
Presented in WCC 2013, Bergen, Norway, 15–19 April, 2013

Quantum algorithm to check Resiliency of a Boolean
function (Extended Abstract)

Kaushik Chakraborty · Subhamoy Maitra

Abstract In this paper, for the first time, we present quantum algorithms to check
the order of resiliency of a Boolean function. We first show that the Deutsch-
Jozsa algorithm can be directly used for this purpose. We also point out how
the quadratic improvement in query complexity over the Deutsch-Jozsa algorithm
can be obtained using the well known Grover’s algorithm. While the worst case
quantum query complexity to check the resiliency order is exponential, we can
cleverly devise a strategy so that the number of measurements are polynomial in
number of input variables of the Boolean function. We also point out a subset of
n-variable Boolean functions for which the algorithm works in polynomial many
steps, i.e., we achieve exponential speed-up over best known classical algorithms.
Keywords: Boolean Functions, Deutsch-Jozsa Algorithm, Grover Algorithm, Mea-
surement, Resiliency.

1 Introduction

After the introduction of Deutsch-Jozsa algorithm [4] in quantum paradigm, sev-
eral works have been presented in literature to describe strategies that can dis-
tinguish Boolean functions of different weights (for example, see [1] and the refer-
ences therein). Such problems are actually related to studying Walsh spectrum of
Boolean functions. From cryptologic viewpoint, the concept of balancedness can be
generalized with the idea of resiliency and we will consider this problem here. We
will study how efficiently one can check whether a Boolean function is m-resilient
or not.

Before proceeding further, let us introduce basics of Boolean functions. A
Boolean function on n variables may be viewed as a mapping from {0, 1}n into
{0, 1}. We will denote the set of n-variable Boolean functions as Bn. It is easy

Kaushik Chakraborty
Indian Statistical Institute, Kolkata 700 108, India
E-mail: kaushik.chakraborty9@gmail.com

Subhamoy Maitra
Applied Statistics Unit, Indian Statistical Institute, Kolkata 700 108, India
E-mail: subho@isical.ac.in

2 Kaushik Chakraborty, Subhamoy Maitra

to note that |Bn| = 22n . Let us denote the addition operator over GF (2) by ⊕.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and the inner
product x · ω = x1ω1 ⊕ · · · ⊕ xnωn. Let f(x) be a Boolean function on n variables.
Then the Walsh transform of f(x) is an integer valued function over {0, 1}n which is
defined as Wf (ω) =

∑
x∈{0,1}n(−1)f(x)⊕x·ω. The fastest known classical algorithm

to calculate all the Walsh spectrum values of f ∈ Bn, i.e., Wf (ω) at each of the 2n

points ω, is of O(n2n) time complexity. To calculate the Walsh spectrum value at
a specific point requires O(2n) time too in classical domain.

For a binary string str, the number of 1’s in the string is called (Hamming)
weight of str and denoted as wt(str). In truth table representation, a Boolean
function f ∈ Bn can be viewed as a binary string of length 2n, which is the output
column of the truth table. If wt(f) = 2n−1, then f is called a balanced function.
In terms of Walsh spectrum, f ∈ Bn is balanced if and only if Wf (0, 0, . . . , 0) = 0.
Following [7], a function f ∈ Bn is m-resilient iff its Walsh transform satisfies
Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m. It is easy to note that a balanced function is
actually a 0-resilient function. Thus, informally speaking, the problems related to
resiliency will be the generalization of the problems related to balancedness.

Before proceeding further, let us briefly discuss certain algorithms in classical as
well as quantum domain. We consider that the Boolean function f ∈ Bn is available
as an (classical or its quantum counterpart) oracle, i.e., the corresponding output
can be obtained efficiently given the input. Given the promise that f is either
constant or balanced, to check which one it is, we have Deutsch-Jozsa [4] algorithm
to solve it in constant time. Though there is no polynomial time algorithm to
solve this problem in classical domain, probabilistic polynomial time algorithms
are indeed available to solve this problem efficiently. Given that Wf (ω) = 0 or
±2n, the question of “which one it is” can be solved exactly in a similar manner,
by considering the function f(x)⊕ ω · x instead of f(x).

It is well known that checking resiliency of an n-variable Boolean function
requires exponential time in n in classical domain. In this paper we try to analyse
the solution of this problem in quantum paradigm. We note that the traditional
Deutsch-Jozsa [4] can be used for this purpose. Further, we try to devise strategies
with better efficiency than this using Grover algorithm [5]. It should be noted that
Grover algorithm has earlier been used in weight decision problems for Boolean
functions [1] and we note that a more involved application of this algorithm can also
be exploited in the resiliency checking problem. The most important contribution
of our work is that, though the worst case query complexity1 of our algorithm may
be exponential, we need only polynomial many measurements for this purpose. We
also identify a sub class of Boolean functions for which our quantum algorithms
work with polynomial many queries in n. The best known classical algorithm for
this sub class requires exponential many steps.

2 Algorithm to check Resiliency

Given f is either constant or balanced, if the corresponding quantum implementa-
tion Uf is available, Deutsch-Jozsa [4] provided a quantum algorithm that decides

1 For quantum algorithms, we write “query complexity” instead of “time complexity” as we
need to query some oracles, e.g., Uf ,Og as described in Section 2.

Quantum algorithm to check Resiliency of a Boolean function (Extended Abstract) 3

in constant many queries which one it is. The overall idea of the algorithm can be
summarized as in Figure 1.

|0〉

|1〉

��
n

H

H⊗n H⊗n M

y

x x

y ⊕ f(x)

Uf

↑ ↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 1 Quantum circuit to implement Deutsch-Jozsa Algorithm

The step by step description of the Deutsch-Jozsa [4] algorithm can be written
as follows.

Input: A Boolean function f on n variables is available in the form of the unitary
transformation Uf

Output: n-bit pattern

Take an (n+ 1) qubit state |ψ0〉 = |0〉⊗n|1〉;1

Apply Hadamard Transform H⊗(n+1) on |ψ0〉 to get |ψ1〉 =
∑

x∈{0,1}n
|x〉√
2n

[
|0〉−|1〉√

2

]
;2

Apply Uf on |ψ1〉 to get |ψ2〉 =
∑

x∈{0,1}n
(−1)f(x)|x〉√

2n

[
|0〉−|1〉√

2

]
;3

Apply Hadamard Transform on the first n qubits of |ψ2〉 to obtain4

|ψ3〉 =
∑

z∈{0,1}n
∑

x∈{0,1}n
(−1)x·z⊕f(x)|z〉

2n

[
|0〉−|1〉√

2

]
;

Measurement at M : measure the first n qubits of |ψ3〉;5

After measurement, all zero state (n-bit all zero pattern) implies that the function is6

constant, else it is balanced;

Algorithm 1: The Deutsch-Jozsa algorithm [4].

Let us now describe our interpretation of Deutsch-Jozsa algorithm in terms
of Walsh spectrum values. We denote the operator for Deutsch-Jozsa algorithm
as Df = H⊗nUfH

⊗n, where the Boolean function f is available as an oracle
Uf . For brevity, we abuse the notation and do not write the auxiliary qubit, i.e.,
|0〉−|1〉√

2
and the corresponding output in this case2. Now one can observe that

Df |0〉⊗n =
∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)x·z⊕f(x)|z〉
2n =

∑
z∈{0,1}n

Wf (z)
2n |z〉, i.e., the as-

sociated probability with a state |z〉 is
W 2
f (z)

22n . In this regard, we have the following
technical result as pointed out in [6].

2 We go for similar abuse of notation for the phase inversion oracle later.

4 Kaushik Chakraborty, Subhamoy Maitra

Proposition 1 Given an n-variable Boolean function f , Df |0〉⊗n produces a super-

position of all states z ∈ {0, 1}n with the amplitude
Wf (z)

2n corresponding to each state

|z〉.

Consider that we are interested to know whether f ∈ Bn is m-resilient. Let Sm =
{x ∈ {0, 1}n|wt(x) ≤ m} and Sm = {x ∈ {0, 1}n|wt(x) > m}. Consider the n-

qubit state |Ψ〉 =
∑
s∈Sm

Wf (s)
2n |s〉+

∑
s∈Sm

Wf (s)
2n |s〉. For brevity, let us represent

|Ψ〉 = a|X〉+ b|Y 〉. That is, a2 =
∑

s∈Sm

W 2
f (s)

22n and b2 =
∑

s∈Sm

W 2
f (s)

22n .

Using the Deutsch-Jozsa algorithm, we obtain
∑
z∈{0,1}n

Wf (z)
2n |z〉 (before the

measurement) and a2 =
∑

s∈Sm

W 2
f (s)

22n . That is, some state s ∈ Sm will appear after

the measurement with probability a2. Hence, in expected O(1
a2) iterations, one can

observe some s ∈ Sm after the measurement and output that f is not m-resilient.
If f is indeed m-resilient, then a2 = 0 and thus any state s ∈ Sm will never appear
at the output. One may note that the minimum absolute value of Walsh spectrum
is 2 and thus, we can have a situation that f is not m-resilient, but a2 is O(1

22n).
In such a case, the algorithm will require exponential many queries to provide the
correct result. Thus the resiliency checking algorithm is as follows.

Input: A Boolean function f on n variables is available in the form of the unitary
transformation Uf , order of resiliency m and the number of iteration r

Output: n-bit pattern

Sm = {x ∈ {0, 1}n|wt(x) ≤ m};1

for r many times do2

Apply Deutsch-Jozsa algorithm and take the n-bit output u;3

if u ∈ Sm then4

Report that the function is not m-resilient (NO) and terminate;
end

end
Report that the function is m-resilient (YES);5

Algorithm 2: Resiliency checking using the Deutsch-Jozsa algorithm [4].

Theorem 1 Let c be a predefined constant. Algorithm 2 correctly answers NO, but

answers YES with success probability greater than or equal to c, in r many steps, where

r is O(1
a2) and a2 =

∑
s∈Sm

W 2
f (s)

22n > 0.

Proof According to Algorithm 2, one can observe that for each iteration, the suc-
cess probability is a2. At i-th step, the success probability will be 1 − (1 − a2)i.
So, at i = r the success probability will become 1− (1− a2)r = c. Now solving this
equation we get r is O(1

a2). ut

Remark 1 Algorithm 2 is written in such a manner that if a function is indeed m-
resilient, then a = 0 and thus the algorithm will say YES after executing r many
steps. However, it is known that for nonzero Walsh spectrum values, the minimum
is ±2 and thus, a2 ≥ 4

22n . Hence, after repeating the algorithm r, i.e., O(22n) many

Quantum algorithm to check Resiliency of a Boolean function (Extended Abstract) 5

times, if we don’t observe any binary string u ∈ Sm after measurements, then we
can conclude that the Boolean function f is m-resilient with success probability
greater than some predefined constant c. This provides the worst case scenario.

2.1 Improvement using Grover Algorithm

Grover algorithm [5] provides a quadratic speed-up compared to repeated use of
Deutsch-Jozsa algorithm and that is the motivation we try out here. Instead of
equal superposition |ψ〉 = H⊗n|0〉⊗n = 1

2
n
2

∑
x∈{0,1}n |x〉 in Grover algorithm, we

will use the state of the form |Ψ〉 = Df (|0〉⊗n) =
∑
x∈{0,1}n

Wf (x)
2n |x〉.

Consider that any n-qubit state is represented in the computational basis. We
want to amplify the amplitude at the points in Sm. This we achieve in a similar
manner as in Grover algorithm.

The Grover algorithm requires inversion of phase. Towards this, we will use
g(x) ∈ Bn, different from f(x). The corresponding operator Og inverts the phase
of the states |x〉 where x ∈ Sm. That is, we need to change phase for the points
having weight less than or equal to m. This can be achieved by choosing the n-
variable Boolean function g(x) such that g(x) = 1, when wt(x) ≤ m, and g(x) = 0,
otherwise. Thus g is a symmetric function. A symmetric Boolean function can be
efficiently implemented, as described in [3]. The circuit complexity of an n-variable
symmetric Boolean function is 4.5n+o(n). It is known that given a classical circuit
g, a quantum circuit of comparable efficiency can be implemented. Thus, we will
consider that for a symmetric function g, the quantum circuit Og can be efficiently
implemented using O(n) circuit complexity.

Now let us consider the operator Gt = [(2|Ψ〉〈Ψ | − I)Og]t on |Ψ〉 to get |Ψt〉.
The idea presented in the following result is similar to amplitude amplification for
constructing Dicke states as presented in [2]. However, we present the proof for
better understanding.

Theorem 2 Let |Ψ〉 =
∑
s∈Sm

Wf (s)
2n |s〉 +

∑
s∈Sm

Wf (s)
2n |s〉 = a|X〉 + b|Y 〉, where

a = sin θ, b = cos θ. The application of [(2|Ψ〉〈Ψ | − I)Og]t operator on |Ψ〉 produces

|Ψt〉, in which the probability amplitude of |X〉 is sin(2t+ 1)θ.

Proof For t = 1, one can check that

|Ψ1〉 = [(2|Ψ〉〈Ψ | − I)Og]|Ψ〉 = [(2|Ψ〉〈Ψ |)Og]|Ψ〉 − Og|Ψ〉.

Now substituting the values of a, b we get that |Ψ1〉 = sin 3θ|X〉+ cos 3θ|Y 〉.
Now we will use induction. Let the application of [(2|Ψ〉〈Ψ | − I)Og]t operator

on |Ψ〉 updates the probability amplitude of |X〉 as sin(2tθ + θ), for t = k. From
the assumption we have [(2|Ψ〉〈Ψ | − I)Og]k|Ψ〉 = sin(θ+ 2kθ)|X〉+ cos(θ+ 2kθ)|Y 〉.
Now for t = k + 1, it can be checked that

[(2|Ψ〉〈Ψ | − I)Og](k+1)|Ψ〉 = sin(θ + 2(k + 1)θ)|X〉+ cos(θ + 2(k + 1)θ)|Y 〉.

Thus, the proof. ut

6 Kaushik Chakraborty, Subhamoy Maitra

After the Deutsch-Jozsa algorithm we obtain
∑
z∈{0,1}n

Wf (z)
2n |z〉 (before the

measurement) with a2 =
∑

s∈Sm

W 2
f (s)

22n and b2 =
∑

s∈Sm

W 2
f (s)

22n . Thus, we have sin θ = a.

For large n, one can approximate it as θ = a and hence we need t iterations of
Grover like strategy such that (2t+1)θ ≥ sin−1 c, where c is a predefined constant.
Thus, here we need an expected O(1

a) iterations, compared to O(1
a2) iterations

using the Deutsch-Jozsa algorithm only.

Input: A Boolean function f on n variables is available in the form of the unitary
transformation Uf , order of resiliency m and the number of iteration r and a
series of positive integers ti, 1 ≤ i ≤ r related to number of Grover iteration

Output: n-bit pattern

Sm = {x ∈ {0, 1}n|wt(x) ≤ m};1

for i = 1 to r do2

Apply Deutsch-Jozsa algorithm till the step before measurement to obtain3

|Ψ〉 =
∑

s∈Sm
Wf (s)

2n
|s〉+

∑
s∈Sm

Wf (s)

2n
|s〉;

By applying Grover iteration, obtain |Ψti 〉 = [(2|Ψ〉〈Ψ | − I)Og]ti |Ψ〉;4

Measure |Ψti 〉 in computational basis to obtain n-bit string u;5

if u ∈ Sm then6

Report that the function is not m-resilient (NO) and terminate;
end

end
Report that the function is m-resilient (YES);7

Algorithm 3: Resiliency checking using the Grover algorithm [4].

One important issue here is that any estimate of a may not be known and
thus, estimating tr could be challenging. Given that tr can be estimated, after
application of Grover’s algorithm, we will obtain a state

∑
s∈Sm

a′s|s〉+
∑

s∈Sm
b′s|s〉 =

a′|X〉+ b′|Y 〉, where (a′)2 is very close to 1. Using this (Grover algorithm followed
by Deutsch-Jozsa algorithm), we get a quadratic speed-up over just using Deutsch-
Jozsa algorithm.

It is natural to use Grover algorithm for amplitude amplification and thus
obtaining quadratic speed-up. However, in the known applications (e.g., search),
the number of target states for which the amplitude is increased are not large.
That guarantees the efficient implementation of the phase reversal circuit. In this
case, the situation is different as we need to amplify the amplitude at

∑m
i=0 (ni)

many points of weight ≤ m and this could be exponential. Thus, it is an important
question whether the phase reversal can be implemented efficiently. In this case,
this can be achieved as the phase reversal can be implemented with symmetric
functions, the implementation of which is efficient [3].

2.2 Deciding the numbers of Grover iteration

Now let us explicitly describe how one can decide the values of ti for 1 ≤ i ≤ r.

As given in Algorithm 3, we have |Ψ〉 =
∑
s∈Sm

Wf (s)
2n |s〉 +

∑
s∈Sm

Wf (s)
2n |s〉 =

a|X〉 + b|Y 〉, where a = sin θ, b = cos θ. Our motivation is to observe some state

Quantum algorithm to check Resiliency of a Boolean function (Extended Abstract) 7

s ∈ Sm, if
∑
s∈Sm

Wf (s)
2n > 0, i.e., if a > 0. We will apply Grover algorithm to obtain

|Ψti〉 = [(2|Ψ〉〈Ψ |− I)Og]ti |Ψ〉 = sin θi|X〉+ cos θi|Y 〉 such that sin θi is greater than
or equal to some predefined constant, say sin θc = c.

Note that θ1 = θ, and we need t1 = 0, i.e., in this case, we do not apply
the Grover algorithm at all and the situation is similar to Algorithm 2 where
only Deutsch-Jozsa algorithm will be used. As we do not know the value of θ, we
need to try for different values of ti, 1 ≤ i ≤ r such that in one of those cases,
θc ≤ θi ≤ π − θc.

We divide the region [0, π2] in r + 1 many parts, αr+1, αr, αr−1, . . . , α1 (in as-
cending order). There must exist some i ∈ [1, r] such that αi+1 ≤ θ < αi. In the i-th
step, we assume that αi+1 ≤ θ ≤ αi. Thus, in this step we require the minimum ti
such that θc = (2ti + 1)αi+1 ≤ (2ti + 1)θ ≤ (2ti + 1)αi = π − θc. Thus we need

(2ti + 1)αi = π − θc, (1)

(2ti + 1)αi+1 = θc. (2)

Similarly, we have
(2ti−1 + 1)αi−1 = π − θc, (3)

(2ti−1 + 1)αi = θc. (4)

Thus, from (1), (4), we get,

2ti + 1

2ti−1 + 1
=
π − θc
θc

. (5)

Taking the initial condition t1 = 0 and by solving the above recurrence relation,
we get,

(2ti + 1) =
(π − θc)(i−1)

θ
(i−1)
c

(6)

Now the question is how many times we have to continue this process or what
should be the value of r. To answer this question we have to consider in the worst
case given the value of sin θ. Let sin θ = a. From Theorem 2 we know that to
ensure sin θ to be close to 1, the maximum value among ti’s, i.e., tr according
to our technique, should be taken as O(1

a). So, (2tr + 1) ≈ 1
a and we can write

r ≈ log π−θc
θc

(1
a), i.e., r is O(log 1

a). Thus, we have the following result.

Theorem 3 Let c be a predefined constant. Algorithm 3 correctly answers NO, but

answers YES with success probability greater than or equal to c, in r, i.e., O(log 1
a)

many steps and the number of times the Grover operator is executed is O(1
a) where

a2 =
∑

s∈Sm

W 2
f (s)

22n .

Proof How we estimate r is explained above. In Algorithm 3, at the i-th step we
apply the operator [(2|ψ〉〈ψ| − I)Og], ti times. Here i varies from 1 to r. So, the

total number of times the Grover operator is applied is T =
r∑
i=1

ti. From (6), we

can substitute the value of ti and get T = 1
2

r∑
i=1

((π−θc)(i−1)

θ
(i−1)
c

− 1). By solving this

equation and also substituting the value of r we get,

T ≈ 1

2
[

1/a− 1

(π − θc)/θc − 1
− 1

2
{log π−θc

θc

(
1

a
)(log π−θc

θc

(
1

a
) + 1)}]. (7)

8 Kaushik Chakraborty, Subhamoy Maitra

So, the number of times the Grover operator is executed is O(1
a). ut

Remark 2 Similar to Remark 1, for Algorithm 3 we need to consider the case when
the function is m-resilient, i.e., a = 0. In this case r will be O(log 2n), i.e., O(n)
and tr will be O(2n), that provides the worst case scenario.

Remark 3 We like to point out that the number of measurements in both Algo-
rithm 2 and Algorithm 3 are r. In case of Algorithm 2, r is O(1

a2) and can be
exponential in n worst case. However, for Algorithm 3, r is O(log 1

a), which is
polynomial in n in worst case. For Algorithm 2, the number of queries using the
Deutsch-Jozsa operator is r = O(1

a2) and for Algorithm 3, the number of queries
using the Grover operator is T = O(1

a) and both of them could be exponential in
the worst case. In summary,

– in terms of number of queries, Algorithm 3 provides quadratic improvement
over Algorithm 2, though both can be exponential in worst case;

– in terms of number of measurements, Algorithm 3 requires polynomial many
measurements in worst case, while Algorithm 2 requires exponential many.

3 Checking m-resiliency among functions with three valued Walsh

spectrum

Form the analysis in the previous section, we note that the Deutsch-Jozsa al-
gorithm or the Deutsch-Jozsa algorithm (without measurement) followed by the
Grover algorithm can be used to check whether a Boolean function is m-resilient
or not. It is very clear that the second strategy provides a quadratic speed-up over
the first one. It is also evident that the quantum algorithms, in worst case, may
take exponential queries in n. Thus, it would be interesting to consider a class of
Boolean functions for which the problem can be solved in polynomial many queries
in n in quantum paradigm.

In [9–11], several characterizations and constructions of resilient functions have
been presented. In particular, it has been pointed out in [9] that the Walsh spec-
trum values of any m-resilient function will be divisible by 2m+2. In this direction,
we will concentrate on Boolean functions with Walsh spectrum values multiple of
2m+2. Let us define

An = {f ∈ Bn|Wf (ω) ≡ 0 mod 2m+2}.

In this case, if the function is not m-resilient, then a ≥ 2m+2

2n and thus, the query
complexity of checking resiliency is O(2n−m−2) using Algorithm 3. In case, m ≥
n − O(poly(log n)), it is clear that the query complexity of checking resiliency is
O(poly(n)).

We do not know of any classical algorithm that can efficiently decide whether
a function f ∈ An is m-resilient. Thus, we get an exponential speed-up in this case
using quantum algorithm over classical ones.

Quantum algorithm to check Resiliency of a Boolean function (Extended Abstract) 9

4 Conclusion

For the first time, we study the problem of checking resiliency of a Boolean func-
tion in quantum paradigm. We try to obtain algorithms where the input is an
n-variable, m-resilient Boolean function and the algorithm should output YES if
the function is m-resilient and NO if it is not. Our algorithm provides the NO
answer correctly, while the YES answer with probability greater than some pre-
defined constant. We use the well known Deutsch-Jozsa and Grover algorithms
for the purpose. Algorithm 3 shows that it requires exponential many queries but
polynomial many measurements in n in the worst case. We also identify a sub-
class of Boolean functions for which we require polynomial many queries as well
as polynomial many measurements in the worst case. For such a class no efficient
classical algorithm is known. A more elaborate study for such sub-classes will be
presented in the full version of this paper.

References

1. S. L. Braunstein, B.-S. Choi, S. Ghosh and S. Maitra. Exact quantum algorithm to dis-
tinguish Boolean functions of different weights. Journal of Physics A: Mathematical and
Theoretical, Volume: 40, Pages 8441-8454, doi:10.1088/1751-8113/40/29/017, published: 3
July 2007.

2. K. Chakraborty, B.-S. Choi, A. Maitra and S. Maitra. Efficient quantum algorithm to
construct arbitrary Dicke states. Available at http://arxiv.org/abs/1209.5932

3. E. Demenkov, A. Kojevnikov, A. Kulikov and G. Yaroslavtsev, New upper bounds on
the Boolean circuit complexity of symmetric functions. Information Processing Letters 110
(2010) 264–267.

4. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation. Proceedings
of Royal Society of London, A439:553–558 (1992).

5. L. Grover, A fast quantum mechanical algorithm for database search. In Proceedings of
28th Annual Symposium on the Theory of Computing (STOC), May 1996, pages 212–219.
Available at http://xxx.lanl.gov/abs/quant-ph/9605043.

6. S. Maitra and P. Mukhopadhyay, Deutsch-Jozsa Algorithm Revisited in the Domain of
Cryptographically Significant Boolean Functions. In International Journal on Quantum
Information, Pages 359–370, Volume 3, Number 2, June 2005.

7. X. Guo-Zhen and J. Massey. A spectral characterization of correlation immune combining
functions. IEEE Transactions on Information Theory, 34(3):569–571, May 1988.

8. C. H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, The strengths and weaknesses of
quantum computation, SIAM Journal on Computing 26(5): 15101523 (1997).

9. P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient Boolean func-
tions. In Advances in Cryptology - CRYPTO 2000, number 1880 in Lecture Notes in Com-
puter Science, pages 515–532. Springer Verlag, 2000.

10. Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlinearity. In
Progress in Cryptology - INDOCRYPT 2000, number 1977 in Lecture Notes in Computer
Science, pages 19–30. Springer Verlag, 2000.

11. Y. Zheng and X. M. Zhang. Improved upper bound on the nonlinearity of high order
correlation immune functions. In Selected Areas in Cryptography - SAC 2000, number 2012
in Lecture Notes in Computer Science, pages 264–274. Springer Verlag, 2000.

