Þb , ~Dð1Þb , ~Sð�1Þb , ~Sð0Þb , and S
ð0Þ
b;0 depend only on c0, c1, m, s

2 and the distribution of Y 0 (and not on the

distribution of D0). Specifically,

D
ð0Þ
b ¼

D
ð0Þ
y ¼ EY 0

qm
qy

qc1

qy
c0 � c1

qc0

qy

� �� �
when estimating y;

Dð0Þg ¼
1

2
EY 0

qs2

qg
q2c1

qy2
c0 � c1

q2c0

qy2

� �� �
when estimating g;

8>>><
>>>: (33)

~Dð1Þb ¼

~Dð1Þy ¼
1

2
EY 0

s2
qm
qy

q2c0

qy2

qc1

qy
�

qc0

qy

q2c1

qy2

� �� �
when estimating y;

~Dð1Þg ¼
1

4
EY 0

s2
qs2

qg
q3c0

qy3

qc1

qy
�

qc0

qy

q3c1

qy3

� ��

þs2
q2s2

qyqg
q2c0

qy2

qc1

qy
�

qc0

qy

q2c1

qy2

� ��
when estimating g;

8>>>>>>>>><
>>>>>>>>>:

(34)

S
ð0Þ
b;0 ¼ EY 0

½ðfAb0 � c1ðY 0;b0Þg � c0ðY 0; b0Þ � fBb0 � c0ðY 0; b0Þg � c1ðY 0;b0ÞÞ
2
�, (35)

~Sð�1Þ ¼ EY 0
s2 c1

qc0

qy
� c0

qc1

qy

� �2
" #

, (36)

~Sð0Þ ¼ 2ðEY 0
½Ab0 � ðhC2 � �rC2Þ� þ S

ð0Þ
b;0Þ, (37)

where the function �r is defined in Aı̈t-Sahalia and Mykland (2004, equation (29), p. 2196).

We can now state the asymptotic properties of the estimators based on the C2 moment condition:

Theorem 3 (Properties of the estimators based on the C2 condition). If hC2 is used to estimate either y or g, we

have

Ob ¼ Oð0Þb þ �O
ð1Þ
b þOð�2Þ, (38)

where, when estimating y,

Oð0Þy ¼

EY 0
s2ðY 0; g0Þ c1ðY 0;b0Þ

qc0ðY 0;b0Þ
qy

� c0ðY 0;b0Þ
qc1ðY 0;b0Þ

qy

� �2
" #

EY 0

qmðY 0; y0Þ
qy

qc1ðY 0;b0Þ
qy

c0ðY 0;b0Þ � c1ðY 0; b0Þ
qc0ðY 0; b0Þ

qy

� �� �2 (39)
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and, when estimating g,

Oð0Þs2 ¼

4EY 0
s2ðY 0; g0Þ c1ðY 0; b0Þ

qc0ðY 0; b0Þ
qy

� c0ðY 0;b0Þ
qc1ðY 0;b0Þ

qy

� �2
" #

EY 0

q2c1ðY 0; b0Þ
qy2

c0ðY 0;b0Þ � c1ðY 0;b0Þ
q2c0ðY 0;b0Þ

qy2

� �� �2 . (40)

The expressions for Oð1Þy and Oð1Þs2 , which are more involved, are summarized by

Oð1Þb ¼ E½D0� ~O
ð1Þ
b þ

Var½D0�

E½D0�

S
ð0Þ
b;0

ðD
ð0Þ
b;0Þ

2
, (41)

where

~Oð1Þb ¼
~Sð0Þb

~Dð0Þb �
~Sð�1Þb

~Dð1Þb

ð ~Dð0Þb Þ
3

. (42)

The form given in (41)–(42) will be useful when assessing the efficiency properties of these estimators, which
is the question we shall now investigate.
4. Efficiency properties of the Hansen–Scheinkman estimators

4.1. Comparison with likelihood-based estimators

In Aı̈t-Sahalia and Mykland (2003), we studied the effect that the randomness of the sampling intervals
might have when estimating a continuous-time model with discrete data, as would be the case with
transaction-level returns data. We disentangled the effect of the sampling randomness from the effect of the
sampling discreteness, and compare their relative magnitudes. We also examined the effect of simply ignoring
the sampling randomness. We achieved this by comparing the properties of different likelihood-based
estimators, which make different use of the observations on the state process and the times at which these
observations have been recorded.

One of the estimators of b we considered is the full information maximum likelihood (FIML) estimator,
using the bivariate observations ðY n;DnÞ; another is the partial information maximum likelihood estimator
using only the state observations Y n, with the sampling intervals integrated out (IOML for integrated out
maximum likelihood). Not surprisingly, FIML, is asymptotically efficient, making the best possible use of the
joint data ðY n;DnÞ. The second estimator, IOML, corresponds to the asymptotically optimal choice if one
recognizes that the sampling intervals Dn’s are random but does not observe them.

These estimators rely on maximizing a version of the likelihood function of the observations. Let
pðy1jy0; d; bÞ denote the transition function of the process X. Because of the time homogeneity of the model,
the transition function p depends only on d and not on ðt; tþ dÞ separately. FIML makes use of
pðY njY n�1;Dn;bÞ, while IOML uses the expectation ~pðY njY n�1;bÞ of pðY njY n�1;Dn;bÞ over the law of
DnjY n�1. In practice, even though most diffusion models do not admit closed-form transition densities, the
estimators can be calculated for any diffusion X using arbitrarily accurate closed-form approximations of the
transition function p (see Aı̈t-Sahalia, 2002). We also show that ~p can be obtained in closed form. FIML and
IOML are always consistent estimators.

We are here particularly interested in comparing the C1 and C2 estimators with the FIML and IOML
estimators. From Aı̈t-Sahalia and Mykland (2003), we have that

OFIML
y ¼ OðFIML;0Þ

y þOð�2Þ, (43)

OIOML
y ¼ OðIOML;0Þ

y þ �OðIOML;1Þ
y þOð�2Þ, (44)
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where

OðFIML;0Þ
y ¼ OðIOML;0Þ

y ¼ ðEY 0
½s�2ðY 0; g0ÞðqmðY 0; y0Þ=qyÞ

2
�Þ
�1 (45)

which is the leading term in Oy corresponding to efficient estimation of y with a continuous record of
observations. (The expressions are given in Aı̈t-Sahalia and Mykland, 2003 for s2 ¼ g2, but the extension to
general s2ðy; gÞ follows from the developments in Aı̈t-Sahalia and Mykland, 2004.)

And the price of ignoring the sampling times t0; t1; . . . when estimating y is, to first order, represented by

OðIOML;1Þ
y ¼

E½Var½D0jw21D0��

E½D0�
V , (46)

and ‘‘w21’’ is a w21 distributed random variable independent of D0, and

V ¼

EY 0
s40

q2mðY 0;b0Þ
qyqy

� �2
" #

� 2EY 0
s20
qmðY 0; y0Þ

qy

qmðY 0;b0Þ
qy

� �2
" # !

4EY 0

qmðY 0; y0Þ
qy

� �2
" #2 . (47)

Note that VX0 by the asymptotic efficiency of FIML.
And the leading term in Og corresponding to efficient estimation of g is

OFIML
g ¼ �OðFIML;1Þ

g þOð�2Þ, (48)

OIOML
g ¼ �OðIOML;1Þ

g þOð�2Þ, (49)

where

OðFIML;1Þ
g ¼ OðIOML;1Þ

g ¼ E½D0�ð2EY 0
½ðqsðY 0; g0Þ=qgÞ

2sðY 0; g0Þ
�2
�Þ
�1. (50)

In the special case where s2 is constant ðg ¼ s2Þ, this becomes the standard AVAR of MLE from i.i.d.
Gaussian observations, i.e., Oð1Þg ¼ 2s40E½D0�.

These leading terms are achieved in particular when h is the likelihood score for y and g, respectively, as
analyzed in Aı̈t-Sahalia and Mykland (2003), but also by other estimating functions that are able to mimic the
behavior of the likelihood score at the leading order. So, we now turn to a comparison of the AVAR of these
two estimators to the likelihood-based FIML and IOML to find out whether this is the case for these classes of
moment conditions.

4.2. Efficiency of the C1 estimator

Using Theorem 1, we can study the first-order efficiency of the C1 estimator relative to the likelihood-based
estimators. For the purpose of estimating either y for g known, or vice versa, or more generally for a scalar
parameter b so that y ¼ yðbÞ and g ¼ gðbÞ, Conley et al. (1997) propose to use c given by

qcðy;bÞ
qy

¼
q
qb

2mðy; yÞ � qs2ðy; gÞ=qy

s2ðy; gÞ

� �
. (51)

This choice of c yields a C1 estimator Ab � c which is ‘‘test function efficient’’: see Conley et al. (1997,
Sections 3.2–3.3 and Appendix C) where they show that this choice is approximately optimal among the class
of moment conditions they consider, in the sense of being optimal in the limit of continuous sampling,
corresponding to e! 0 in our setting. In the case of estimating y for g known, this in the same as saying that
(51) minimizes Oð0Þy (which yields the same variance as (45)). Similarly, in the case of estimating g for y known,
(51) minimizes Oð0Þg .

This choice of test function corresponds to using as a test function c the score from a quasi-ML
(QML) estimator that would assume that the data are i.i.d. with distribution given by the stationary density p
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given in (3). Indeed (51) corresponds to making c proportional to q log p=qb since

q log pðy;bÞ
qy

¼
2mðy; yÞ � qs2ðy; gÞ=qy

s2ðy; gÞ
. (52)

This is not, in general, equivalent to the QML estimator itself, which would make the moment condition Ab � c
proportional to the score q log p=qb, as opposed to the test function c, so there is an efficiency gain from using
(51) instead of the QML estimator. (The two would coincide when q log p=qb is an eigenfunction of Ab:Þ But of
course, the data are not i.i.d., so this is not the FIML which will be more even efficient, as we shall see.

We consider further the estimation of y for g known. With Theorem 1, one can see that something stronger
than test function efficiency holds. Oð0Þy for this c coincides with the corresponding term OðFIML;0Þ

y . In other
words, to first order in �, Ab � c is fully efficient. This fact is easily seen by substituting (51) into (27), and
comparing to the corresponding expression for FIML given in (45).

In view of this efficiency property, it is obvious that this choice of c also minimizes the expression (27). This
is shown, with different expressions, in Conley et al. (1997, Appendix C).

To consider the efficiency question more carefully, we shall for now fix s2 to be independent of y, and
continue to use the first-order optimal choice (27). Note that the relevant comparison is not with FIML but
rather with IOML. IOML comes from a likelihood which uses the observations Y 0;Y 1; . . . ; but not the
spacings D1;D2; . . . between the observations. The reason that this is the relevant comparison is that the C1
estimators also do not use these spacings. In view of the Cramér–Rao lower bound, the asymptotic variance of
the IOML is the best possible that can be obtained using the partial data Y 0;Y 1; . . . . Hence the discrepancy
between the two is then the cost of using the C1 estimator relative to a maximally efficient estimator.

To see what happens, recall V defined in (47). We then have from Theorem 1 that, on the one hand, for the
C1 estimator

OðC1;1Þy ¼
Var½D0�

E½D0�
V . (53)

Thus, the cost of using the C1 estimator rather than IOML is summarized by

OðC1;1Þy

OðIOML;1Þ
y

¼
Var½D0�

E½Var½D0jw21D0��
. (54)

As it should from the Cramér–Rao lower bound, or can alternatively be seen directly from properties of
conditional variances, this quotient is always greater than 1. It also depends only on the distribution of the
sampling intervals, i.e., the law of D0. The size of the quantity is explored in Aı̈t-Sahalia and Mykland (2003,
Section 5.4, pp. 511–514), where we showed in particular that

E½Var½D0jw21D0�� ¼ E½D2
0� � E w21D0

m4ðw21D0Þ

m2ðw21D0Þ

� �2
" #

, (55)

where w21 and D0 are independent random variables and

mqðbÞ ¼ EZ Z�qd0
b

Z2

� �� �
, (56)

where Z is Nð0; 1Þ and d0 is the density function of D0.
With those results in hand, it is easily seen that, for example, when D0 is exponentially distributed,

OðC1;1Þy

OðIOML;1Þ
y

¼
8

3
. (57)

If one wishes to compare to the FIML estimator rather than IOML, recall from (43) that the �-term in the
expansion of the asymptotic variance is zero, so compared to this both the C1 and IOML estimators are
inefficient.

For the case of estimating g for known y, however, the test function efficiency in C1 does not yield first-
order efficiency. Indeed, OðC1Þg is of order Oð1Þ as �! 0, that is OðC1;0Þg 40, while the asymptotic variance of
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both the FIML and the IOML is of order Oð�Þ. This lack of efficiency is not surprising since volatility
estimation is inherently about (squared) changes or increments of the process, and the C1 set of moment
conditions uses no information about the increments. One could therefore expect that C2, which is able to
utilize the increments, would probably be better suited to estimating the set of g parameters. As we will see,
however, this is not the case.

4.3. Efficiency of the C2 estimator

Surprisingly, to first order in �, nothing is gained by using the C2 estimator rather than using C1.
Specifically, what we mean by this, is that when OðC2;0Þy is minimized over c0 and c1, one obtains the same
result as when OðC1;0Þy is minimized over c. And similarly for OðC2;0Þg .

To see this, let b ¼ y or ¼ g, and write the first-order asymptotic variances as functionals OðC1;0Þb ½c� and
OðC2;0Þb ½c0;c1�. One then sees that OðC2;0Þb ½c0;c1� ¼ OðC1;0Þb ½c� for the choice

qcðY 0;b0Þ
qy

¼ �
qc0ðY 0; b0Þ

qy
c1ðY 0; b0Þ þ

qc1ðY 0;b0Þ
qy

c0ðY 0;b0Þ. (58)

In other words, for any choice of c0 and c1 in C2, there is an equally good choice of c for C1.
In the case of estimation of y, it is also not to be expected that C2 could improve on C1 in the sense

discussed above, as C1 is already comparable to likelihood to first order in �. For estimating g, however, the
result is quite disappointing. Since C2 involves transition information where C1 does not, one could have
hoped that it would give better efficiency.

Is there improvement to higher order, at least? For this, we use the results in Theorem 2. The discussion

applies to both b ¼ y and g. Before stating results, note (for comparison with the C1 case) that D
ð0Þ
b and S

ð0Þ
b;0

are the same in the C1 and C2 cases when one makes the identification (58). Thus, noting the form of T
ðC1;0Þ
b;0

OðC1;1Þb ¼
Var½D0�

E½D0�

S
ð0Þ
b;0

ðD
ð0Þ
b;0Þ

2
. (59)

Recall that above, we have shown that

OðC2;1Þb ¼ E½D0� ~O
ð1Þ
b þ

Var½D0�

E½D0�

S
ð0Þ
b;0

ðD
ð0Þ
b;0Þ

2
. (60)

This sets the stage for:

Theorem 4. Let b denote either y or g. For optimal choice (51) of c, and if c0 and c1 satisfy (58),

~Oð1Þb X0. (61)

Proof of Theorem 4. Using the notation from the previous subsection, since OðC2;0Þy ¼ OðIOML;0Þ
y , and since

OðC2Þy XOðIOMLÞ
y , it follows that OðC2;1Þy XOðIOML;1Þ

y . Since, for the optimal choice of c;V ¼ S
ð0Þ
b;0=ðD

ð0Þ
b;0Þ

2, the

inequality becomes

E½D0� ~O
ð1Þ
b þ

Var½D0�

E½D0�
VX

E½Var½D0jw21D0��

E½D0�
V . (62)

This must hold for any distribution of D0 so long as E½D0�40, E½D2
0�oþ1, and Var½D0�40. Having said that,

one can then take a limit of a sequence of distributions of D0 so that Var½D0� ¼ 0, while the two other
conditions remain. This proves the result. &

This would seem to suggest that if c is chosen optimally, one cannot to this order improve on the C1
estimator by using a C2 estimator. There are a couple of caveats: the improvement may occur to higher order,
and we have not investigated this. We have no result on whether C2 can improve on C1 for a non-optimal c,
but with c0 and c1 satisfying (58). We also do not know whether ~Oð1Þb 40 is a possibility.



ARTICLE IN PRESS
Y. Aı̈t-Sahalia, P.A. Mykland / Journal of Econometrics 144 (2008) 1–2614
Since C1 is a special case of C2 (choose c0 ¼ 1 and c1 ¼ c), one can obviously make ~Oð1Þb ¼ 0 with the
correct choice of c0 and c1.

4.4. The effect of overidentification

In the discussion of efficiency, we have so far only discussed the estimation of a scalar parameter with a
scalar moment condition. This raises the question of whether efficiency properties can be improved by using
several moment conditions.

To discuss this question, recall that the general GMM setup in Section 2 is as follows. We consider
estimators for a d-dimension b using a vector of r moment conditions hðy1; y0; d;b; eÞ, rXd. We form the
sample average as in Eq. (5), and obtain b̂ by minimizing the quadratic form

QT ðbÞ � mT ðbÞ
0W T mT ðbÞ,

where W T is an r� r positive definite weight matrix assumed to converge in probability to a positive definite
limit Wb. Let

Db � ED;Y 1;Y 0
½ _hðY 1;Y 0;D; b̄; eÞ�; Sb;j � ED;Y 1;Y 0

½hðY 1þj ;Y j ;D; b̄; eÞhðY 1;Y 0;D; b̄; eÞ
0
�

and Sb �
Pþ1

j¼�1 Sb;j. If the system is exactly identified, r ¼ d, the choice of W T is irrelevant and the problem
amounts to setting mT ðbÞ to 0. If not, the optimal choice is to set W T to be any consistent estimator of S�1b .ffiffiffiffi

T
p
ðb̂� b̄Þ converges in law to Nð0;ObÞ, with

O�1b ¼ ðE½D�Þ
�1D0bS�1b Db. (63)

When r4d and the system is overidentified, the estimator has the same asymptotic variance (63) as obtained
if we replaced the r� 1 vector h with the d � 1 vector H ¼ D0bWbh and were back in the exactly identified case.
Note that H is a vector of linear combinations of the original moment conditions h. Therefore, in the scalar
case ðd ¼ 1Þ, adding a second moment condition ~h to an existing such condition h has the following effect. The
asymptotic variance behaves as if inference were carried out using an optimal combination ahþ ~a ~h.

This has the following consequences. In the (C1) case, if h ¼ Bb0cðy0;bÞ and ~h ¼ Bb0
~cðy0; bÞ, an optimal

combination is still of the form of a (C1) estimator. Hence, overidentification cannot improve the asymptotic
variance if the test function is already optimal. Obviously, overidentification is helpful if one wishes the data to
help find the optimal test function, but that does not alter our efficiency result. Obviously, the same conclusion
holds if one wishes to consider more than two test functions.

In the (C2) case, we can only assert that to first order (in �), overidentification does not improve efficiency.
There may be improvement, however, to higher order. The situation is as follows.

For the purposes of computing asymptotic variance, overidentification increases the set of possible
optimal estimators (by taking linear combinations of (C2) type estimators). It is therefore a priori quite
possible that efficiency improves. To see that this is not the case to first order, however, let ðc1;c2Þ and ð

~c1;
~c2Þ

be two pairs of test functions, and form (C2) moment conditions hC2 and ~hC2 on the basis of these as in
Eq. (29). In obvious extension of the notation in Theorem 2, it is easy to see from the proof of this theorem
that

~Sð�1Þðahþ ~a ~hÞ ¼ EY 0
½s2ðacþ ~a ~cÞ2�,

where c is given by (58) and similarly for ~c. Hence, the asymptotic variance for the overidentified estimator in
the (C2) case is the same as for the overidentified estimator in the (C1) case, with test functions c and ~c. Since
overidentification does not improve the (C1) estimator, our claim follows.

5. Example: The Ornstein–Uhlenbeck process

We now apply the inference strategies of the previous section to a specific example, the stationary (y40)
Ornstein–Uhlenbeck process

dX t ¼ �yX t dtþ sdW t, (64)



ARTICLE IN PRESS
Y. Aı̈t-Sahalia, P.A. Mykland / Journal of Econometrics 144 (2008) 1–26 15
where g ¼ s2 and specialize the expressions resulting from the general theorems that precede. We also compare
how the different estimation methods fare relative to MLE. The transition density lðy1jy0; d; bÞ ¼
lnðpðy1jy0; d;bÞÞ is a Gaussian density with expected value e�dyy0 and variance ð1� e�2dyÞg=2y. The stationary
density pðy0;bÞ is also Gaussian with mean 0 and variance s2=ð2yÞ.

For this model, we have from Table III in Aı̈t-Sahalia and Mykland (2003)

OðFIMLÞ
y ¼ 2y0 þ �2

2y30E½D
3
0�

3E½D0�

� �
þOð�3Þ, (65)

OðIOMLÞ
y ¼ 2y0 þ �

2y20E½Var½D0jw2D0��

E½D0�

� �
þOð�2Þ (66)

and

OðFIMLÞ
g ¼ �ð2s40E½D0�Þ, (67)

OðIOMLÞ
g ¼ �

4s40E½D0�

2� E½Var½w2jw2D0��

� �
þOð�2Þ. (68)

The C1 estimation method involves an element of choice, namely the selection of the test function c. We
presently give the expressions that follow from applying Theorem 1 to the Ornstein–Uhlenbeck process with c
chosen to be proportional to q log p=qb, as advocated in (51). In this case, p from (3) is the normal density with
mean 0 and variance k2 ¼ s2=2y, so one gets

cðy;bÞ ¼
y2 � k2
� �

2k4
qk2

qb
, (69)

where b is either y or s2. One can estimate y for given s2, or vice versa. Note that Ab � cðy; bÞ ¼ �2ycðy; bÞ.
For the estimation of y, the quantities from Theorem 1 are as follows:

Dy ¼ �
1

y0

� �
,

Sy;0 ¼ �
2

E½D0�y0

� �
� 2�2

E½D2
0�

E½D0�
2
þ 1

� �
þOð�3Þ,

Ty ¼ 4�2
E½D2

0�

E½D0�
2

� �
þOð�3Þ,

Oy ¼ 2y0 þ �
2y20Var½D0�

E½D0�

� �
þOð�2Þ, ð70Þ

while for the estimation of s2, one obtains

Ds2 ¼ �
y
s40
,

Ss2;0 ¼ �
y0
s40

2

E½D0�

� �
� 2�2

y20
s40

E½D2
0�

E½D0�
2
þ 1

� �
þOð�3Þ,

Ts2 ¼ 4�2
y20
s40

E½D2
0�

E½D0�
2

� �
þOð�3Þ,

Os2 ¼ 2
s40
y0
þ �

2s40Var½D0�

E½D0�

� �
þOð�2Þ. ð71Þ

It is noteworthy that this is the only case where Os2 is of order Oð1Þ in � as opposed to order Oð�Þ. While this
follows from applying the general Theorem 1, a simple direct demonstration of this in the Ornstein–Uhlenbeck
case is as follows. Note that Ab � cðy;bÞ for estimating y is f ðy; k2Þ=k2, where f ðy;k2Þ ¼ y2 � k2, while Ab �

cðy;bÞ for estimating s2 is �f ðy; k2Þ=2k4. Hence, if one sets k̂2 ¼ N�1T

P
iY i, and if one lets ŷ denote the
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estimator of y for s2 known, and similarly define ŝ2, one gets ŷ ¼ s2=2k̂2 and ŝ2 ¼ 2yk̂2. It follows thatffiffiffiffi
T
p
ðŝ2 � s2Þ ¼ 2y

ffiffiffiffi
T
p
ðk̂2 � k2Þ ¼ �

s2

y

ffiffiffiffi
T
p
ðŷ� yÞ þ opð1Þ, (72)

whence Os2 ¼ ðs4=y
2
ÞOy. Since Oy is Oð1Þ in �, then so is Os2 . This first-order efficiency loss is a natural

consequence of the absence of conditioning information in the C1 method.
In the case of the C2 estimator, suppose that one can write c0ðy;b0Þ and c1ðy; b0Þ as a series

c0ðy;b0Þ ¼
X
iX0

aiy
i; c1ðy;b0Þ ¼

X
iX0

biy
i. (73)

Under the optimality constraint (58), with

cðy;bÞ ¼
y2 � k2

2k4
qk2

qb
, (74)

we obtain that

y

k4
qk2

qb
¼

qcðY 0;b0Þ
qy

¼ �
qc0ðY 0;b0Þ

qy
c1ðY 0;b0Þ þ

qc1ðY 0; b0Þ
qy

c0ðY 0; b0Þ

¼ �
X
i;jX0

ði þ 1Þaiþ1bjy
iþj þ

X
i;jX0

ðj þ 1Þaibjþ1y
iþj

¼
X
nX0

yn
X

iþj¼n

½�ði þ 1Þaiþ1bj þ ðj þ 1Þaibjþ1�. ð75Þ

It follows that for c0 and c1 to be first-order optimal, one needsX
iþj¼n

½�ði þ 1Þaiþ1bj þ ðj þ 1Þaibjþ1� ¼ 0 (76)

for all na0. (The restriction for n ¼ 1 is irrelevant, since inference is unaltered by multiplying c by a
constant.)

6. Conclusions and extensions

One can extend the theory to cover more general continuous-time Markov processes, such as jump-
diffusions. In that case, the standard infinitesimal generator of the process applied to a smooth f takes the
form

Jb0 � f ¼ Ab0 � f þ

Z
ff ðy1 þ z; y0; d; b; �Þ � f ðy1; y0; d;b; �Þgnðdz; y0Þ,

where Ab0 , defined in (8), is the contribution coming from the diffusive part of the stochastic differential
equation and nðdz; y0Þ is the Lévy jump measure specifying the number of jumps of size in ðz; zþ dzÞ per unit of
time (see e.g., Protter, 1992). In that case, our generalized infinitesimal generator becomes

Gb0 � f � D0Jb0 � f þ
qf

q�
þ

qf

qb
qb
q�

that is, the same expression as (10) except that Ab0 is replaced by Jb0 . Of course, the asymptotic variance
expressions we derived above, hence the efficiency comparisons, are dependent upon the nature of the
generator of the process.

Another extension concerns the generation of the sampling intervals. For example, if the Di’s are random
and i.i.d., then E½D� has the usual meaning, but even if this is not the case, by E½D� we mean the limit
(in probability, or just the limit if the Di’s are non-random) of

Pn
i¼1 Di=n as n tends to infinity. This permits the

inclusion of the random non-i.i.d. and the non-random (but possibly irregularly spaced) cases for the Di’s. At
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the cost of further complications, the theory can be extended to allow for dependence in the sampling
intervals, whereby Dn is drawn conditionally on ðY n�1;Dn�1Þ.
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Appendix A

This appendix contains the proofs of Theorems 1 and 3. We start with a summary of the form of Db, Sb;0

and Tb for a generic h.

A.1. Summary of results for generic moment functions h

In the following, we specialize the general expansions for Db, Sb;0 and Tb ¼ Sb � Sb;0 from Aı̈t-Sahalia and
Mykland (2004) in the minimal case that is needed for our application here to HS, namely a single moment
function h at a time, with no singularity (H ¼ 0). Our expansions have the generic form

Db ¼ D
ð0Þ
b þ �D

ð1Þ
b þ �

2D
ð2Þ
b þOð�3Þ, (A.1)

Sb;0 ¼ S
ð0Þ
b;0 þ �S

ð1Þ
b;0 þ �

2S
ð2Þ
b;0 þOð�3Þ, (A.2)

Tb ¼ �
�1T

ð�1Þ
b þ T

ð0Þ
b þ �T

ð1Þ
b þ �

2T
ð2Þ
b þOð�3Þ. (A.3)

To identify the terms in the above, we apply Lemma 1 in Aı̈t-Sahalia and Mykland (2004) to a single
moment function h and get for Db and Sb;0:

Db ¼ EY 0
½ _h� þ �ED;Y 0

½Gb0 �
_h� þ

�2

2
ED;Y 0

½G2
b0
� _h� þOð�3Þ, (A.4)

Sb;0 ¼ EY 0
½h2
� þ �ED;Y 0

½Gb0 � ðh
2
Þ� þ

�2

2
ED;Y 0

½G2
b0
� ðh2
Þ� þOð�3Þ. (A.5)

As for Tb, the simplest situation arises when h is a martingale,

ED;Y 1
½hðY 1;Y 0;D;b0; �ÞjY 0� ¼ 0. (A.6)

When (A.6) is satisfied, Sb;j ¼ 0 for all ja0, and so Tb ¼ 0. But this is not the case in general for the HS
moment functions, for which

ED;Y 1
½hðY 1;Y 0;D;b0; �ÞjY 0� � qðY 0;b0; �Þ

¼ qðY 0;b0; 0Þ þOð�Þ ðA:7Þ

is non-zero and that conditional expectation is of order a ¼ 0 in � in the more general setup of Aı̈t-Sahalia and
Mykland (2004, equation (27), p. 2195). Recall that ED;Y 1;Y 0

½hðY 1;Y 0;D;b0; �Þ� ¼ 0 hence by the law of iterated
expectations we have that

EY 0
½qðY 0; b0; �Þ� ¼ 0 (A.8)

and in particular EY 0
½qðY 0;b0; 0Þ� ¼ 0 with qðY 0;b0; 0Þ ¼ hðY 0;Y 0; 0;b0; 0Þ.

While the index a (¼ 0 here) and the function q play a crucial role in determining the order in � of the matrix
Tb, the function r will play an important role in the determination of its coefficients. We define r as

rðy0;b0; �Þ ¼ �
Z 1
0

Ut � Ab0 � qðy0;b0; �ÞE½tNðtÞþ1�dt, (A.9)
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where Ud � f ðy0; d;b; �Þ � EY 1
½f ðY 1;Y 0;D;b; �ÞjY 0 ¼ y0;D ¼ d� is the conditional expectations operator.

Lemma 3 of Aı̈t-Sahalia and Mykland (2004) showed that

Tb ¼
2

E½D0�
ð��1EY 0

½h� r� þ ED0;Y 0
½Gb0 � ðh� rÞ� þOð�ÞÞ. (A.10)

We therefore need to say more about the function r in order to be able to implement the computations
required in (A.10). r satisfies the differential equation

q
qy

qrðy;b0; 0Þ
qy

1

sðy;b0Þ

� �
¼ �

2qðy;b0; 0Þ
s2ðy; g0Þsðy; b0Þ

(A.11)

which can be used to evaluate the terms of the expansion

rðY 1;b0; �Þ ¼ rðY 0; b0; 0Þ þ ðY 1 � Y 0Þ
qrðY 0;b0; 0Þ

qy

þ
1

2
ðY 1 � Y 0Þ

2q
2rðY 0; b0; 0Þ

qy2
þ �

qrðY 0; b0; 0Þ
q�

þ opð�Þ ðA:12Þ

for a given h: this is what we will need to do for the HS moment functions. In what follows, we use subscripts
‘‘C1’’ or ‘‘C2’’ when denoting the h and related functions (such as q and r) corresponding to each of the two
situations.

Appendix B. Proof of Theorem 1

To calculate Tb for the hC1 moment function, we start with a lemma:

Lemma 1. For any function fðY 0;b0Þ suitably differentiable in y, such that the expected values below exist,
we have

EY 0
½fqC1� ¼ �

1

2
EY 0

s2
qc
qy

qf
qy

� �
, (B.13)

EY 0
s2f

qrC1

qy

� �
¼ �EY 0

s2
qc
qy

f
� �

, (B.14)

EY 0
s4f

q2rC1
qy2

� �
¼ �EY 0

s4
q2c
qy2

f
� �

, (B.15)

where all the functions are evaluated at � ¼ 0 and b ¼ b0.

Proof. Based on the form of qC1 given in (18), we have

EY 0
½fqC1� ¼ EY 0

½f� ðBb0 � cÞ�

¼ EY 0
m
qc
qy
þ

s2

2

q2c
qy2

� �
f

� �

¼ EY 0
�
s2

2

q
qy

qc
qy

f
� �

þ
s2

2

q2c
qy2

f
� �

¼ �
1

2
EY 0

s2
qc
qy

qf
qy

� �

which proves (B.13).
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Next, recall the fact that pðy; b0Þ ¼ c=ðsðy; g0Þs
2ðy; g0ÞÞ where c is the integration constant needed to ensure

that
R
pðy; b0Þdy ¼ 1. Using integration by parts, we have

EY 0
s2f

qrC1

qy

� �
¼

Z
qrC1

qy
s2fpdy

¼ c

Z
qrC1

qy

1

s
fdy

¼ � c

Z
q
qy

qrC1

qy

1

s

� � Z y

fdz0

� �
dy

¼ c

Z
2qC1

s2s

Z y

fdz0

� �
dy

¼ 2

Z
qC1

Z y

fdz0

� �
pdy

¼ 2EY 0

Z Y 0

fdz0

� �
qC1

� �

¼ � EY 0
s2
qc
qy

f
� �

, ðB:16Þ

where in the second-to-last equality, the integration constant in
RY 0 fdz0 is irrelevant because

EY 0
½qC1ðY 0;b0; 0Þ� ¼ 0. The last equality follows from (B.13).

Using again (A.11), that is

q
qy

qrC1

qy

1

s

� �
¼ �

2qC1

s2s

we have

q2rC1
qy2

1

s
¼

qrC1

qy

qs

qy

1

s2
�

2qC1

s2s
¼ �

qrC1

qy

1

s

2m
s2
�

2qC1

s2s

since

qs

qy
¼ �

2m
s2

s

hence

q2rC1
qy2
¼ �

qrC1

qy

2m
s2
�

2qC1

s2
.

With again p ¼ c=ðss2Þ, it follows that

EY 0
s4f

q2rC1
qy2

� �
¼ � 2EY 0

s2fm
qrC1

qy

� �
� 2EY 0

½s2fqC1�

¼ 2EY 0
s2
qc
qy

fm
� �

þ EY 0
s2
qc
qy

qðs2fÞ
qy

� �

¼ 2EY 0
s2
qc
qy

fm
� �

þ EY 0
s4
qf
qy
þ s2

qs2

qy
f

� �
qc
qy

� �
ðB:17Þ

by applying (B.13) and (B.14).
But recall now that

EY 0
½fm� ¼ �

1

2
EY 0

s2
qf
qy

� �
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so that

EY 0
s4f

q2rC1
qy2

� �
¼ � EY 0

s2
q
qy

s2
qc
qy

f
� �� �

þ EY 0
s4 þ s2

qs2

qy

� �
qc
qy

qf
qy

� �

¼ � EY 0
s2

qs2

qy

qc
qy

fþ s2
q2c
qy2

fþ s2
qc
qy

qf
qy

� �� �
þ EY 0

s4
qf
qy
þ s2

qs2

qy
f

� �
qc
qy

� �

¼ � EY 0
s4
q2c
qy2

f
� �

and the lemma is proved. &

Returning to Tb, we have from (A.10)

Tb ¼
2

E½D0�
ð��1EY 0

½ðhC1 � rC1Þ� þ ED0;Y 0
½ðGb0 � ðhC1 � rC1ÞÞ�Þ þOð�Þ

� ��1T
ð�1Þ
b þ T

ð0Þ
b þOð�Þ. ðB:18Þ

To compute T
ð�1Þ
b , we therefore need to calculate

EY 0
½ðhC1 � rC1Þ� ¼ EY 0

½hC1ðY 0;Y 0; 0;b0; 0Þ � rC1ðY 0;b0; 0Þ�

¼ EY 0
½ðBb0 � cðY 0;b0ÞÞ � rC1ðY 0; b0; 0Þ�

¼ �
1

2
EY 0

s2ðY 0; g0Þ
qcðY 0;b0Þ

qy

qrC1ðY 0;b0; 0Þ
qy

� �
because of (B.13).

Next, we apply (B.14) to get

EY 0
s2
qc
qy

qrC1

qy

� �
¼ �EY 0

s2
qc
qy

� �2
" #

and thus

T
ð�1Þ
b ¼

2

E½D0�
EY 0
½ðhC1 � rC1Þ�

¼
2

E½D0�
�
1

2

� �
�EY 0

s2ðY 0; g0Þ
qcðY 0; b0Þ

qy

� �2
" # !

¼
1

E½D0�
EY 0

s2ðY 0; g0Þ
qcðY 0;b0Þ

qy

� �2
" #

. ðB:19Þ

Regarding the next order term in Tb, we have

T
ð0Þ
b ¼

2

E½D0�
ED0;Y 0

½ðGb0 � ðhC1 � rC1ÞÞ� ¼
2

E½D0�
ED0;Y 0

½hC1 � ðGb0 � rC1Þ�

since by (14) and the independence of hC1 on y1, we have Gb0 � hC1 ¼ 0 and qhC1=qy1 ¼ 0 so that

Gb0 � ðhC1 � rC1Þ ¼ ðGb0 � hC1Þ � rC1 þ hC1 � ðGb0 � rC1Þ þ D0s20
qrC1

qy1

qhC1

qy1

¼ hC1 � ðGb0 � rC1Þ.

Using the definition of the operator Gb0 , we have Gb0 � rC1 ¼ D0ðAb0 � rC1Þ þ qrC1=q� with

qrC1

q�
ðy; b0; 0Þ ¼

q�rC1
q�
ðy;b0; 0Þ þ

1

2

E½D2
0�

E½D0�
qC1ðy; b0; 0Þ
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from equation (29) in Aı̈t-Sahalia and Mykland (2004, p. 2196). But qC1ðy;b0; �Þ � qC1ðy; b0; 0Þ identically, i.e.,
qC1 does not depend on � and therefore �rC1 does not depend on � either. Hence ðq�rC1=q�Þðy; b0; 0Þ ¼ 0.

Therefore

ED0;Y 0
½hC1 � ðGb0 � rC1Þ� ¼ ED0;Y 0

ðBb0 � cÞ � D0Ab0 � rC1 þ
1

2

E½D2
0�

E½D0�
qC1

� �� �

¼ E½D0�EY 0
½ðBb0 � cÞðAb0 � rC1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�K1

þ
1

2

E½D2
0�

E½D0�
EY 0
½ðBb0 � cÞqC1�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
�K2

. ðB:20Þ

Consider first the term K2 in (B.20). Applying (B.13), we have

K2 ¼ EY 0
½ðBb0 � cÞqC1� ¼ EY 0

�
s2

2

qc
qy

qðBb0 � cÞ
qy

� �

¼ EY 0
�
s2

2

qc
qy

q
qy

m
qc
qy
þ

s2

2

q2c
qy2

� �� �

¼ EY 0
�
s2

2

qc
qy

m
q2c
qy2
þ

qm
qy

qc
qy
þ

1

2

qs2

qy

q2c
qy2
þ

s2

2

q3c
qy3

� �� �

¼ EY 0

s2

2

q
qy

s2

2

qc
qy

q2c
qy2

� �
�

s2

2

qc
qy

qm
qy

qc
qy
þ

1

2

qs2

qy

q2c
qy2
þ

s2

2

q3c
qy3

� �� �

¼ EY 0

s2

4

qs2

qy

qc
qy

q2c
qy2
þ

s4

4

q2c
qy2

� �2

þ
qc
qy

q3c
qy3

 !
�

s2

2

qc
qy

qm
qy

qc
qy
þ

1

2

qs2

qy

q2c
qy2

� �
�

s4

4

qc
qy

q3c
qy3

" #

¼ EY 0

s4

4

q2c
qy2

� �2

�
s2

2

qm
qy

qc
qy

� �2
" #

. ðB:21Þ

Regarding the term K1 in (B.20), we apply similarly (B.13) to obtain

K1 ¼ EY 0
ðBb0 � cÞðAb0 � rC1Þ

 �

¼ EY 0
�
s2

2

qc
qy

qðAb0 � rC1Þ

qy

� �

¼ EY 0
�
s2

2

qc
qy

q
qy

m
qrC1

qy
þ

s2

2

q2rC1

qy2

� �� �

¼ EY 0
�
s2

2

qc
qy

m
q2rC1
qy2
þ

qm
qy

qrC1

qy
þ

1

2

qs2

qy

q2rC1

qy2
þ

s2

2

q3rC1
qy3

� �� �

¼ EY 0

s2

2

q
qy

s2

2

qc
qy

q2rC1
qy2

� �
�

s2

2

qc
qy

qm
qy

qrC1

qy
þ

1

2

qs2

qy

q2rC1
qy2
þ

s2

2

q3rC1
qy3

� �� �

¼ EY 0

s2

4

qs2

qy

qc
qy

q2rC1

qy2
þ

s4

4

q2c
qy2

q2rC1

qy2
þ

qc
qy

q3rC1
qy3

� �
�

s2

2

qc
qy

qm
qy

qrC1

qy
þ

1

2

qs2

qy

q2rC1
qy2

� �
�

s4

4

qc
qy

q3rC1
qy3

� �

¼ EY 0

s4

4

q2c
qy2

q2rC1

qy2
�

s2

2

qm
qy

qc
qy

qrC1

qy

� �
.

Next, we apply (B.14) to get

EY 0
s2
qm
qy

qc
qy

qrC1

qy

� �
¼ �EY 0

s2
qc
qy

� �2qm
qy

" #
.

Then we apply (B.15) to obtain

EY 0
s4
q2c
qy2

q2rC1

qy2

� �
¼ �EY 0

s4
q2c
qy2

q2c
qy2

� �
.



ARTICLE IN PRESS
Y. Aı̈t-Sahalia, P.A. Mykland / Journal of Econometrics 144 (2008) 1–2622
Therefore

K1 ¼ EY 0
½ðBb0 � cÞðAb0 � rC1Þ�

¼ EY 0

s4

4

q2c
qy2

q2rC1
qy2
�

s2

2

qm
qy

qc
qy

qrC1

qy

� �

¼
1

2
EY 0

s2
qc
qy

� �2qm
qy

" #
�

1

4
EY 0

s4
q2c
qy2

q2c
qy2

� �
. ðB:22Þ

Replacing (B.21) and (B.22) into (B.20), we therefore have

T
ð0Þ
b ¼

2

E½D0�
fED0;Y 0

½hC1 � ðGb0 � rC1Þ�g

¼ 2K1 þ
E½D2

0�

E½D0�
2
K2

¼ EY 0
s2

qc
qy

� �2qm
qy

" #
� EY 0

s4

2

q2c
qy2

q2c
qy2

� �
þ

E½D2
0�

E½D0�
2
EY 0

s4

4

q2c
qy2

� �2

�
s2

2

qm
qy

qc
qy

� �2
" #

¼
E½D2

0� � 2E½D0�
2

� �
4E½D0�

2
EY 0

s4
q2c
qy2

� �2
" #

� 2EY 0
s2

qc
qy

� �2qm
qy

" #( )
. ðB:23Þ

We then put everything together: (B.19) and (B.23) give the expansion of Tb in (B.18); (19)–(20) for Db and
Sb;0; and from there follows the expansion for Ob given in (26).
Appendix C. Proof of Theorem 2

The moment function hC2 depends on ðy1; y0;bÞ, but not on ðd; �Þ. As in the hC1 case, the only difference
between estimating y and estimating s2 appears in Db. Recall that qC2 is defined by

ED;Y 1
½hC2ðY 1;Y 0;D; b0; �ÞjY 0� � qC2ðY 0;b0; �Þ

¼ q2ðY 0;b0; 0Þ þ �
qq2ðY 0;b0; 0Þ

q�
þOð�2Þ

and note that, even though hC2 does not depend on �, qC2ðy0;b0; �Þ does depend on � (unlike qC1): the
dependence of hC2 on y1 implies that qC2ðy0;b0; �Þ does not reduce to qC2ðy0;b0; 0Þ. The specific expressions for
qC2ðy0;b0; 0Þ and qqC2ðY 0;b0; 0Þ=q� are

qC2ðy0;b0; 0Þ ¼ hC2ðy0; y0; 0;b0; 0Þ

¼ fAb0 � c1ðy0;b0Þg � c0ðy0;b0Þ � fBb0 � c0ðy0;b0Þg � c1ðy0;b0Þ ðC:24Þ

and

qqC2ðy0;b0; 0Þ
q�

¼ E½D0�ðAb0 � hC2Þðy0; y0; 0;b0; 0Þ

¼ E½D0�ffA
2
b0
� c1ðy0; b0Þg � c0ðy0; b0Þ � fBb0 � c0ðy0; b0Þg � fAb0 � c1ðy0; b0Þgg. ðC:25Þ

Next, we have Db ¼ D
ð0Þ
b þD

ð1Þ
b �þOð�2Þ and Sb;0 ¼ S

ð0Þ
b;0 þOð�Þ with

D
ð0Þ
b ¼

D
ð0Þ
y ¼ EY 0

qm
qy

qc1

qy
c0 � c1

qc0

qy

� �� �
when estimating y;

Dð0Þg ¼
1

2
EY 0

qs2

qg
q2c1

qy2
c0 � c1

q2c0

qy2

� �� �
when estimating g;

8>>><
>>>: (C.26)
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D
ð1Þ
b ¼

D
ð1Þ
y ¼

1

2
E½D0�EY 0

s2
qm
qy

q2c0

qy2

qc1

qy
�

qc0

qy

q2c1

qy2

� �� �
when estimating y;

Dð1Þg ¼
1

4
E½D0�EY 0

s2
qs2

qg
q3c0

qy3

qc1

qy
�

qc0

qy

q3c1

qy3

� ��

þs2
q2s2

qyqg
q2c0

qy2

qc1

qy
�

qc0

qy

q2c1

qy2

� ��
when estimating g;

8>>>>>>>>><
>>>>>>>>>:

(C.27)

S
ð0Þ
b;0 ¼ EY 0

½ðfAb0 � c1ðY 0;b0Þg � c0ðY 0; b0Þ � fBb0 � c0ðY 0; b0Þg � c1ðY 0;b0ÞÞ
2
�. (C.28)

As for Tb, we have from (A.10)

Tb ¼
2

E½D0�
ð��1EY 0

½ðhC2 � rC2Þ� þ ED0;Y 0
½ðGb0 � ðhC2 � rC2ÞÞ�Þ þOð�Þ

� ��1T
ð�1Þ
b þ T

ð0Þ
b þOð�Þ. ðC:29Þ

The first term is

T
ð�1Þ
b ¼

2

E½D0�
EY 0
½hC2ðY 0;Y 0; 0;b0; 0Þ � rC2ðY 0;b0; 0Þ�

¼
2

E½D0�
EY 0
½qC2ðY 0;b0; 0Þ � rC2ðY 0; b0; 0Þ�

¼
1

E½D0�
EY 0

s2 c1

qc0

qy
� c0

qc1

qy

� �
qrC2

qy

� �

¼
1

E½D0�
EY 0

s2 c1

qc0

qy
� c0

qc1

qy

� �2
" #

ðC:30Þ

with the second equality following from (C.24), the third from (C.35) and the last from (C.36).
Regarding the next order term in Tb, we have

T
ð0Þ
b ¼

2

E½D0�
ED0;Y 0

½Gb0 � ðhC2 � rC2Þ�. (C.31)

Since hC2 does not depend on �, and in view of the function �r defined in Aı̈t-Sahalia and Mykland (2004,
equation (29), p. 2196), we have

T
ð0Þ
b ¼

2

E½D0�
ED0;Y 0

½Gb0 � ðhC2 � �rC2Þ� þ
E½D2

0�

E½D0�
2
ED0;Y 0

½hC2q�

¼ 2EY 0
½Ab0 � ðhC2 � �rC2Þ� þ

E½D2
0�

E½D0�
2
S
ð0Þ
b;0 ðC:32Þ

since, by iterated conditional expectations,

ED0;Y 0
hC2q½ � ¼ ED0;Y 0

½h2
C2�

¼ S
ð0Þ
b;0. ðC:33Þ

Thus S
ð�1Þ
b ¼ T

ð�1Þ
b , while

S
ð0Þ
b ¼ S

ð0Þ
b;0 þ T

ð0Þ
b;0

¼ 2ðEY 0
½Ab0 � ðhC2 � �rC2Þ� þ S

ð0Þ
b;0Þ þ

Var½D0�

E½D0�
2

S
ð0Þ
b;0. ðC:34Þ
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We then put together the expansions of Db, Sb;0 and Tb to obtain the expansion for Ob given in (38). The
terms of order �0 are given in the statement of the theorem, while the terms of order �1 are

Oð1Þy ¼
E½D0�ðD

ð0Þ
y ðS

ð0Þ
b;0 þ T

ð0Þ
b Þ � 2D

ð1Þ
y T

ð�1Þ
b Þ

ðD
ð0Þ
y Þ

3
,

Oð1Þs2 ¼
E½D0�ðD

ð0Þ

s2 ðS
ð0Þ
b;0 þ T

ð0Þ
b Þ � 2D

ð1Þ

s2 T
ð�1Þ
b Þ

ðD
ð0Þ

s2 Þ
3

when estimating y or g, respectively.
We have used the following.

Lemma 2. For any function fðy1; y0; b0Þ suitably differentiable in y0, such that the expected values below exist,
we have

EY 0
½fqC2� ¼

1

2
EY 0

s2
qc0

qy
c1 � c0

qc1

qy

� �
qf
qy1

þ
qf
qy0

� �� �
, (C.35)

EY 0
s2f

qrC2

qy

� �
¼ EY 0

s2
qc0

qy
c1 � c0

qc1

qy

� �
f

� �
, (C.36)

EY 0
s4f

q2rC2
qy2

� �
¼ EY 0

s4
qc0

qy
c1 � c0

qc1

qy

� �
f

� �
, (C.37)

where all the functions are evaluated at y1 ¼ y0, � ¼ 0 and b ¼ b0.

Proof. From the form of qC2 given in (C.24), we have

EY 0
½fqC2� ¼ EY 0

½f� ðfAb0 � c1ðy0;b0Þg � c0ðy0;b0Þ � fBb0 � c0ðy0;b0Þg � c1ðy0;b0ÞÞ�

¼ EY 0
f� m

qc1

qy
þ

s2

2

q2c1

qy2

� 

c0 � m

qc0

qy
þ

s2

2

q2c0

qy2

� 

� c1

� �� �

¼ EY 0
mf

qc1

qy
c0 �

qc0

qy
c1

� 

c0 þ

s2

2
f

q2c1

qy2
c0 �

q2c0

qy2
c1

� 
� �

¼ � EY 0

s2

2

d

dy0

f
qc1

qy
c0 �

qc0

qy
c1

� 
� �� �
þ EY 0

s2

2
f

q2c1

qy2
c0 �

q2c0

qy2
c1

� 
� �

¼ � EY 0

s2

2

qc1

qy
c0 �

qc0

qy
c1

� 

df
dy0

� �
� EY 0

s2

2

q2c1

qy2
c0 �

q2c0

qy2
c1

� 

f

� �

þ EY 0

s2

2
f

q2c1

qy2
c0 �

q2c0

qy2
c1

� 
� �

¼
1

2
EY 0

s2
qc1

qy
c0 �

qc0

qy
c1

� 

df
dy0

� �

with the fourth equality following from

EY 0
½mðY 0; y0Þf ðY 0Þ� ¼ �EY 0

s2ðY 0; g0Þ
2

df ðY 0Þ

dy0

� �
. (C.38)

Then we have

df
dy0

¼
dfðy0; y0;b0Þ

dy0

¼
qf
qy1

þ
qf
qy0

.
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Next, as in the development (B.16) in Lemma 1, we have

EY 0
s2f

qrC2

qy

� �
¼

Z
qrC2

qy
s2fpdy

¼ 2EY 0

Z Y 0

fdz0

� �
qC2

� �

from which it follows that

EY 0
s2f

qrC2

qy

� �
¼ EY 0

s2
qc0

qy
c1 � c0

qc1

qy

� �
f

� �

by applying (C.35).
Next, the same development as (B.17) in Lemma 1 now gives

EY 0
s4f

q2rC2
qy2

� �
¼ �2EY 0

s2fm
qrC2

qy

� �
� 2EY 0

½s2fqC2�

and we apply (C.35) and (C.36) to obtain

EY 0
s4f

q2rC2
qy2

� �
¼ �2EY 0

s2
qc0

qy
c1 � c0

qc1

qy

� �
fm

� �
� EY 0

s2
qc0

qy
c1 � c0

qc1

qy

� �
dðs2fÞ
dy0

� �
.

But from (C.38) it follows that

�2EY 0
s2

qc0

qy
c1 � c0

qc1

qy

� �
fm

� �
¼ EY 0

s2
d

dy0

s2
qc0

qy
c1 � c0

qc1

qy

� �
f

� �� �

¼ EY 0
s2

qc0

qy
c1 � c0

qc1

qy

� �
dðs2fÞ
dy0

� �

þ EY 0
s4f

q
qy

qc0

qy
c1 � c0

qc1

qy

� �� �� �
and therefore

EY 0
s4f

q2rC2

qy2

� �
¼ EY 0

s4f
q
qy

qc0

qy
c1 � c0

qc1

qy

� �� �� �

¼ EY 0
s4f

q2c0

qy2
c1 � c0

q2c1

qy2

� �� �
which completes the proof of the lemma. &
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