文章编号: 1000-7032(2013)12-1561-06

Ba₁₀ (PO₄)₄ (SiO₄)₂: Eu²⁺ 荧光体的光谱特性

于晶杰^{1,2},肖志国²,宁桂玲^{1*} (1. 大连理工大学化工学部精细化工重点实验室,辽宁大连 116024; 2. 大连路明发光科技股份有限公司,辽宁大连 116025)

摘要:采用高温固相法合成了荧光体 $Ba_{10}(PO_4)_4(SiO_4)_2$: Ce^{3+} 和 $Ba_{10}(PO_4)_4(SiO_4)_2$: Eu^{2+} , 研究了两种荧 光体的光谱特性。结果表明, 两者都呈现较强的宽带激发特征。根据同种基质中 Eu^{2+} 和 Ce^{3+} 两种离子光谱 特征的相关性, 通过测得的 $Ba_{10}(PO_4)_2(SiO_4)_2$ 基质中 Ce^{3+} 的光谱数据估算了 $Ba_{10}(PO_4)_2(SiO_4)_2$: Eu^{2+} 中 Eu^{2+} 的斯托克斯位移(ΔS)和激发能量, 估算结果与 $Ba_{10}(PO_4)_2(SiO_4)_2$: Eu^{2+} 样品的光谱分析结果十分吻 合。 $Ba_{10}(PO_4)_2(SiO_4)_2$: Eu^{2+} 可以同时被紫光和蓝光激发, 发出偏白的绿光, 可用作白光 LED 的荧光粉。

关键 词:发光材料;光谱;Eu²⁺;Ce³⁺;Ba₁₀(PO₄)₂(SiO₄)₂
 中图分类号:0482.31
 文献标识码:A
 DOI: 10.3788/fgxb20133412.1561

Spectra Properties of $Ba_{10}(PO_4)_4(SiO_4)_2$: Eu^{2+} Phosphor

YU Jing-jie^{1,2}, XIAO Zhi-guo², NING Gui-ling^{1*}

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
 Dalian Luming light Science and Technology Co. Ltd., Dalian 116025, China)

* Corresponding Author, E-mail: ninggl@ dlut. edu. cn

Abstract: The phosphors composed of Eu or Ce ions doped in $Ba_{10} (PO_4)_4 (SiO_4)_2$ matrix were prepared by solid state reaction. The PL spectra properties of $Ba_{10} (PO_4)_4 (SiO_4)_2$: Eu²⁺ and $Ba_{10} (PO_4)_2 (SiO_4)_2$: Ce³⁺ were investigated. Strong broad excitation band was observed in both samples. The Eu²⁺ of Stokes shift (ΔS) and excitation energy of $Ba_{10} (PO_4)_4 (SiO_4)_2$: Eu²⁺ were calculated by the PL spectra of $Ba_{10} (PO_4)_2 (SiO_4)_2$: Ce³⁺. The estimated excitation energy and the experiment result are closely coincided. $Ba_{10} (PO_4)_4 (SiO_4)_2$: Eu²⁺ can be excited by UV-LED or blue LED, and emits absinthe-green light.

Key words: phosphors; spectra; Eu^{2+} ; Ce^{3+} ; $Ba_{10}(PO_4)_2(SiO_4)_2$

1引言

白光 LED 由于其寿命长、效率高、节能等优 点,引起了人们的广泛关注。其中荧光体在白光 LED 中占有重要地位。磷灰石型 *M*₅(PO₄)₃*X* 发 光材料作为荧光灯用荧光粉得到了良好的应 用^[1-2]。在 Sr₁₀(PO₄)₆ X_2 ($X = F^-$, Cl⁻, Br⁻, OH⁻)晶格中,通过(SiO₄)⁴⁻ = (PO₄)³⁻ + Cl⁻取 代形成 Sr₁₀(PO₄)₄(SiO₄)₂。Schwarz^[3]第一次报 道了这种具有磷灰石结构的物质并给出了晶胞参

作者简介:于晶杰(1974-),女,辽宁大连人,博士研究生,主要从事发光材料的研究。

E-mail: jingjie@dl.cn, Tel: (0411)84793746

收稿日期: 2013-08-19;修订日期: 2013-09-06

基金项目:国家自然科学基金(21076041)资助项目

数。 Eu^{2+} 是重要的低价稀土离子,通常呈现为 d→f跃迁宽带发射,一直是开发固体发光材料的 重要研究对象。Blasse 等^[4]报道了 Eu^{2+} 掺杂的 Sr₅(PO₄)₂(SiO₄)荧光体,发现处于不同晶格位置 的 Eu^{2+} 存在能量传递。而且, Eu^{2+} 离子在磷灰石 结构中呈现出异常发射现象^[5],有更大的 Stokes 位移和半峰宽。 Eu^{2+} 的发光强弱也直接影响其 发光效率, Eu^{2+} 掺杂的磷灰石结构硅酸盐荧光体 具有宽带激发、多峰发射、254 nm 紫光激发下呈 准白色发光的特点^[6]。

 Eu^{2+} 作为重要的激活离子,了解它的相关参数对于新的白光 LED 转换用荧光体的探索和设计十分重要。对于 Eu^{2+} 光谱特性研究来说,斯托克斯位移(ΔS)、发射带谱带宽度及激发能量都是一些重要参数。 Eu^{2+} 的激发态能级结构复杂,不易对其光谱参数做出计算^[7]。 Ce^{3+} 是另一个重要的激活剂离子, Ce^{3+} 电子组态中只有一个4f电子,易进入到5d轨道,形成4f⁰5d¹激发态,产生d→f跃迁宽带发射。Blasse^[8]和 Dorenbos^[9-17]详细研究了 Ce^{3+} 的光谱化学特性,给出了大量基质中 Ce^{3+} 的丰富光谱学参数。在某些特定条件下, Eu^{2+} 与 Ce^{3+} 两者具有某些特殊相关性,依据这种特定关系,利用 Ce^{3+} 的光谱数据可估算出相同基质中 Eu^{2+} 的若干相应光谱学参数^[13,17]。

能被 400 nm 以上波段激发的 $Ba_{10}(PO_4)_4$ -(SiO₄)₂的研究比较少,本文重点通过高温固相 法合成分别以 Ce³⁺和 Eu²⁺为激活剂、 $Ba_{10}(PO_4)_4$ -(SiO₄)₂为基质的荧光体,计算 Ce³⁺在 Ba_{10} -(PO₄)₄(SiO₄)₂中的光谱参数,依据 Eu²⁺与 Ce³⁺ 两者的相关性,预判 $Ba_{10}(PO_4)_4(SiO_4)_2$: Eu 荧光 体激发光谱的带边能否延伸到蓝光波段,以确认 是否可以用于白光 LED,并通过实验验证预估 结果。

2 光谱参数计算

2.1 理论依据

对无机化合物基质来讲,如果 Eu^{2+} 和 Ce^{3+} 处 在相同化合物并占据相同格位、两者周围晶格弛 豫状态无太大差异、电荷补偿的缺陷位于第一配 位阴离子壳层之外,则 Ce^{3+} 与 Eu^{2+} 的 f→d 跃迁 能量之间具有相关性。通过这些关联, Dorenbos 经过大量的研究得出了这样的结果^[9-17]:在 Eu^{2+} 或 Ce^{3+} 中只要知道其中一个的光谱学特性参数, 就可推算出另一个的相应参数。

对吸收的红移,发射的斯托克斯位移、5d 组态的重心移动及 5d 能级晶场劈裂等与跃迁能量 相关的因素之间建立了定量关系表达式:

 $E_{\rm abs}(n,Q,A) = E_{\rm Afree}(n,Q) - D(Q,A), (1)$ $E_{\rm em}(n,Q,A) = E_{\rm Afree}(n,Q) - D(Q,A) - \Delta S(Q,A),$ (2)

其中, $E_{abs}(n,Q,A)$ 和 $E_{em}(n,Q,A)$ 分别为二价或 三价镧系离子最低[Xe]4fⁿ组态与最低[Xe]4fⁿ⁻¹5d 组态之间的能量差; $E_{Afree}(n,Q)$ 对每种镧系离子 均为常数,接近自由离子中第一个 f→d 跃迁能 量;D(Q,A)表示化合物A中的红移; $\Delta S(Q,A)$ 表 示化合物A中的斯托克斯位移;n为4fⁿ基态的电 子数目;Q为离子电荷;A表示可变的化合物。

斯托克斯位移值 ΔS 可通过激发光谱和发射 光谱谱峰位置估算出来。 Eu^{2+} 的斯托克斯位移 近于 Ce^{3+} 的斯托克斯位移的 0.61 ± 0.03 倍,其 关系式如下:

 $\Delta S(7,2+,A) = 0.61\Delta S(1,3+,A),$ (3) Eu²⁺的吸收能量 E(7,2+,A)比 Ce³⁺的相应能量 E(1,3+,A)低大约 0.64 倍,一般估算发射能量 计算误差较大,两者关系表达式如下:

$$E(7, 2 + A)$$

 $(0.64 \pm 0.02)E(1,3+,A) + (0.53 \mp 0.06) \text{ eV}.$ (4)

在上面的两个公式中,7 表示 Eu^{2+} 的 4f 电子数目,2 + 表示 Eu^{2+} 价态,A 是与基质化合物有关的因子,1 表示 Ce^{3+} 的 4f 电子数目,3 + 表示 Ce^{3+} 的价态。

2.2 实验与分析

实验所用原料为 BaCO₃(A. R)、(NH₄)₂-HPO₄(A. R)、SiO₂(A. R)、LiF(A. R)、CeO₂(A. R)和 Eu₂O₃(A. R)。称取原料前将所需物料在 200 ℃的恒温马弗炉内进行 3 h 预烧处理(排除 水分和杂质)。按 Ba_{9.7}(PO₄)₄(SiO₄)₂:0.3Eu 和 Ba_{9.7}(PO₄)₄(SiO₄)₂:0.3Ce 的化学计量比分别称 取原料(加入原料混合物总质量的 1% 的 LiF 作 为电荷补偿剂),将 BaCO₃和 Eu₂O₃(或者 CeO₂) 放入尼龙混料罐中混合 1 h,将 SiO₂、(NH₄)₂-HPO₄和 LiF 放入另一罐中混合 1 h。然后,取出 两罐中混合物,置于另一球磨缸内,按 1.5~2 的 料球比放入玛瑙球,控制装料量为罐体的 60%。 将原料置于电动研磨机上混合 2 h 后,取出即为 荧光体前驱物。将前驱体混合物置入坩埚中,采 用两步法烧结工艺制备荧光粉。先于空气中以 20 ℃/min 升温至1 170 ℃保温2h,随炉冷却至 200 ℃。取出材料后,立即将其置于 10% H₂ + 90% N₂的还原气氛中,以 10 ℃/min 升温至反应 温度并保温4h,然后随炉冷却至室温。该过程将 烧结体中的激活剂离子 Ce⁴⁺还原成 Ce³⁺,Eu³⁺还 原成 Eu²⁺。将还原后得到的烧结体粉碎、研磨及 分级,即得到所需的 Ba_{9.7}(PO₄)₄(SiO₄)₂:0.3Eu 和 Ba_{9.7}(PO₄)₄(SiO₄)₂:0.3Ce 荧光粉,取 300 目 筛下物进行分析。

样品的 XRD 采用德国 AXS 公司的 Bruker D8 advanc 型 X 射线衍射仪测定,采用日本产 HI-TACH F-4500 荧光分光光度计测定荧光发射与激 发光谱,色品坐标参数通过(中国)远方 PMS-80 系统测得。

2.3 实验结果与计算

图 1 是室温下测得的 Ba_{9.7}(PO₄)₄(SiO₄)₂: 0.3Ce³⁺的漫反射光谱,样品在 199 nm 时开始产 生吸收,则基质吸收边为 199 nm(502 521 cm⁻¹)。

图 2 是 Ba_{9.7}(PO₄)₄(SiO₄)₂: 0. 3Ce³⁺的激发 光谱,监测波长为 398 nm。Ba_{9.7}(PO₄)₄(SiO₄)₂: 0. 3Ce³⁺呈现出 5 个明显的激发峰,分别位于 220 nm(45 455 cm⁻¹),233 nm(42 918 cm⁻¹),250 nm (40 000 cm⁻¹),308 nm(32 468 cm⁻¹),338 nm (29 586 cm⁻¹)。说明 Ce 原子失去 3 个外层电子 变成 Ce³⁺离子,4f 电子受到外场的影响,5d 态分 裂为 5 个能级,因此呈现出系列的连续带谱。

图 3 是 $Ba_{9.7}(PO_4)_4(SiO_4)_2$: 0. 3 Ce³⁺的发射 光谱(λ_{ex} = 338 nm),发射峰位分别位于 391 nm 和 410 nm。显然这两个峰来源于 Ce³⁺离子 5d→

Fig. 1 Diffuse reflection spectrum of $Ba_{9.7}(PO_4)_2(SiO_4)_2$: 0.3Ce³⁺

- 图 2 Ba_{9.7} (PO₄)₂ (SiO₄)₂: 0. 3Ce³⁺ 的激发光谱($\lambda_{em} = 391 \text{ nm}$)
- Fig. 2 Excitation spectrum of $Ba_{9.7}(PO_4)_2(SiO_4)_2: 0.3Ce^{3+}$ $(\lambda_{em} = 391 \text{ nm})$

- 图 3 Ba_{9.7}(PO₄)₂(SiO₄)₂:0.3Ce³⁺的发射光谱(λ_{ex} = 338 nm)
- Fig. 3 Emission spectrum of $Ba_{9.7} (PO_4)_2 (SiO_4)_2 : 0.3 Ce^{3+}$ ($\lambda_{ex} = 338 \text{ nm}$)

2F_{5/2}和 5d→²F_{7/2}跃迁,发射光谱的强峰值为 391 nm(25 575 cm⁻¹)。

根据以上光谱数据可以计算出 Ce³⁺在 Ba₁₀-(PO₄)₂(SiO₄)₂的 Stocks 位移: ΔS (Ce) = $10^7/\lambda_{exl}$ - $10^7/\lambda_{em}$ = 29586 - 25575 = 4011 cm⁻¹。

根据公式(3),则:

 $\Delta S(Eu) = 0.64 \times \Delta S(Ce) = 0.64 \times 4011 =$ 2567 cm⁻¹°

根据公式(4),则 Eu²⁺的最低激发能量和发射能量为:

 $E_{\rm ex} (Eu) = (0. 64 \pm 0. 02) \times 10^7 / \lambda_{\rm ex1} + [(0.53 \mp 0.06) \times 8064.4],$

 $E_{\rm ex}({\rm Eu})_1 = 0.66 \times 10^7 / 338 + 3790 = 0.66 \times$ 29586 + 3790 = 23317 cm⁻¹(429 nm),

 $E_{\rm ex}({\rm Eu})_2 = 0.62 \times 10^7/338 + 4758 = 0.62 \times$ 29586 + 4758 = 23101 cm⁻¹(433 nm), 平均 $E_{\text{ex}}(\text{Eu}) = (429 + 433)/2 = 431 \text{ nm}_{\circ}$ $E_{\text{em}}(\text{Eu}) = E_{\text{ex}}(\text{Eu}) - \Delta S(\text{Eu}),$

 $E_{\rm em}({\rm Eu})_1 = 23317 - 2567 = 20750 \text{ cm}^{-1}(482 \text{ nm}).$

 $E_{\rm em}({\rm Eu})_2 = 23101 - 2567 = 20534 {\rm ~cm}^{-1}(488 {\rm ~nm}),$

平均 $E_{em}(Eu) = (482 + 488)/2 = 485 \text{ nm}_{\circ}$

根据上面的计算结果可以预测 $Ba_{10}(PO_4)_2$ -(SiO₄)₂: Eu²⁺的最长激发光谱峰值大约为 431 nm,而最短发射峰位大约为 480 nm。激发峰能到 达 400 nm 以上的蓝区,说明 $Ba_{10}(PO_4)_2(SiO_4)_2$: Eu²⁺的荧光体有潜质成为 LED 的光转换荧光体。

3 Ba₁₀(PO₄)₄(SiO₄)₂: Eu²⁺的发光
 性能

3.1 XRD 结果分析

图 4 是 Ba_{9.7}(PO₄)₂(SiO₄)₂: 0. 3Eu²⁺和 Ba_{9.7}-(PO₄)₂(SiO₄)₂: 0. 3Ce³⁺荧光体的 XRD 图谱。可 以看出衍射峰很尖锐,说明晶体生长良好。 Schwarz^[3]详细研究了 Sr₁₀(PO₄)₄($X^{\mathbb{N}}$ O₄)₂ ($X^{\mathbb{N}}$ = Si,Ge)的晶体结构,并给出了明确的 XRD 图谱。图 4 与文献[3]给出的 X 射线衍射 图完全匹配。

- 图 4 Ba₁₀(PO₄)₂(SiO₄)₂的 XRD 图, 插图是文献[3]中 给出的 Sr₁₀(PO₄)₄(SiO₄)₂的 XRD 图谱。
- Fig. 4 XRD patterns of $Ba_{10} (PO_4)_2 (SiO_4)_2$. The inset shows XRD pattern of $Sr_{10} (PO_4)_4 (SiO_4)_2$ from the reference [3].

 $Ba_{10}(PO_4)_4(SiO_4)_2$ 与 $Sr_{10}(PO_4)_4(SiO_4)_2$ 都 是六角晶体结构,空间群为 $P6_3/m^{[18]}$,晶胞参数 分别为 a = b = 0.9765 nm, c = 0.7316 nm, V = 0.60416 nm³, Eu 和 Ce 的添加不会改变磷灰石 产物的结构。在这种磷灰石结构中^[19-20],二价的阳 离子有两个不同的晶格位置: $Ba_1(z = 0 和 3/4)$ 和 Ba_{II} (旋转轴上,*z* = 1/4 和 3/4)。其中 Ba_{II} 位置 占据 C_3 点对称位,有 9 个配位原子; Ba_{II} 位置有 7 个配位原子,属于 C_5 对称。因此, Eu 和 Ce 离子 同时取代 Ba_{II} 和 Ba_{II} 两个位置。

3.2 发光性能分析

图 5 是 Ba₉₇(PO₄),(SiO₄),:0.3Eu²⁺的激发 与发射光谱。从图 5(a)的激发光谱可以看出,在 507 nm 的监控波长下,激发光谱呈现出从 250~ 475 nm 范围的一个宽带激发,说明 Ba₉₇(PO₄),- $(SiO_4)_2$:0.3Eu²⁺可以同时适用于紫外和蓝光芯 片。图5(b)是在不同的激发波长下得到的发射 光谱,发射强峰值为507 nm,次强峰为416 nm,这 显然是 Eu^{2+} 离子的 $4f \rightarrow 5d$ 跃迁产生的。发射光 谱中没有观察到与 Eu³⁺离子对应的 f→f 线状发 射峰,因此确定 $Ba_{10}(PO_4)_4(SiO_4)_5$ 荧光体中的 Eu 离子以二价态形式存在。在磷灰石结构硅酸 盐基质中,高浓度的 Eu²⁺离子占据两个晶格位 置,形成了两个发射中心,不同晶格位置所受的晶 体场的作用不同,d→f 跃迁也不同^[4],因而 Ba_{9,7}-(PO₄)₂(SiO₄)₂:0.3Eu²⁺的发射光谱中存在416 nm 和 507 nm 两个发射峰。

一般地,磷灰石的结构中阳离子有3个格位 中心(分别记为 M₁、M₁和 M₁)^[18]。M₁处于八 面体的中心位, M₁和 M₁处于在空间群 P6₃/m 的 两个对称的位置。因此,在 $Ba_{10}(PO_4)_4(SiO_4)_5$ 结构中有两个不等的阳离子位置。Ba₁位置有9 个配位原子,属于 C, 对称;Ba 1 位置有 6 个配位 原子,属于 C_s 对称^[19-20], Ba_{II}—O 的长度比 Ba₁-O 长。所以 Eu 替换后,在 Ba₁₀ (PO₄)₄-(SiO₄)₂晶体中就有两个不同的发光中心(记为 Eu_{I} 和 Eu_{II} 格位)。能量高的发射峰 416 nm (Eu₁)是取代 Ba-O 中的 Ba₁ 格位, 而 507 nm 的发射是来自于 Baπ格位,属于异常发射峰^[6]。 激发峰和发射峰重叠说明两个格位的 Eu²⁺存在 能量转移^[4],这与文献[18]报道的 Eu²⁺掺杂磷灰 石的发光性能一致。紫光照射下,样品 Bag7(PO4),-(SiO₄)₂:0.3Eu²⁺呈现出偏白的绿色光,测得的色 坐标为(0.231,0.295)。

从不同监控波长的光谱测试结果可以看出, 激发光谱强峰值位于 430 nm,次激发峰值为 350 nm。发射光谱强峰值位于 507 nm,次强发射峰值 为 416 nm。强激发峰值和前面的预测结果吻合

图 5 Ba_{9.7}(PO₄)₂(SiO₄)₂:0.3Eu²⁺的激发(a)和发射光谱(b)

较好,发射光谱预测结果和实验结果差距较大。

4 结 论

采用高温固相法在还原气氛下合成了分别用 Eu²⁺和Ce³⁺离子激活的Ba₁₀(PO₄)₂(SiO₄)₂系列 荧光体,两者都呈现较强的宽带激发特征。根据 Eu²⁺和Ce³⁺光谱性质的相关性,通过测得Ce³⁺激 活的Ba₁₀(PO₄)₂(SiO₄)₂荧光体光谱数据估算了 Ba₁₀(PO₄)₂(SiO₄)₂:Eu²⁺中Eu²⁺的斯托克斯位 移(Δ S)能量,并通过Eu²⁺和Ce³⁺离子的激发能 量以及发射能量的相关性,预估了Ba₁₀(PO₄)₂-(SiO₄)₂:Eu激发和发射光谱的强峰值。高温固 相法得到的样品的激发光谱峰值为430 nm,与估 算的结果十分吻合;发射光谱强峰值为507 nm, 与预测结果差距较大。Ba₁₀(PO₄)₂(SiO₄)₂:Eu²⁺ 可以同时被紫光和蓝光激发,发出偏白的绿光,可 以作为绿粉与UV-LED和蓝光LED匹配。

致谢:非常感谢中科院应化所石春山教授在 文章中给予的帮助。

参考文献:

- [1] Butler H K. Fuorescent Lamp Phosphors [M]. University Park Pennstate, PA: University Press, 1986:98-99.
- [2] Smets B M J. Phosphors based on rare-earths, a new era in fluorescent lighting [J]. Mater. Chem. Phys., 1987, 16(3-4):283-299.
- [3] Von Schwarz H. Strontiumapatite des typs $Sr_{10}(PO_4)_4(X^{\mathbb{N}}O_4)_2(X^{\mathbb{N}} = Si, Ge) [J]$. Z. Anorg. Allg. Chem., 1968, 357 (1):43-53.
- [4] Blasse G, Bril A. Energy transfer between Eu²⁺ ions in nonequivalent sites in strontium-silicate-phosphate [J]. *Phys. Lett.* A, 1969, 28(8):572-573.
- [5] Jagannathant R, Kutty T R N. Anomalous fluoresence features of Eu²⁺ in apatite-pyromorphite type matrices [J]. J. Lumin., 1997, 71(2):115-121.
- $\begin{bmatrix} 6 \end{bmatrix}$ Yu J J, Gong W T, Xiao Z G, *et al.* Spectral structure of barium-phosphate-silicate phosphor Ba₁₀ (PO₄)₄ (SiO₄)₂: Eu^{M+} [J]. J. Lumin. , 2012, 132(11):2957-2960.
- [7] Shi C S, Ye Z R. The luminescence of Eu²⁺ ion in solids [J]. *Chin. J. Lumin.* (发光学报), 1982, 3(1):1-10 (in Chinese).
- [8] Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y₃Al₅O₁₂Ce³⁺
 [J]. Appl. Phys. Lett., 1967, 11(1):53-57.
- [9] Dorenbos P. 5d-level energies of Ce³⁺ and the crystalline environment. Ⅲ. Oxides containing ionic complexes [J]. *Phys. Rev.* B, 2001, 64(12):125117-1-12.
- [10] Dorenbos P. 5d-level energies of Ce³⁺ and the crystalline environment. I. Fluoride compounds [J]. Phys. Rev. B, 2000, 62(23):15640-1-10.
- [11] Dorenbos P. 5d-level energies of Ce³⁺ and the crystalline environment. II. Chloride, bromide, and iodide compounds
 [J]. Phys. Rev. B, 2000, 62(23):15650-1-10.
- [12] Dorenbos P. 5d-level energies of Ce³⁺ and the crystalline environment. IV. Aluminates and "simple" oxides [J]. J. Lumin., 2002, 99(3):283-299.

Fig. 5 Photoluminescence excitation (a) and emission (b) spectra of $Ba_{9,7}(PO_4)_2(SiO_4)_2$:0.3Eu²⁺

- [13] Dorenbos P. Energy of the Eu²⁺ 5d state relative to the conduction band in compounds [J]. J. Lumin., 2008, 128:578-582 (in Chinese).
- [14] Dorenbos P. Locating lanthanide impurity levels in the forbidden band of host crystals [J]. J. Lumin., 2004, 108(1-4): 301-305.
- [15] Dorenbos P. Anomalous luminescence of Eu²⁺ and Yb²⁺ in inorganic compounds [J]. J. Phys: Condensed Matter, 2003, 15(17):2645-2665.
- [16] Dorenbos P, Pierron L, Dinca L, et al. 4f-5d spectroscopy of Ce³⁺ in CaBPO₅, LiCaPO₄ and Li₂CaSiO₄[J]. J. Phys. : Condensed Matter, 2003, 15(3):511-520.
- [17] Dorenbos P. Relation between Eu²⁺ and Ce³⁺ f-d-transition energies in inorganic compounds [J]. J. Phys. : Condensed Matter, 2003, 15(27):4797-4807.
- [18] Kottaisamy M, Jagannathan R, Jeyagopal P, *et al.* Eu^{2+} luminescence in $M_5(PO_4)_3X$ apatites where M is Ca^{2+} , Sr^{2+} and Ba^{2+} , and X is F⁻, Cl⁻, Br⁻ and OH⁻[J]. J. Phys. D: Appl. Phys. , 1994, 27:2210-2215.
- [19] Suarsanan K, Young R A. Significant precision in crystal structural details: Holly springs hydroxyapatite [J]. Acta Crytallogr. B, 1969, 25(8):1534-1543.
- [20] Piriou B, Fahmi D, Dexpert-Ghys J, et al. Unusual fluorescent properties of Eu³⁺ in oxyapatites [J]. J. Lumin., 1987, 39(2):97-103.

《发光学报》网上在线投稿通知

由于学报发展的需要,《发光学报》网站已经建成开通,欢迎广大作者浏览我们的网页并提出宝贵意见,共同建好这个为广大作者和读者进行交流以及展示作者相关科研成 果的平台。《发光学报》网页上建有网上在线投稿平台,我们只接收网上在线投稿,欢迎 大家使用。如有问题,请与我们联系:

E-mail: fgxbt@126.com, Tel: (0431)86176862,84613407 《发光学报》网址: http://www.fgxb.org

《发光学报》编辑部