2,4-二硝基咪唑铜配合物[Cu(DNI)₂(H₂O)]•3H₂O 的制备和晶体结构

崔 荣¹,郑晓东¹,毛治华²,张志忠¹,封利民¹,姚逸伦¹,李洪丽¹,姜 俊¹

(1. 西安近代化学研究所,陕西西安 710065; 2. 四川大学分析测试中心,四川 成都 610041)

摘 要:通过 2,4-二硝基咪唑(2,4-DNI)钠盐的水溶液与硫酸铜的水溶液反应,制备出 2,4-二硝基咪唑铜配合物; 采用自然挥发法培养出了适于 X 光结构测定的单晶, X 射线衍射测定结果显示,晶体属三斜晶系,空间群为 P-1,晶体学参数为: $a=7.2560(10)\times10^{-1}$ nm, $b=7.762(2)\times10^{-1}$ nm, $c=16.685(3)\times10^{-1}$ nm, $a=87.13(3)^\circ$, $\beta=83.81(3)^\circ$, $\gamma=62.25(3)^\circ$, $V=826.8(3)\times10^{-3}$ nm³,Z=2,Dc=1.871 g·cm⁻³, $\mu=1.411$ mm⁻¹,F(000)=470,最终偏离因子 R 为 0.0388。根据红外光谱、元素分析和 X 射线衍射分析结果,确定 2,4-二硝基咪唑铜配合物的化学组成为 C₆H₁₀CuN₈O₁₃;分子结构式为[Cu(DNI)₂(H₂O)₂]·3H₂O。

文章编号:1007-7812(2007)05-0027-04

Preparation and Crystal Structure of $[Cu(DNI)_2(H_2O)_2] \cdot 3H_2O$

CUI Rong¹, ZHENG Xiao-dong¹, MAO Zhi-hua², ZHANG Zhi-zhong¹

FENG Li-min¹, YAO Yi-lun¹, LI Hong-li¹, JIANG Jun¹

(1. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China;

2. Analytical and Testing Centre of Sichuan University, Chengdu 610041, China)

Abstract: $[Cu (DNI)_2 (H_2O)_2] \cdot 3H_2O$ was prepared by the reaction of the aqueous solution of sodium 2, 4dinitroimidazolate and copper sulfate. The single crystal of $[Cu (DNI)_2 (H_2O)_2] \cdot 3H_2O$ suitable for X-ray determination was obtained by slow evaporation method. The single crystal structure of $[Cu (DNI)_2 (H_2O)_2] \cdot$ $3H_2O$ has been determined by single crystal X-ray diffraction analysis. The crystal is triclinic, space group P-1 with crystal parameters of $a=7.2560(10) \times 10^{-1}$ nm $,b=7.762(2) \times 10^{-1}$ nm $,c=16.685(3) \times 10^{-1}$ nm $,\alpha=87.13$ $(3)^{\circ},\beta=83.81(3)^{\circ},\gamma=62.25(3)^{\circ},V=826.8(3) \times 10^{-3}$ nm³,Z=2,Dc=1.871 g \cdot cm⁻³, $\mu=1.411$ mm⁻¹,F(000)=470. The final deviation factor R is 0.0388. According to the analytical results of IR, the elemental analyses and X-ray diffraction, the chemical component of the 2,4-DNI copper complex is $C_6H_{10}CuN_8O_{13}$ and its formula is $[Cu (DNI)_2(H_2O)_2] \cdot 3H_2O$.

Key words: structural chemistry; copper complex of 2,4-DNI; preparation; crystal structure

引 言

20 世纪末国外开始研究 2,4-二硝基咪唑(简称 2,4-DNI)在含能材料领域的应用^[1-2],研究发现,其 能量是 HMX 能量的 80%,比TATB 高 20%,接近 RDX,摩擦感度和撞击感度与 TATB 相近,热稳定 性良好,是一种高能、耐热、钝感炸药,亦可用作 推进剂组分。近年来,2,4-DNI 金属配合物在推进 剂方面的应用引起了有关工作者的极大兴趣,但是 关于2,4-DNI 金属配合物的研究报道较少,前苏联 研究人员 Barabanav V. P. 等^[3-4]研究了2,4-DNI 的 钠、钾、银、铑、铈盐的红外光谱和电导性能;郑晓东 等^[5]研究了2,4-二硝基咪唑铅盐的合成及性能。本 实验研究了2,4-DNI 铜(I)配合物的制备和晶体 结构。

收稿日期:2007-03-09; 修回日期:2007-04-19

基金项目:兵器预研基金资助项目(42001060202)

作者简介:崔荣(1967-),男,硕士,工程师,从事应用化学及含能材料的合成及应用研究。

1 实验部分

1.1 仪器与实验条件

2,4-DNI的铜配合物中碳、氮、氢元素含量用德 国艾乐曼公司Vario EL II型C、H、N、O、S 元素分析 仪测定,铜元素含量用热重法(TGA)确定。2,4-DNI 铜配合物的红外光谱用美国Nicolet 公司Nexus 870 型 FT-IR 光谱仪测定。晶体结构用荷兰 Enraf-Nonius 公司CAD4 PDP11/44 型四圆单晶衍射仪测 定,使用NRCVAX、SHELX、SHELX-97 和Ortep-3 for Windows 1.076 程序进行数据还原、约化,结构 解析以及图形绘制。

1.2 主要原料

2,4-二硝基咪唑(2,4-DNI),自制;蒸馏水,自制;其他原料为市售分析纯试剂,使用前未经处理。

1.3 单晶的制备和组成

将 2,4-DNI 分散于蒸馏水中,搅拌下用质量分 数 为 5% 的氢氧化钠水溶液中和,将反应液的 pH 值 调节至6.5~7.0,反应体系逐渐变为橙色透明溶液; 加热至 60°C,在搅拌下滴加硫酸铜溶液,反应液中 出现蓝灰色沉淀,冷却后过滤,得蓝色固体,用蒸馏 水精制两次,再用质量分数为 95% 的乙醇煮洗 1次, 产物于 40°C 下真空干燥 24 h,得蓝色粉状固体;然后 将其溶解于 2次蒸馏水中,配制成饱和溶液,在室温 下培养,得到用于 X 光结构测定的蓝色单晶。

元素分析(C₆H₁₀ O₁₂ N₈Cu,%):计算值, C 15.47,H 2.165,N 24.07,Cu 13.65;实测值,C 15.67,H 2.256,N 24.12,Cu 13.46。

红外光谱图(KBr 压片)见图1。从图1 可看出, 3140 cm⁻¹ 为咪唑芳香环的 CH 伸缩振动吸收峰, 755、654 cm⁻¹为咪唑芳香环的CH 弯曲振动吸收峰, 1626、1521、1491、1461 cm⁻¹为咪唑芳香环的环骨

图1 [Cu(DNI)₂(H₂O)₂]・3H₂O 的红外光谱图 Fig. 1 IR spectrum of [Cu(DNI)₂(H₂O)₂]・3H₂O 架振动吸收峰 $,1327 \,\mathrm{cm}^{-1}$ 和 $1491 \,\mathrm{cm}^{-1}$ 分别为 NO₂ 的对称和反对称伸缩振动吸收峰 $,842,822 \,\mathrm{cm}^{-1}$ 为 NO₂ 的弯曲震动吸收峰 $,3597,1626 \,\mathrm{cm}^{-1}$ (OH) 处 的尖锐红外吸收为分子内结晶水的特征吸收峰。

1.4 **晶体结构测**定

造取 0. 4 mm × 0. 3 mm × 0. 3 mm 的单晶,在 NONIUS CAD4 型四圆单晶衍射仪上,用数据收集 程序 CAD4 (Enraf-Nonius)、MoK_a X 射线($\lambda =$ 7.1073×10⁻² nm)、石墨单色器,在 10° $\leqslant \theta \leqslant$ 20°范 围内,用 25 个衍射点精确测定取向矩阵和晶胞参 数,以 $\omega/2\theta$ 方式扫描,扫描速度为 4.5°/min,扫描范 围 10.96° \leqslant 2 $\theta \leqslant$ 49.94°,h 为 0~8,k 为 -8~9,l 为 -19~19,共收集独立衍射点 2869 个,其中 I > 26(I)的 2647 个可观察点用于结构解析和修正。经分 析,晶体属三斜晶系,空间群为P-1,晶胞参数为:a =7.2560(10)×10⁻¹ nm,b =7.762(2)×10⁻¹ nm,c =16.685(3)×10⁻¹ nm,a = 87.13(3), $\beta =$ 83.81(3), Y = 62.25(3), V = 826.8(3)×10⁻³ nm³,Z = 2, Dc=1.871 g/cm³, $\mu =$ 1.411 mm⁻¹,F(000) = 470。衍 射强度数据经LP 因子校正及经验吸收修正。

用 MOLEN PC、SHELX-97 和 SIEMENS SHELXTL PC 程序进行数据还原、约化,结构解析 和图形绘制。所有非氢原子由直接法和差值Fourier 合成法定出,氢原子由差值Fourier 合成法确定。

用块对角矩阵最小二乘法修正数轮后,非氢原 子用各向同性热参数、氢原子用各向异性热参数进 行全矩阵最小二乘法精修。最终的偏离因子为 R_1 = 0.0388,wR2=0.1073,最终的差值Fourier 合成图 上电子密度峰的最小高度为 $-0.839 \times 10^3 \text{ e/nm}^3$, 最大高度为 $0.641 \times 10^3 \text{ e/nm}^3$ 。所得原子坐标参数 及等效各向同性热因子、键长、键角分别列于表 $1\sim3$ 中,该配合物的晶体结构及其在晶胞中分子的堆积 图见图 2 和图 3。

图 2 [Cu(DNI)₂(H₂O)₂]•3H₂O 的晶体结构 Fig. 2 Crystal structure of [Cu(DNI)₂(H₂O)₂]•3H₂O

图 3 晶胞中 $[Cu(DNI)_2(H_2O)_2]$ ·3H₂O的分子堆积图

Fig. 3 Packing of the molecular

 $[Cu(DNI)_2(H_2O)_2]$ • $3H_2O$ in the crystal lattice

表1 原子坐标和各向同性温度因子

Table 1 Selected atom coordinates and isotropic

thermal parameters

Atom	$x/10^{4}$	$y/10^{4}$	$z/10^4$	$U_{\rm eq}/(10{\rm nm}^2)$
Cu	6815(1)	1371(1)	2500(1)	35(1)
O3	10815(5)	-3310(4)	280(1)	70(1)
O4	9923(5)	-2291(4)	3089(1)	77(1)
O5	7364(6)	-2287(4)	1912(1)	79(1)
O6	7486(6)	-3307(4)	720(1)	71(1)
O9	9402(4)	1585(5)	2467(1)	67(1)
O10	4013(4)	1588(5)	2533(1)	66(1)
O11	5091(5)	4832(4)	2502(1)	68(1)
O12	8260(4)	-2493(3)	-1262(1)	47(1)
O13	10781(4)	2489(3)	3737(1)	46(1)
N1	4937(5)	2638(4)	5732(1)	47(1)
N2	7632(4)	-32(3)	4937(1)	36(1)
N3	9711(4)	-2093(4)	3816(1)	49(1)
N4	6743(4)	1109(3)	3687(1)	35(1)
N5	7151(4)	1107(3)	1313(1)	35(1)
C1	5367(4)	2464(4)	4225(1)	37(1)
C2	5946(4)	1735(4)	4974(1)	34(1)
С3	8019(4)	-314(4)	4151(1)	34(1)
H9A	9538	1881	2933	80
H10A	3583	1884	2066	80

表2 部	分報	ŧ₭
------	----	----

Гable	2	Selected	bond	length
	_			8

Bond	Bond length/ (10 ⁻¹ nm)	Bond	Bond length/ (10 ⁻¹ nm)
C1-H1a	0.960	H12a-O12	0.876
C1-N4	1.354	H12b-O12	0.815
C1-C2	1.372	H13a-O13	0.837
C2-N2	1.345	H13b-O13	0.855
C2-N1	1.428	N3-O4	1.214
C3-N2	1.319	N3-O3	1.221
C3-N4	1.339	N6 - O6	1.215
C3-N3	1.441	N6-O5	1.218
C4-H4a	0.960	O3-N3	1.221

Bond	Bond length/ $(10^{-1} \mathrm{nm})$	Bond	Bond length/ (10 ⁻¹ nm)
C4-N5	1.356	O4-N3	1.214
C4 - C5	1.372	O5-N6	1.218
C5-N7	1.339	O6-N6	1.215
C5-N8	1.434	C6-N5	1.339
C6-N7	1.319	Cu1-O9	1.955
C6 - N6	1.440	Cu1-O10	1.955
H9a-O9	0.850	Cu1-N4	1.977
H10a-O10	0.850	Cu1-N5	1.978

表 3 部分键角

Table 3 Selected angles

	Bond	Bond angles (°)	/ Bond	Bond angles/ (°)
-	H1a-C1-N	4 126.90	O3-N3-C3	118.04
	H1a-C1-C	2 126.75	C3-N4-C1	103.61
	N4-C1-C2	2 106.35	C3-N4-Cu1	130.62
	N2-C2-C1	112.32	C1-N4-Cu1	125.68
	N2-C2-N1	1 120. 87	C6 - N - 5C4	103.67
	C1-C2-N1	126.80	C6-N5-Cu1	130.65
	N2-C3-N4	4 116.79	C4-N5-Cu1	125.59
	N2-C3-N;	3 121.06	O6 - N6 - O5	124.61
	N4-C3-N3	3 122.14	O6-N6-C6	118.10
	H4a-C4-N	5 127.02	O5 - N6 - C6	117.27
	H4a-C4-C	5 126.92	C6-N7-C5	101.03
	N5-C4-C5	5 106.06	H9a-O9-Cu1	109.38
	N7-C5-C4	l 112.57	H10a-O10-Cu1	109.35
	N7-C5-N8	3 121.04	H12b-O12-H12a	117.29
	C4-C5-N8	3 126.38	H13a—O13—H13b	110.04
	N7-C6-N5	5 116.67	O9-Cu1-O10	171.29
	N7-C6-N6	5 121.16	O9-Cu1-N4	90.08
	N5-C6-N6	5 122 . 15	O9-Cu1-N5	90.65
	C3-N2-C2	2 100.93	O10-Cu1-N4	90.75
	O4-N3-O3	3 124.37	O1-Cu1-N5	90.10
	O4-N3-C3	3 117.58	N4-Cu1-N5	169.52

2 讨 论

从图 2、表 2 和表 3 可知,标题化合物的金属原子 Cu 与两个水分子的氧原子 O9、O10 和两个 DNI 环上 的氮原子 N4 和 N5 配位,其键长分别为:1.955(6)× 10^{-1} nm、1.955(3)× 10^{-1} nm、1.977(4)× 10^{-1} nm、1.978(5)× 10^{-1} nm,这些键长是典型的配位键 键长;各配位原子与中心 Cu 原子的 6 个键角分别 为:171.29°、90.08°、90.65°、90.75°、90.10°、169. 52°,介于 90.08 与 171.29 之间,该配合物为四配体 的畸变平面四边形配位构型,如图 2 所示。因此,该 配合物的分子式应为 $[Cu(DNI)_2(H_2O)_2]$ ・ $3H_2O$, 空间构型为四配体的平面构型。

分子中与中心铜原子配位的两个 DNI 所处平 面的平面方程为:

C(1)C(2)C(3)N(2)N(4)N(3)O(2)O(3)N(1) O(2)O(1)Cu(1):

6. 5420x + 6. 2194y + 1.0163z = 5.4741 (I) C(4)C(5)C(6)N(5)N(7)N(6)O(5)O(6)N(8) O(7)O(8)Cu(1):

6.5423x+0.2986y+1.0112z=4.8456 (Ⅰ)
由晶体结构分析程序SHELX-97 计算得到平面
Ⅰ 与平面 I 之间的夹角为 51.06°。

3 结 论

(1)通过2,4-二硝基咪唑(2,4-DNI)的钠盐水 溶液与硫酸铜的水溶液反应,制备了2,4-二硝基咪 唑铜配合物。

(2)采用自然挥发法培养出适于X光结构测定的单晶;X光衍射测定结果表明,该晶体属三斜晶系,空间群为P-1。

(3) 根据红外光谱、元素分析和X 射线衍射分析结果,确定了2,4-二硝基咪唑铜(II)配合物的化学组成为 C₆H₁₀CuN₈O₁₃,分子式为 [Cu (DNI)₂
(H₂O)₂]・3H₂O,空间构型为四配体的平面构型。

(4) 确定了[Cu(DNI)₂(H₂O)₂]・3H₂O 分子 中与中心铜原子配位的两个 DNI 环所处的平面夹

(上接第26页)

参考文献:

- [1] 汪旭光.乳化炸药[M].北京:冶金工业出版社,1993.
 WANG Xu-guang. Emulsion Explosives[M]. Beijing: Metallurgical Industry Press, 1993.
- [2] Cook M A. 工业炸药学[M]. 陈正衡,孙姣花,译. 北 京:煤炭工业出版社, 1987:152-193.
 Cook M A. The Science of Industrial Explosives[M]. Translated by Chen Zheng-heng, Sun Jiao-hua.
 Beijing: China Coal Industry Publishing House, 1987: 152-193.
- [3] 曹欣茂.世界爆破器材手册[M].北京:兵器工业出版 社,1999:1110-1112.

CAO Xin-mao. World Explosive Materials Manual

角为 51.06°。

参考文献:

- [1] Damavarapu R, Jayasuriya K, Vladimiroff J. 2, 4-Dinitroimidazole—a less sensitive explosive and propellant made by thermal rearrangement of molten 1,4-dinitroimidazole: US,5387297[P].1995.
- [2] Doherty R M, Simpson R L. A comparative evaluation of several insensitive high explosives. Combustion and Detonation [C] // 28th International Annual Conference of ICT. Karlsruhe: ICT, 1997: 17-19.
- [3] Epishina L V, Slovetskii V I, Osipov V G, et al. Infrared spectra and structure of salts of nitroimidzoles [J]. Khim Geterotsikl Soedin, 1967 (4):716-723.
- Barabanov V P, Tret Y A Y, Sharnin G P, et al.
 Lithium salt, potassium salt, rubidium salt, silver (1 +) salt, sodium salt studies of nitroimidzoles. N
 Electric conductivity of metallic salts of nitro and halonito derivatives of imidazole in dimethylformamide [J]. Zh Obshch Khim, 1980, 50 (10):2318-2322.
 - ▶ 郑晓东,崔荣,李洪丽,等. 2,4-二硝基咪唑铅盐的合 成及性能[J].火炸药学报,2006,29(6):23-26.

ZHENG Xiao-dong, CUI Rong, LI Hong-li, et al. Synthesis and properties of 2,4-dinitroimidazole lead salt [J]. Chinese Jounral of Explosives and Propellants,2006,29(6):23-26.

[M]. Beijing: Ordance Industry Publishing House, 1999:1110-1112.

- [4] 郑孟菊,俞统昌,张银亮. 炸药的性能及测试技术
 [M].北京:兵器工业出版社,1990:237-257.
 ZHENG Meng-ju, YU Tong-chang, ZHANG Yinliang. Property and Test Technology of Explosives
 [M]. Beijing: Ordance Industry Publishing House, 1990:237-257.
- [5] Muhamed S. Test Methods for Explosives[M]. New York: Springer, 1995:168-170.
- [6] 炸药作功能力试验方法.GB12436-1990[S].1990.
 Explosive Test Method-Power Determination-Lead Block Method.GB12436-90[S].1990.