文章编号:0253-2409(2013)11-1294-09

内蒙五牧场矿区 11 号煤层原煤大分子结构特征及其形成机制

张 莉,曾凡桂,相建华

(太原理工大学煤科学与技术教育部及山西省重点实验室 地球科学与工程系,山西太原 030024)

摘 要:在对内蒙古自治区呼伦贝尔市伊敏盆地五牧场区 11 号煤层原煤工业分析、元素分析、¹³C-NMR、FT-IR、XPS 等分析 基础上,获得了煤大分子结构中碳骨架信息、脂肪结构以及含氧官能团类型及比例、氮原子的存在形式和比例等结构信息。 以此为基础,构建了煤的大分子结构模型,并应用 ¹³C-NMR 预测软件 ACD/CNMR predictor 对其进行了修正,获得与实验核 磁共振谱图吻合较好的大分子结构模型。大分子结构的芳香结构单元以苯、萘、蒽、菲为芳香结构单元,数量分别是 1,2,2,1, 醚键、氢化芳环以及邻位亚甲基作为连接芳香结构的主要桥键;氧原子以酚羟基、羰基、羧基的形式存在,数量分别是 7,3,2; 氮原子分别以吡啶和吡咯的形式存在,甲基和脂肪短链分布在芳香单元的边缘。与相邻矿区的褐煤及相近变质程度的神东 长焰煤的比较发现,其形成机制主要是在高温低压环境下,热演化过程中快速失去各种含氧官能团,导致短链脂肪类物质的 形成,而低压环境则有利于热演化过程中形成的各种小分子物质逸散导致自由基的缩聚,形成较大的芳香结构单元,但是直 链脂肪类物质的存在具有位阻效应,不利于芳香结构单元的定向排列,导致所谓的"化学成分成熟超前于其结构成熟"现象。 关键词: 五牧场; 煤大分子结构模型; 高温低压; 超前芳香化作用; 快速脱氧作用 中图分类号: TO530 文献标识码: A

Macromolecular structure and formation mechanism of raw coal in coal seam 11 of Wumuchang district, Inner Mongolia

ZHANG Li, ZENG Fan-gui, XIANG Jian-hua

(Key Laboratory of Coal Science & Technology, Ministry of Education & Shanxi Province, Department of Earth Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: Based on the results of proximate analysis, elemental analysis, ¹³C-NMR, FT-IR and XPS results, the structure model of the raw coal in coal seam 11 of Wumuchang district, Yimin Basin of Hulun Buir, Inner Mongolia was built using ACD/lab software. The ¹³C-NMR predicting software ACD/CNMR predictor was used to modify the structure. The macromolecule structure model which coincides with the nuclear magnetic resonance map is achieved. The characteristics of structures of macromolecules are as follows. Benzene, naphthalene, anthracene and phenanthrene are aromatic constitutional units, the quantities are 1, 2, 2, 1 respectively. Ether linkages, hydrogen aromatic rings and ortho methylene are bridges connecting aromatic units. Oxygen atoms exist in forms of phenolic hydroxyl groups, the quantities are 7, 3, 2 respectively. Nitrogen atoms exist in forms of pyridine and pyrrole. Methyl and short fatty chains are distributed in the edges of aromatic rings. The coal structure is compared with lignite in nearby mining area and Shendong long flame coal with similar metamorphic grade. In the environment of high temperature and low pressure, oxygen containing functional groups are lost rapidly in the process of thermal revolution, leading to the formation of short chain aliphatic groups. The environment of low pressure during thermal revolution is benefit with escape of micro molecules, leading to the aggregation of free radicals, so that large aromatic structure units are formed. However, due to the steric effect caused by the linear chain aliphatic groups, the orientation arrangement of aromatic structure units is not favored, leading to the phenomenon that the maturation of chemical components occurs before that of coal structure. Key words: Wumuchang; macromolecular structure model of coal; high temperature and low pressure;

advanced aromatization; rapid deoxidation

根据温度-压力关系,煤的变质作用可以分为低 温高压型、高温高压型和高温低压型三类。深成变 质作用属于低温高压型,其升温主要是由于地层埋 藏深度增大导致的,地温梯度正常;高温高压型则是 地层埋藏较深的条件下,由于异常热源,如高温侵入 岩体侵入到煤系地层附近导致的;高温低压型则是 地层埋藏浅异常热源引起的。不同的温压关系所引 起的煤变质作用所形成的煤组成结构应该具有一定 的差异。了解这种差异及其原因是煤质预测及煤的 高效合理利用的基础,但是到目前为止,对于这一问

收稿日期: 2012-12-26;修回日期: 2013-02-19。

基金项目:国家自然科学基金(41072116,40772097,40572094,41102092);高等学校博士学科点专项科研基金(20091402110002); 2012 太原市科技项目(120247-27)。

联系作者: 曾凡桂. Tel: 0351-6010468, E-mail: zengfangui@ tyut. edu. cn。

题,世界各国的研究甚少。

内蒙古自治区大兴安岭西坡晚中牛代海拉尔盆 地群的伊敏煤盆地褐煤储量巨大,煤种单一,1979 年在伊敏露天精杳勘探区东北方向4 km 处五牧场 附近发现烟煤,据少量钻孔揭露,烟煤的初步范围圈 定为25 km^{2[1]},褐煤向烟煤转化是由于本区煤系地 层底部有一酸性侵入岩体^[2],为典型的高温低压变 质作用导致褐煤向烟煤转化。许云秋等[3]研究了 五牧场大磨拐组煤系中连续变质系列的褐煤-瘦煤. 得出煤等有机岩具有Ⅱ型干酪根的富 H 特征,提出 岩浆侵入所造成的高温、低压环境,使有机质的核外 官能团迅速激活,引起长链断开、杂原子团分解以及 O、S、N 等杂原子迅速逃脱, 芳核缩聚到有序排列相 对迟缓,造成了有机质的化学成分超前于结构成熟。 顾永达等[4]研究了五牧场矿区这一具有连续演化 的几个煤样中的多环芳烃的组成与分布,得出 PAH 的缩合程度随煤化程度增加而增大。并定性指出褐 煤抽出物中缺少像芴/二甲基苯并噻吩/苯并萘并噻 吩和醋菲等化合物,而烟煤中存在此类化合物。这 些工作虽然在一定程度上揭示了高温低压的五牧场 地区煤变质作用特征,如有机质化学演化超前于结

构成熟以及溶剂可抽提物中芳香类化合物的演化特征,但是对于煤的总体大分子结构的演化及其与其他温压类型的差异则缺乏深入系统的研究。从本质上来说,在不同温压条件煤的组成及性质的演化将反映在其结构特征上,因此,分析在同一温压条件下不同变质程度煤的大分子结构特征及其演化是从分子水平上理解煤化作用机制的关键。基于这一思路,本实验对五牧场11号煤进行多种结构表征的基础上,构建了其大分子结构模型,并与相邻的伊敏露天矿褐煤结构模型及^[5]贾建波等^[6]采用¹³C-NMR构建的神东 2²煤镜质组大分子结构模型进行比较,了解高温低压环境下褐煤向烟煤转化的分子机制以及与低温高压环境下形成的具有相似煤级煤的结构差异。

1 实验部分

1.1 煤种的特征

煤样采自内蒙古自治区呼伦贝尔市鄂温克族自 治旗境内五牧场煤(WMC)矿,依据中国国家标准 GB/T212-2008及GB/T476-2008进行工业分析和 元素分析,元素分析在德国EA公司的VarioEL型 元素分析仪上进行,结果见表1。

16.02

1.28

S

0.43

	表	1	WMC	的エ	业分析	和元素分	析
Table	1	Pro	ximate	and	ultimate	analyses	of WMC

				-				
\mathbf{p}^0 / σ	Proximate analysis w /%			Ultimate analysis $w_{daf}/\%$				
$\Lambda_{\rm max}$ / 70	M	A	V	C	н	0*	N	

33.15

note: $R_{\text{max}}^0(\%)$ is the maximum reflectance of vitrinite in coal; M_{ad} is moisture mass fraction of sample in the air dry basis; A_{ad} is ash mass fraction of sample in the air dry basis; V_{daf} is volatile matter mass fraction of sample in the dry ash-free basis; $w(O^*) = 1 - w(C) - w(H) - w(N) - w(S)$

77.79

4.48

1.2 核磁共振波谱(¹³C-CP/MAS NMR)

采用 VARIAN UNITY INOVA 300 M 超导核磁 共振仪对原煤进行 ¹³C-CP/MAS NMR 测试。其参 数条件设置为,固体双共振探头,6 mm ZrO_2 转子, 转速为 6 kHz, ¹³C 检 测 核 的 共 振 频 率 为 75.425 MHz,谱宽 3 000 Hz,采样时间 0.05 s,扫描 次数为7 000,脉宽4 μ s,循环延迟时间 4 s,碳氢交叉 极化接触时间 0.005 s。获得谱图见图 1。

5.14

16.15

1.3 ¹³C-NMR 化学位移计算

0.46

Advanced Chemistry Development 公司开发的 ACD/CNMR Predictor 3.5 软件最多可以对 256 个 碳原子的化学位移进行预测。目前,该软件已经被 广泛地应用于煤结构中 ¹³C 化学位移的预测^[7~10]。

图 1 WMC 煤¹³C-NMR 分峰谱图 Figure 1 Curve-fitted spectrum of WMC¹³C-NMR

1.4 傅里叶变换红外光谱(FT-IR)

FT-IR 在美国生产的 Bio-Rad FTS165 傅里叶

变换红外光谱仪上进行,取溴化钾载体约 180 mg, 置于玛瑙钵中,加入少许煤样(煤样与载体的质量 比为1:180),充分的磨细、混匀、装模,然后置于红 外光谱仪的样品室进行测试,以 KBr 压片法制样, 实验参数为,波数 400 ~ 4 000 cm⁻¹,分辨率为 2 cm⁻¹,累加扫描 32 次,同时对比空白 KBr 片 32 次 扫描背景,以获得高质量光谱。采用 Sanitsky-Golay 方法对谱图进行平滑处理。实验谱图见图 2。

Figure 2 FT-IR of WMC raw coal

1.5 X 射线光电子能谱(XPS)

XPS 测定在 ES2CALAB250 型 X 射线光电子 能谱仪上完成。实验条件为使用 Al Kα 阳极,功率 为 200 W。全扫描透过能为 150 eV,步长 0.5 eV; 窄扫描透过能为 60 eV,步长 0.05 eV。基础真空为 10^7 Pa。以 C 1s (284.6 eV)为定标标准进行校正。 在 XPS 谱图中纵坐标代表电子计数,横坐标为电子 结合能(Binding Energy B. E.)。采用 Origin 软件对所得C1s、O1s、N1s的XPS谱图进行分峰 拟合。各结合能的归属见文献^[11~14]。

2 结果与讨论

2.1 煤结构表征及分析

通过 WMC 煤的 ¹³C-NMR 谱图(图1)分析,揭 示了 WMC 煤结构的碳骨架主要由三部分组成。第 一部分是化学位移位于0~90的脂碳区:第二部分 是化学位移位于90~165的芳碳区:第三部分是化 学位移位于165~220的羰基区。为了取得更多的 煤结构组成信息,本实验采用了 NUTS98 软件和 origin7.5 软件对煤样的¹³C-NMR 谱图进行分峰拟 合。具体的拟合方法为 PFM 模块高斯分布拟合方 法,拟合度达 0.997,峰位见拟合结果图 1。煤中 ¹³C-NMR谱图中峰位归属^[15~17]见表2,并根据各种 官能团的峰位及其相对含量计算出 WMC 煤结构的 十二个参数(表3)。其中,芳香碳是计算煤大分子 结构中碳原子总数的重要参数。芳香桥碳与周碳之 比 $X_{BP} = f_a^{B} / (f_a^{H} + f_a^{P} + f_a^{S})$ 是计算芳香族尺寸的必 要参数^[18]。经计算, WMC 煤的芳香桥碳与周碳之 比为0.27。

表 2 碳原子化学位移的结构归属 Table 2 Carbon chemical shift region attribution

		U	
Chem. shift	Carbon No.	Chem. shift	Carbon No.
16	R-CH ₃	75 ~ 90	R-O-R
20	Ar-CH ₃	100 ~ 129	Ar-H
23	CH_2 - CH_3	129 ~ 137	bridgehead
33	CH_2	137 ~ 148	Ar-C
36 ~ 50	C, CH	148 ~ 165	Ar-O
$50 \sim 60$	$O-CH_3$, $O-CH_2$	165 ~ 190	СООН
$60 \sim 70$	O-CH	190 ~ 220	C=O

表 3	WMC 的结构参数
Table 3	Parameters of the WMC

Sample	f_{a}	$f_{\rm a}{}^{\rm c}$	$f_{\mathrm{a}}{}^{'}$	$f_{\rm a}{}^{\rm N}$	$f_{\mathrm{a}}^{\mathrm{H}}$	f_{a}^{P}	f_a^{s}	$f_{a}^{\ B}$	$f_{\rm al}$	${f_{\mathrm{al}}}^{*}$	$f_{\rm al}{}^{\rm H}$	$f_{ m al}{}^{ m O}$
WMC	0.66	0.09	0.56	0.39	0.18	0.11	0.16	0.12	0.33	0.09	0.24	0.00

note: f_a : total aromatic carbon; f_{al} : toal aliphatic carbon; f_a^{c} : carbonyl δ (chemical shift) >165; $f_a^{'}$: in an aromatic ring ; f_a^{H} : ptotonated and aromatic ; f_a^{c} : nonprotoanted and aromatic ; f_a^{P} : phenolic; f_a^{S} : alkvlated aromatic; f_a^{B} : aromatic bridgehead; f_{al}^{*} : CH₃ or nonprotonated; f_{al}^{H} : CH or CH₂; f_{al}^{O} : bonded to oxygen

在核磁谱中,煤的分子结构主要由芳香部分 (f_a) 和脂肪部分 (f_a^1) 组成,则有 $f_a+f_a^1=1$ 。芳香部 分 (f_a) 主要由羧基-羰基部分 (f_a^c) 和芳环部分 $(f_a^{'})$ 组成。芳香部分 $(f_a^{'})$ 主要由非质子化芳碳 (f_a^{N}) 和 质子化芳香碳 (f_a^{H}) 组成,非质子化芳香碳 (f_a^{N}) 主 要由羟基-醚氧碳 (f_a^{P}) 、烷基取代芳碳 (f_a^{S}) 、芳香桥 碳(f_a^B)三部分组成;脂肪部分(f_a^I)主要由甲基碳 (f_{al}^*)、亚甲基碳和季碳(f_{al}^H)、氧接脂碳(f_{al}^o)三部 分组成。甲氧基仅存在于泥炭和软褐煤中,随煤化 度增高甲氧基的消失比羧基还快,在老年褐煤中基 本已不存在^[19], WMC 原煤的变质程度属于长焰 煤,因而不含甲氧基。由表3可知, f_{al}^H 的值为0.24, 明显大于 *f*_{al}* 的值 0.09, 由此可知, 此原煤中的脂肪 碳主要以链状烷烃和环烷烃的形式存在。

2.2 结构模型的构建

2.2.1 芳香环结构的确定

二十世纪70年代以后,发现低煤化度煤基本结构单位的核以苯环、萘环和菲环为主;中等煤化度烟 煤基本结构单元的核则以菲环、蒽环和芘环为主;在 无烟煤阶段,基本结构单元核的芳香环数急剧增加, 逐渐趋向石墨结构^[20]。WMC煤变质程度属于低 变质煤,长焰煤级别;上面已经计算出WMC的芳香 桥碳与周碳之比为0.27,据此,确定其芳香结构类 型是苯、萘、蒽、菲,各类型数量及总芳香碳原子数量 见表4。

表 4 芳香结构类型和数量

Table 4 Types and quantities of aromatic unit structure							
Туре	Quantities	Туре	Quantities				
N	1	H	1				
	1		2				
	2		I				

2.2.2 脂肪结构的确定

由表3可知,WMC 煤的芳香度 f_a [']是0.56,根据 芳香结构类型和数量可知芳香碳原子总数为77,因 此,可以确定结构模型中碳原子的总数为137,脂肪 碳原子总数为60。2800~3000 cm⁻¹的红外光谱图 显示, R_2 CH₂强度与CH₃强度之比是3:1,与上述核 磁参数 f_{al} ^H/ f_{al} ^{*}比值基本吻合。因此,推断原煤结 构中脂肪碳原子的存在形式是脂肪环居多,脂肪链 次之。2800~3000 cm⁻¹红外光谱解析及其参数分 别见图3和表5。

2.2.3 含氧官能团的确定

煤样中碳、氧、氮、硫元素分别以多种官能团形 式存在,因而产生了不同位置的 XPS 峰。文献^[21,22] 列出了不同官能团中碳原子 1s 壳层、氧原子 1s 壳 层、氮原子 1s 壳层的电子结合能数据,本实验根据 X 射线光电子能谱分析,得到它们在煤样中的存在 形态和数量。

2.2.3.1 XPS 含氧官能团解析

根据煤样中 O 1s 的 XPS 谱图及其分峰拟合 (见图4),得出羰基、羟基、羧基之比是3:7:2(见表 6)。这一结果与 Shinn^[23]提出的观点一致。这表 明,酚羟基是碳氧有机官能团在该变质程度的煤中 最为稳定的形式。这是由于酚的羟基氧上的孤电子 对与芳环共轭形成稳定结构。

		1	e	
Peak	FWHM	CenterGrvty	AreaFitTP	Attribution
1	31.17	2 832	6.75	symmetrical R ₂ CH ₂
2	23.51	2 851	15.40	symmetrical R ₂ CH ₂
3	23.89	2 870	7.40	symmetrical R ₂ CH ₂
4	35.93	2 899	25.20	R ₃ CH
5	26.01	2 923	27.99	dissymmetrical R ₂ CH ₂
6	29.64	2 946	12.08	dissymmetrical RCH ₂
7	23.88	2 961	5.18	dissymmetrical RCH ₂

表 5 WMC 煤 2 800~3 000 cm⁻¹分峰拟合各吸收峰参数 Peaks parameters of curve-fitted during $2.800 \sim 3.000$ cm⁻¹

Table 5

图 4 WMC 煤氧原子的 XPS 分峰拟合 Figure 4 Curve-fitted of oxygen atom

Table 6 Existence form and quantities of WMC oxygen

Binding energy	Attribution	Quantities	Proportion	
E /eV	Attribution	w/%	Toportion	
531.30	carbonyl	23.35	3	
532.80	hydroxyl	60.44	7	
534.10	carboxyl	16.21	2	

同时,由WMC煤样Cls的XPS 谱图及其分峰 拟合图(见图5)可以得出,碳原子以四种形态存在 于 WMC 煤表面结构(见表7),即碳氢键和碳碳键、 羟基、羰基以及羧基,后三者的比例大致是7:3:2, 这与通过氧原子的 XPS 分析得出含氧官能团的结 论一致。

2.2.3.2 FT-IR 含氧官能解析

根据1000~1800 cm⁻¹红外光谱的分峰情况,认 为该波数范围内的官能团分为三类:醚氧官能团、羟 基苯、不饱和羧酸,其波谱解析见图6,分峰模拟各 吸收峰参数见表8。

WMC 煤碳原子的 XPS 分峰拟合 图 5

Figure 5 Curve-fitted of WMC carbon atom

表 7 WMC 煤碳原子的存在形式及其含量

Table 7 Existence form and quantities of WMC carbon

Binding energy E/eV	Quantities w/%	Proportion	Attribution
284.54	86.43	43.6	С-Н С-С
286.07	7.27	7.0	C-0
287.18	3.62	3.0	C = O
289.01	289.01 2.69		COO-

图 6 1000~1800 cm⁻¹ 波段分峰拟合 Figure 6 Curve-fitted of FT-IR during 1 000 ~ 1 800 cm⁻¹

	Table 8 Teaks parameters of oxygen functional groups curve-futed						
Peak	Center Grvty	FWHM	AreaFitTP	Attribution			
1	1 049.48	57.11	11.30	C-O-C			
2	1 094.86	38.07	11.99	C-O of ether			
3	1 126.23	42.82	7.59	C-O of ether			
4	1 166.67	40.05	5.55	hydroxybenzene			
5	1 205.48	54.48	5.34	hydroxybenzene			
6	1 257.06	61.98	5.40	C-O of aryl ether			
7	1 310.36	70.92	5.16	C-O of ether			
8	1 368.82	56.65	3.25	CH ₃ -Ar, R			
9	1 406.61	70.70	3.98	CH ₃			
10	1 447.64	53.87	7.39	CH ₃ CH ₂ -			
11	1 501.25	60.10	3.50	C=C of aromatic hydrocarbon			
12	1 557.77	45.76	1.18	C=C of aromatic hydrocarbon			
13	1 610.93	88.76	23.38	C=C of aromatic hydrocarbon			
14	1 705.90	63.31	4.90	unsaturated carboxylic acid C=O			

表 8 WMC 煤含氧官能团红外光谱分峰模拟各吸收峰参数

通过以上分析可知,煤样中含氧官能团的种类 是醚键、羟基、羧基、羰基。因此,在构建煤结构模型 时考虑有7个羟基、3个羰基、2个羧基。煤样N1s 的XPS 谱图及其分峰拟合见图7及其归属见表9, 由此可知,吡啶型氮和吡咯型氮是N的最主要存在 形式,两者所占比例达到90%。由于煤样中氮的质 量分数仅为1.28%,而且碳原子总数已知,所以在 结构模型中考虑有一个吡啶,一个吡咯。

由于 WMC 原煤的硫含量为 0.43%,为低硫 煤,因此,在构建模型的过程中没有考虑硫元素。

Figure 7 Curve-fitted of nitrogen atom

2.3 结构模型的修正

基于上述测试手段得出的信息构建了 WMC 原 煤的大分子结构模型,为了使构建的大分子模型结 构更接近 WMC 原煤的真实结构,在 ACD/CNMR predictor 中对初始结构模型进行¹³C-NMR 计算,计 算各个官能团的化学位移并且导入 gNMR 软件中, 通过调整其行距使其谱图与实验谱图更加贴近。在 调整结构的过程中,保持芳香单元和芳香度不变,以 保证骨架碳原子的准确性。经过不断的重复调整, 最终得到和实验谱图吻合很好的结构模型(见图 8),吻合谱图见图9,结构参数见表10。

表 9 WMC 煤氮原子的存在形式及其含量

Table 9 Existence form and quantities of WMC nitrogen atom

Binding energe E / eV	Attribution	Quantities w /%
398.2	pyridine	20.6
399.9	pyrrole	72.0
401.4	quaternary nitrogen	7.0

2.4 高温低压环境下煤大分子结构演化特征

将同一盆地相邻伊敏矿区的褐煤(镜质组反射 率 R_{max}^{0} , 0.30%)的大分子结构^[5] 与本实验的结构 模型进行比较,深入理解高温低压环境下煤大分子 结构的演化特征。对比发现,芳香结构单元:五牧场 长焰煤芳香结构单元以蒽、菲为主;而伊敏褐煤以萘 为主, 苯环次之;这是由于随着煤化程度增强, 芳香 化作用随之增强:芳香结构单元连接键:五牧场长焰 煤桥键以醚键、氢化芳环以及邻位亚甲基为主,伊敏 褐煤桥键以氢化芳环、环内氧接脂碳、醚氧键为主: 含氧官能团:五牧场长焰煤以羟基为主,羰基次之, 少量羧基,不含甲氧基,而伊敏褐煤含氧官能团则以 羟基,甲氧基、羧基及脂环内氧为主;脂肪类物质:五 牧场长焰煤脂肪侧链以甲基、乙基、丙基及氢化芳香 结构为主,直链脂肪类物质较多,而伊敏褐煤则主要 是氢化芳香环、环内氧接脂碳和甲基为主,尤其是以 甲氧基形式存在的甲基较多为特征。

图 8 WMC 原煤的大分子结构模型示意图 Figure 8 Molecular structural model of WMC raw coal

进一步与镜质组反射率略高、低温高压环境下

形成神东 2⁻²煤(*R*⁰_{max},0.51%)的大分子结构模型^[6] 比较,它们的差异表现在:神东煤大分子结构模型中 芳香碳原子的存在形式主要是缩合程度为 2 的萘, 不同于五牧场煤结构芳香单元的以蒽、菲为主;桥键 以氢化芳环、醚键为主,而五牧场则有邻位亚甲基; 脂肪类物质以脂肪环为主,而五牧场则以脂肪短链 较多。

从相邻矿区但变质程度不同以及变质程度相 近,但温压环境不同的煤大分子结构特征,可以发 现,高温低压环境下煤大分子结构演化的基本特征: 在高温低压环境下,虽然五牧场长焰煤没有达到镜 质组反射率0.50%~0.60%的变质作用阶段,但其 芳香结构单元已比进入变质作用阶段的低温高压环 境下的神东煤大,因此,高温将导致芳香化作用超前,其原因可能是,低压环境有利于高温热解过程中 形成的小分子物质逸散,导致形成的大分子碎片不 能被氢等自由基饱和,从而有利于缩聚作用的进行。 从短链脂肪类物质大量存在于五牧场长焰煤中,而 伊敏褐煤则含量较少,似乎意味着在褐煤向烟煤转 化过程中,脂环内的氧容易脱除,导致形成链状脂肪 类物质,因此,脱氧作用不但脱除甲氧基、羧基等中 的氧,而且还大量脱除脂环内的氧,形成甲烷等脂肪 类物质,有利于形成煤层气,这点可以从该矿物含有 丰富的煤层气看出^[24]。从伊敏褐煤与五牧场长焰 煤大分子结构中含氧官能团的分布特征来看,失去 全部甲氧基、大量失去羧基和脂环内氧,从而形成短 链脂肪烃类物质,意味着这种高温低压环境有利于 氧的快速脱除,而由于形成了新的短链脂肪烃类物 质,从而导致位阻效应,不利于芳香结构单元的定向 性,从而显示出化学成分演化超前与芳香结构单元 的定向性演化的特征^[24]。这也可能是高温低压环 境下煤组成结构演化的一个特征,但需要更多的数 据来证实。

表 10 化学结构模型的结构参数

Molecular formula	Molecular weight	Proximate analysis w/%				Aromaticity
$C_{122}H_{104}N_2O_{18}$	1 886	С	Н	0	Ν	0.56
		77.69	5.56	15.27	1.49	

3 结 论

在¹³C-NMR 和 XPS、FT-IR 等结构表征的基础 上,构建了五牧场 11 号原煤的计算¹³C-NMR 谱图 与实验谱图较为吻合的大分子结构模型,其主要特 征为,以苯、萘、蒽、菲为芳香结构单元,醚氧键、邻位 亚甲基以及氢化芳环作为连接芳香结构的桥键,氧 原子主要以酚羟基、羰基的形式存在,氮原子分别以 吡啶和吡咯的形式存在,甲基等脂肪短链分布在芳 香环的边缘。 与相邻矿区的伊敏褐煤及低温高压环境下形成 的变质程度相近的神东长焰煤大分子结构模型比 较,认为高温低压环境下五牧场长焰煤大分子结构 形成的主要机制是快速的脱氧反应形成了各种短链 脂肪类烃类物质,而低压环境有利于小分子物质的 逸散和缩聚反应,从而导致超前芳香化作用,但是由 于大量短链脂肪侧链的存在,不利于芳香结构单元 的定向排列,形成所谓的"化学成分成熟超前于其 结构成熟"的现象。

参考文献

- [1] 柳滨. 伊敏煤田 WMC 区烟煤成因研究报告[R]. 哈尔滨:东煤哈尔滨科研所, 1988.
 (LIU Bin. The research report on the origin of bituminous coal in Yiming Wumuchang coal [R]. Harbin: Eastern Coal Harbin Institute, 1988.)
- [2] 陈冰冰, 池海. 伊敏无牧场区煤质特征及变质规律[J]. 中国煤田地质, 2005, 17(5): 34-35.
 (CHEN Bing-bing, CHI Hai. Coal quality characters and metamorphic pattern in Wumuchang area, Yimin[J]. Coal Geology of China, 2005, 17(5): 34-35.)
- [3] 许云秋, 刘金钟. 岩浆热作用下有机质化学成分超前成熟[J]. 中国矿业大学学报, 1989, 18(2): 42-52.
 (XU Yun-qiu, LIU Jin-zhong. The pre-maturation of the chemical composition compared with texture in organic matter under the magmatic thermalism[J]. Journal of China University of Mining & Technology, 1989, 18(2): 42-52.)
- [4] 顾永达,相宏伟. 伊敏煤田 WMC 矿区煤中多环芳烃分布特征[J]. 燃料化学学报, 1996, 8(24): 335-340.
 (GU Yong-da, XIANG Hong-wei. Distribution pattern of polycyclic aromatic hydrocarbons in Yiming Wumuchang coal[J]. Journal of Fuel Chemistry and Technology, 1996, 8(24): 335-340.)
- [5] 彭志龙. 金属离子在煤结构中赋存形态的分子模拟[D]. 太原理工大学,太原理工大学地质系, 2012.
 (PENG Zhi-long. The molecular simulation of the combined forms of metal ions in coal structure[D]. The Department of Geology, Taiyuan University of Technology, 2012.)
- [6] 贾建波,曾凡桂. 神东 2⁻²_煤镜质组大分子结构模型 ¹³C-NMR 谱的构建与修正[J]. 燃料化学学报, 2011, 9(39): 653-657.
 (JIA Jian-bo, ZENG Fan-gui. Construction and modification of macromolecular structure model for vitrinite from Shendong 2-2 coal[J]. Journal of Fuel Chemistry and Technology, 2011, 9(39): 653-657.)
- [7] THOMAS S, BRUHL I, Heilmann D, Kleinpeter E. ¹³CNMR chemical shift calculations for some substituted pyridines: A comparative consideration [J]. J Chem Inf Comput Sci, 1997, 37(4): 726-730.
- [8] KAWASHIMA H, TAKANOHASHI T. Modification of model structures of upper report coal extracts using ¹³C NMR chemical shift calculations[J]. Energy Fuels, 2001, 15(3): 591-598.
- [9] TAKANOHASHI T, IINO M. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation [J]. Energy Fuels, 1998, 12(6): 1168-1173.

- [10] TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for upper Freeport coal using ¹³C NMR chemical shift calculations [J]. Energy Fuels, 2002, 16(2): 379-387.
- [11] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.
- [12] GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content
 [J]. Fuel Process Technol, 2002, 77-78: 1-7.
- [13] GARDNER S D, SINGAMSETTY C S K, BOOTH G L, HE G R, PITTMAN JR C U. Surface characterization of carbon fibers using angleresolved XPS and ISS[J]. Carbon, 1995, 33(5): 587-595.
- [14] 徐秀峰,张蓬洲. 用 XPS 表征氧、氮、硫元素的存在形态[J]. 煤炭转化, 1996, 19(1): 73-77.
 (XU Xiu-feng, ZHANG Peng-zhou. The XPS study of forms of oxygen, nitrogen and sulphur elements in gas coal[J]. Coal Conversion, 1996, 19(1): 73-77.)
- [15] 彭立才,韩德馨,邵文斌,刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根¹³C 核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37.
 (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen.¹³C NMR research on the kerogens of jurassic hydrocabon source rock in the northen edge, Qaidam Basin[J]. Acta Petrolei Sinica, 2002, 23(2): 34-37.)
- [16] 郑昀辉, 戴中蜀. 用 NMR 研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59.
 (ZHENG Jun-hui, DAI Zhong-shu. Using NMR to research the influence of low temperature pyrolysis on the chemical component and structure of low rank coal[J]. Coal Conversion, 1997, 20(4): 54-59.)
- [17] TREWHELLA M J, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen: Determination using solid state ¹³C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
- [18] 王丽,张蓬洲,郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24(6): 539-543.
 (WANG Li, ZHANG Peng-zhou, ZHENG Min. Study on structural characterization of three Chinese coals of high organic sulphur content using XPS and solid-state NMR spectrescopy[J]. Journal of Fuel Chemistry and Technology, 1996, 24(6): 539-543.)
- [19] 谢克昌. 煤的结构性与反应性[M]. 北京:科学出版社, 2002: 70-75.
 (XIE Ke-chang. The structure and reactivity of coal[M]. Beijing: Science Press, 2002: 73-75.)
- [20] VANDENBROUCKE M, LARGEAU C. Kerogen origin, Evolution and Structure [J]. Org Geochem, 2007, 38(5): 719-833.
- [21] DESIMONI E, CASELLA G I, MORONE A, SALVI A M. XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces[J]. Surf Interface Anal, 1990, 15(10): 627-634.
- [22] WANGER C D, RIGGS W M, DAVIS L E, MOULDER J F. A reference book of standard data for use in X-ray photoelectron spectroscopy [M]. Perkin-Elmer, Eden-Prairie, 1979.
- [23] SHINN J H. From coal to single stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196.
- [24] 王生维. 伊敏盆地五牧场煤变质作用及煤层气地质特征研究[J]. 中国煤田地质, 1996, 8(4): 34-37.
 (WANG Sheng-wei. Metamorphism of coal and coal bed methane in wumuchang, Yimin basin[J]. Coal Geology of China, 1996, 8(4): 34-37.)