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Abstract-This paper studies the problems of estimation and inference in 
the linear trend model yt = a + P3t + ut, where ut follows an autoregressive 
process with largest root p and , is the parameter of interest. We contrast 
asymptotic results for the cases I p I < 1 and p = 1 and argue that the most 
useful asymptotic approximations obtain from modeling p as local to unity. 
Asymptotic distributions are derived for the OLS, first-difference, infea- 
sible GLS, and three feasible GLS estimators. These distributions depend 
on the local-to-unity parameter and a parameter that governs the variance 
of the initial error term K. The feasible Cochrane-Orcutt estimator has poor 
properties, and the feasible Prais-Winsten estimator is the preferred 
estimator unless the researcher has sharp a priori knowledge about p and K. 
The paper develops methods for constructing confidence intervals for , 
that account for uncertainty in p and K. We use these results to estimate 
growth rates for real per-capita GDP in 128 countries. 

I. Introduction 

M /[ANY economic time series display clear trends, well 
represented by deterministic linear or exponential 

functions of time. The slope of the trend function represents 
the average growth in the series (or rate of growth, if the 
series is in logarithms) and is often a parameter of primary 
interest. Serial correlation in the data complicates efficient 
estimation and statistical inference about the trend function, 
and this paper studies trend estimation and inference when 
this problem is severe. 

To be specific, assume that a series can be represented as 

Yt= ox + 3t + ut (1) 

(1 - pL)ut = vt (2) 

where Yt is the level or log level of the series and ut denotes 
the deviations of the series from the trend. These deviations 
are serially correlated, with a largest autoregressive root of 
p. The error term vt is an I(O) process. If the ut's are jointly 
normally distributed, and the precise pattern of serial 
correlation is known, then efficient (BUE) estimators of ox 
and ,3 can be constructed by generalized least squares (GLS) 
and statistical inference can be conducted using standard 
regression procedures. In practice, the distribution of the 
errors and the pattern of serial correlation is unknown, so 
that GLS estimation and exact inference are infeasible. 

Applied researchers typically use one of three feasible 
estimators, motivated by the asymptotic equivalence of 
these estimators to the infeasible GLS estimator. If I pI < 1, 
so that u, is I(0), then the feasible GLS estimator is 
asymptotically equivalent to the infeasible GLS estimator, 
under general conditions. Moreover, the classic result of 
Grenander and Rosenblatt (1957) implies that the ordinary 
least-squares (OLS) estimators of ox and 1 are asymptoti- 
cally equivalent to the GLS estimator. Thus if u, is I(0), OLS 
or feasible GLS applied to the level of y, is asymptotically 
efficient. On the other hand, when p = 1, so that u, is I(1), ox 
can no longer be consistently estimated by any method, and 
the OLS estimator of 1 is no longer asymptotically efficient. 
In this case, the data should be differenced and the Gren- 
ander and Rosenblatt result implies that the sample mean of 
Ayt (the OLS estimator of 1 in the differenced regression) is 
asymptotically equivalent to the efficient, but infeasible, 
GLS estimator of 1. In summary, if ut is I(0), then OLS from 
the levels regression produces the asymptotically efficient 
estimator, whereas if u, is I(1), then the sample mean of AYt 
is the asymptotically efficient estimator. 

Inference is just as dependent on the I(0)/I(1) dichotomy. 
Ideally, in either situation, inference should be carried out 
using the t-statistic from the infeasible GLS regression. 
When ut is I(0), this t-statistic can be approximated using the 
OLS estimator together with a serial-correlation-robust 
standard error estimated from the OLS residuals. Alterna- 
tively, when p = 1 and the data are 1(1), this t-statistic can be 
approximated using the sample mean of Ayt together with a 
serial-correlation-robust variance estimated from the first 
differences of the data. Of course, since most researchers 
cannot know a priori whether their data are I(0) or I(1), these 
results are of limited value. In this paper we study inference 
problems and the behavior of OLS, first-difference, and 
feasible GLS estimators when the data are either I(0) or I(1) 
and p is unknown. 

Our analysis builds on two literatures. The first is the 
literature on the linear regression model with AR(1) errors 
exemplified by Cochrane and Orcutt (1949) and Prais and 
Winsten (1954). The second is the literature on inference in 
regressions with I(1) variables examplified by Dickey and 
Fuller (1979), Durlauf and Phillips (1988), and Elliott et al. 
(1996). Much of the former literature focuses on efficient 
estimation of regression parameters when the errors follow a 
stationary AR(1) process, and is directly relevant for our 
analysis when IpI < 1 and v, is independently identically 
distributed (i.i.d.).I There are few exact analytic results in 
this literature because these depend on the specific proper- 
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ties of the regressors and because of complications from the 
nonlinearity introduced by feasible GLS estimation.2 More- 
over, the asymptotic results summarized above rely on j p I < 
I and are not refined enough to discriminate between OLS 
and feasible GLS estimators. Thus the majority of work in 
this area has relied on Monte Carlo simulations. Equations 
(1) and (2) have also been extensively studied in the unit root 
literature, primarily with a focus on tests for the hypothesis 
that p = 1. In most of this literature, the regression 
coefficients ot and ,B are nuisance parameters, and p is the 
parameter of interest.3 One of the purposes of this paper is to 
highlight what this analysis says about the feasible estima- 
tors of a and statistical inference. 

We begin our analysis in section II by presenting results 
on the asymptotic distributions of estimators of ,B. These 
include the OLS, first-difference and infeasible GLS estima- 
tors, and three different, but commonly used, feasible GLS 
estimators. We avoid the sharp I pI < 1 versus p = 1 
dichotomy in the asymptotic distributions by using local-to- 
unity asymptotics, with the hope that these provide better 
finite-sample approximations. The asymptotic results for 
I p < 1 and p = 1 are not new: they are reported here for 
completeness and because, particularly when p = 1, the 
results may not be widely appreciated by applied research- 
ers. In any event, the local-to-unity results are the most 
relevant, since in most econometric applications the errors 
are highly serially correlated, although perhaps not character- 
ized by an exact unit root. These results show sharp 
differences in the relative efficiencies of the estimators, and 
four conclusions emerge from the analysis. First, the 
Cochrane-Orcutt estimator performs very poorly when p is 
close to one. Second, the OLS estimator is more robust to 
variations in p than the first-difference estimator. Third, the 
variance of the initial error term has an important effect on 
the relative efficiencies of the estimators. Finally, the 
asymptotic results suggest that the feasible Prais-Winsten 
estimator is the best estimator in most applied situations. 
Section II concludes with a finite-sample'experiment that 
indicates that the asymptotics provide reasonable approxima- 
tions to the finite-sample relative efficiencies. 

Section III studies the problem of statistical inference 
about P. Existing Monte Carlo evidence suggests that 
methods relying on 1(0) asymptotic approximations greatly 

understate the uncertainty in I when I p I < 1 but large. This 
leads to confidence intervals that are much too narrow and 
hypothesis tests with sizes that are too large. Asymptotic 
approximations that rely on p = I have analogous problems. 
This section uses the local-to-unity asymptotic approxima- 
tions from section II to construct bounds tests and conserva- 
tive confidence intervals building on methods developed in 
Dufour (1990) and Cavanagh et al. (1995). 

In section IV we apply the methods to estimate and 
construct confidence intervals for real per-capita gross 
domestic product (GDP) growth rates for 128 countries 
using postwar data. Consistent with the analysis in section 
II, we find large differences between the Cochrane-Orcutt 
and other estimators for many of the countries. There are 
smaller, but economically important, differences in the other 
estimators, and this highlights the importance of estimator 
choice. Finally, for most countries, the high degree of serial 
correlation and the small sample size lead to wide confi- 
dence intervals for P. 

We offer a summary and some conclusions in section V, 
and the appendix contains proofs and other detailed calcula- 
tions. 

II. Estimators 

The statistical model for the observations {yt),T is sum- 
marized in the following assumptions: 

1. The data yt are generated by yt = ot + P3t + ut for t = 1, 
.... .T 

2. The error term ut is generated by (1 - pTL)ut = vt for 
t = 2,. . ., T. 

3. U1 = EiKTO] pTV1i. 
4. vt = d(L)Et, with d(L) = %o diLi, and 

Ei=o ildil < mo. 
5. The error term et is a martingale difference sequence 

with E(E2 | Et-1, Et-2,. ..) = 1- and with suptEE4 < oo. 

Assumption 1 says that the data are generated as a linear 
trend plus noise; the parameter ,B is the average trend growth 
in the series and is the parameter of interest. Assumptions 2 
and 3 are written to include both I(0) and 1(1) processes. 
When PT = p, with I p I < 1, then ut is I(0); while when PT = 

1, then ut is I(1). More generally, when PT = (1 + cIT), then 
ut follows a "local-to-unity" I(1) process, with c = 0, 
corresponding to an exact unit root and values of c # 0 
generating data that are less (c < 0) or more (c > 0) 
persistent than the exact unit root process.4 We will refer to 
processes with PT = (1 + cIT) and either c = 0 or c # 0 as 
I(1) processes. 

(1987), Park and Mitchell (1980), Rao and Griliches (1969), Spitzer 
(1979), and Thornton (1987). 

2 Two exceptions directly relevant for our analysis are Prais and Winsten 
(1954) and Chipman (1979). The first paper studies equations (1) and (2) 
when an intercept is excluded from equation (1) and v, is i.i.d., and 
calculates the relative efficiency of the OLS and first-difference estimators 
as a function of p and the sample size; Chipman (1979) includes an 
intercept in equation (1) and calculates the greatest lower bound of the 
efficiency of the OLS estimator for all T and p s 1. We discuss the 
Chipman (1979) analysis in more detail in section IIA. 

3Two notable exceptions are Durlauf and Phillips (1988), which is 
discussed in more detail in section IIA, and Lee and Phillips (1994), which 
studies asymptotic properties of trend estimators in the model without an 
intercept and with error processes assumed to follow either local-to-unity 
or long-memory processes. 

4These local-to-unity processes have been used extensively to study 
local power properties of unit root tests, construct confidence intervals for 
autoregressive parameters for highly persistent processes, and more 
generally, to study the behavior of statistics whose distribution depends on 
the persistence properties of the data. Some notable examples are 
Bobkosky (1983), Cavanagh (1985), Cavanagh et al. (1995), Chan and Wei 
(1987), Chan (1988), Phillips (1987), and Stock (1991). 
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Assumption 3 incorporates a range of assumptions about 
the initial condition ul, depending on the values of K and PT. 
For example, when K = 0, then ul = vl, so that the initial 
value is assumed to be an Op(l) random variable. When K > 
0, then ul is Op(T"12) when u, is I(1), but is Op(l) when u, is 
I(0). When PT = p, with IpI < 1 and KT K oo, then ul is 
drawn from the unconditional distribution of ut, and the 
process is covariance stationary.5 

Assumption 5 implies that the functional central limit 
applies to the partial sums of et, i.e., T-1/2 z7sT] E =* W(S), 
where W(s) is a standard Wiener process.6 Assumption 4 
ensures that the functional central limit theorem also applies 
to the partial sums of vt, specifically T-112 liTs1 vt X 
d(I)W(s). 

A. OLS, First-Difference, and GLS Estimators 

Let ,BOLs denote the OLS estimator of ,B in equation (1), let 
BFD = (T - I)-Y ETt=2 AYt denote the first-difference estima- 
tor, and let IGLs denote the infeasible GLS estimator that 
corrects for nonzero PT. Specifically, ,BGLS iS the OLS 
estimator in the transformed regression 

Yt- PTYt-1 = (1 - PT) O + 3 [t - PT(t - 1 )] 
+Ut-PTUt_1, t=2,3,...,T 

together with 

J-1Y = lot + or3,B + T (4) 

where or2 = (1 - P2([KT]+l))/(1 - P2) for |PTI 0 1 and U2= 
[KT] + 1 for |PTI = 1. For simplicity, the GLS estimator 
ignores the I(0) serial correlation associated with d(L). This 
allows us to focus on the major source of serial correlation, 
PT # 0, and leads to no loss of asymptotic efficiency for the 
models considered here (Grenander (1954) and Grenander 
and Rosenblatt (1957)). 

In large samples, the behavior of ,BOLS, |3FD, and 13GLS iS 
summarized in Theorems 1 and 2. 

THEOREM 1 (Behavior of BOLS, ,FD, and 13GLS with I(0) 
Errors): Under assumptions 1-5 with PT = p and I pI < 1, 

(a) T3/2(PoLS - I) -LN(0, V1), where V1 = 12(1 - 
p)-2d(1)2. 

(b) T(3FD - ,) converges in distribution to a random 
variable with zero mean, variance V2 = Si=0 fi + 
var(ul), wheref = E.=_ (i-jdj. The limiting distri- 
bution of T(PFD - 3) depends on the distribution of 
the E's, and so in general is nonnormal. 

(c) T31/2(IGLS - 1) L) N(0, V1), where V1 is specified in 
(a). 

Proof: Parts (a) and (c) follow from a straightforward 
application of the central limit theorem. To show part (b), 
note that T(,BFD - 1) = UT - ul, from which the result 
follows immediately. El 

A 

THEOREM 2 (Behavior Of ,BOLS, BFD, and |3GLS With I(1) 
Errors): Let SC(T) = (-2c)-1(1 - e2Tc). Then under as- 
sumptions 1-5, with PT = (1 + cIT): 

(a) TV/2(PoLs - ) L) N(O, R1), where 

R = d(l)2c-5[18(c - 2)2e2c + 72c(c - 2)ec 

+ 12c3 + 54C2 + 72c - 72] 

cec + c - 2(ec -1)12 
+ d(l)2144SC(K) 2c2 

(b) T112 (LBFX-,1) L N(O, R2), where 

R2 = d(l)2[SC(l) + (1 - ec)2SC(K)]. 

(c) T1/2(PGLs-,1) -) N(O, R3), where 

R3 = d(1)2 

SC (K)C 2 + 1 

[Sc(K)C2 + 1](1 -SC + 1 32)-SC(K)2C2 -c)2 - c + c2C 

Proof: See the appendix. 

The limiting behavior of the estimators in the exact unit 
root model follows from evaluating the limiting values of R1, 
R2, and R3 in Theorem 2 as c - 0. These results are given in: 

COROLLARY 3 (Behavior of POLS, PFD, and IGLS when 
p = 1): Under assumptions 1-5, with PT = 1: 

(a) T1I2(PoLs- ,B) +N(O, d(1)2). 

(b) T"12(PFD -) LI N(O d(1)2). 
(c) T"12(BGLS - B) LN(O, d(l)2). 

We highlight five features of these results. First, IOLS, 
,BFD, and ,3GLS converge to 13 faster in the I(O) model than in 
the I(1) model. This result obtains because the variance of 
the errors is bounded in the I(O) model and increases linearly 
with t in the I(1) model. Sampson (1991) discusses the 
implication of this result for long-run forecast confidence 
intervals. 

Second, the averaging in ,BOLS in the 1(0) and 1(1) cases 
and in 1FD in the 1(1) case leads to asymptotically normal 
estimators. In contrast, since T(3FD_ 13) = [T/(T - 1)] X 
(UT - u1), no such averaging occurs for BFD in the 1(0) case 
so that PFD is not asymptotically normally distributed in 
general. (See Quah and Wooldridge (1988) and Schmidt 
(1993) for related discussion.) 

5 See Elliott (1993) for a related discussion of the initial error in the I(1) 
model. 

6 A range of alternative assumptions will also suffice; see Phillips and 
Solo (1992) for a discussion. 
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FIGURE 1 -ASYMPTOTIC RELATIVE EFFIcIENCIES OF BOLS AND BFD 
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Third, IGLS is the asymptotically efficient estimator 
regardless of the value of p, and it corresponds to the BLUE 
estimator when d(L) = d, a constant. The efficiency of the 
FD and OLS estimators relative to the GLS estimator differs 
dramatically in the I(0) and I(1) cases. When the errors are 
1(0), then I3FD converges to 13 more slowly than does IGLS, 
and thus has an asymptotic relative efficiency of 0. In this 
case, IOLS is asymptotically efficient, the familiar result 
from Grenander and Rosenblatt (1957). When the errors are 
1(1), IOLS, IFD, and IGLS converge at the same rate and the 
relative efficiency depends on the parameters c and K. Figure 
1 plots the asymptotic relative efficiencies (defined as the 
ratio of the asymptotic variances of IOLS and 1FD to the 
asymptotic variance of IGLS) in the I(1) model for a range of 
values of c and K. When c = 0, both IOLS and IFD are 
invariant to ul, and so their variances and the relative 
efficiency do not depend on K. In this case IFD is asymptoti- 
cally efficient and IOLS has a relative efficiency of 5/6. This 
result is derived in Durlauf and Phillips (1988), who study 

the properties of trend estimators in the model with p = 1 
(equivalently, c = 0). When c is sufficiently negative, 1OLS 

dominates IFp for all values of K. The intersection point of 
the IOLS and IFD relative efficiency curves depends on K. For 
example, when K 0, FD is efficient relative to IOLS for 
values of -18.6 ' c ' 1.2, and IOLS dominates FD for 
c outside this range. When K = 1.0, the range narrows to 
-7.6 ' c ' 0.9. 

Fourth, when K = 0, SO that ul is Op(l), the relative 
efficiency of both IOLS and 3FD increases monotonically 
with c. The relatively poor performance of these estimators 
when ul is Op(l) has been noted elsewhere, notably by 
Elliott et al. (1996) in the context of unit root tests. On the 
other hand, when K > 0, SO that ul is Op(T112), the relative 
efficiency of IOLS is U-shaped, with a minimum that 
depends on the specific value of K. For example, when K = 

1, the minimum relative efficiency of IOLS occurs at c = 
-3.006, where it takes on the value of 0.7535. As K 0o0, the 
minimum relative efficiency of IOLS is 0.7538 and occurs at 
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c = -3.076, a result that was also derived by Chipman 
(1979) using methods different from those employed here.7'8 

Finally, when the errors are I(1), the variances of IOLS, 

fFD, and 1GLS are monotonically increasing in c and K. As c 
increases, the persistence of the errors increases and so does 
the associated variance of PGLS Similarly, as K increases, the 
variance of u1 increases, leading to an increased variance in 
PGLS5 

B. Feasible GLS Estimators 

The efficient GLS estimator relies on two parameters, p 
and K, whose values are typically unknown. In this section 
we analyze feasible analogues of IGLS. The parameter p is 
easily estimated from the data, and as we show below, 
replacing p with an estimate has little effect on IGLS. On the 
other hand, it is impossible to construct accurate estimates of 
K, since this parameter only affects the data through the 
variance of the single observation ul. We therefore analyze 
three feasible GLS estimators that differ in their treatment of 
the initial observation. We find large differences in the 
relative performance of these estimators across different 
values of K. 

To focus attention on the parameter K, we begin by 
analyzing the estimators assuming that p is known. A 
simple modification of these results yields the results for 
unknown p. As above, the GLS estimators ignore the serial 
correlation associated with the 1(0) dynamics in d(L), since 
the Grenander-Rosenblatt (1957) results imply that OLS or 
GLS treatment of d(L) has no asymptotic effect on the 
estimators of f that we consider. Let f3co denote the 
Cochrane-Orcutt (1949) GLS estimator that ignores the 
levels information in the first observation; that is, I3co 
denotes the OLS estimator of 1B in equation (3). Let 13cc 
denote the GLS estimator constructed under the assumption 
that uo = 0. This assumption is often made in the unit root 
literature (see, e.g., Elliott et al. (1996)) and is referred to as 
the "conditional case." Thus, f3cc is the OLS estimator of 13 
from equation (3) together with 

Yi = (x + 13 + U. (5) 

Finally, let Ppw denote the Prais-Winsten (1954) estimator; 
that is, the OLS estimator of 13 from equation (3) together 

with 

(1 -1 - 1 - P2T) p /20t + (1 - P2)12 (6) 

(1 PT 

The Prais-Winsten estimator is defined for PT ' 1 (equiva- 
lently c ' 0), and we limit our discussion to this situation. In 
the notation introduced in the last section, f3cc corresponds 
to the GLS estimator constructed using K = 0, and 1pw is the 
limiting value of the GLS estimator as K oo . 

When PT = p, with IpI I 1 (i.e., u, is I(0)), each of the 
GLS estimators is asymptotically efficient and the large 
sample distribution is given in Theorem 1. Thus we need 
only consider the behavior of the estimators in the 1(1) 
model, and this is done in the following lemma: 

LEMMA 4 (Behavior of GLS Estimators with I(1) Errors): 
Under assumptions 1-5, with PT = (1 + cIT): 

(a) T1/2(3CO- _ L) L N(0, G1), where 

12d(1)2 
GI = ~ 

2 s forc 0 
c 

GI = d( 1)2, for c =0. 

(b) T12(I3ccC- 13) L N(O, G2), where 

d(1)2 (c - c 2)2 

G2 = 1 + SC(K) 
1-C+ c2 c + IC2 

(c) For c 0 (so that ,Bpw is defined), T1/2(,3pw- 13) L 
N(0, G3), where 

d_ _1_2 1 1 
d(1)2 C 2SC(K) + 1 + - C21 

(1- ~ + 9~2)2 1 2j (1 2C + 2C)1 

Proof: See the appendix. 

Part (a) of the lemma implies that G1, the limiting 
variance of T"/2(1co - 1), is discontinuous at c = 0. This 
occurs because the regression constant term ao becomes 
unidentified as c - 0. For values of c close to zero, ot is very 
poorly estimated, and the collinearity between the two 
regressors (1, t) in equation (3) means that 13co provides a 
poor estimate of 13. When c = 0, at disappears from equation 
(3), and so this source of variance disappears from 13co. 
Figure 2 shows the efficiency of each of the estimators 
relative to ,3GLS. The Cochrane-Orcutt estimator 13co per- 
forms very poorly for small values of c regardless of the 
value of K. This result is consistent with a large literature on 

7Chipman (1979) also shows that when d(L) = d, this asymptotic 
relative efficiency value is the greatest lower bound for the relative 
efficiency of POLS for all T > 2. Because of a slight numerical error in 
Chipman's paper, his reported numerical results are different from those 
reported here. (Specifically, the value of c that we report (c = -3.076) is a 
more accurate estimate of the root to his polynomial (3.3) than the value 
reported in his paper (c = -3.095).) 

8 After we had finished this paper, Peter Phillips pointed out an 
interesting feature of our figure 1. The plots suggest that as c - -cc, the 
relative efficiency of the OLS estimator does not converge to 1, as one 
might expect from the asymptotic efficiency of OLS in the I(0) model. This 
feature is discussed in detail in Phillips and Lee (1996), where it is shown 
that the result depends on how quickly c is allowed to approach -oo as T 
grows large. 
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FIGURE 2.-ASYMPTOTIC RELATIVE EFFICIENCIES OF BCO, BCC, AND BPW 
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the poor performance of the Cochrane-Orcutt estimator with 
trending regressors and p close to unity.9 

The relative performance of the other two estimators 
depends on the values of K and c. When K = 0, ,Bcc is the 
asymptotically efficient estimator, while ,Bpw is the efficient 
estimator as K oo. From figure 2, Ipw is approximately 
efficient even when K is very small. For example, for K = 

0.01 the relative efficiency of ,Bpw is larger than 0.73 for all 
values of c; for K = 0.05 the relative efficiency is larger than 
0.92; and for all values of K ? 0.10 I,pw is essentially 
efficient. While ,Bcc is efficient when K = 0, this efficiency 
gain disappears quickly for moderate values of c as K 

increases. 
We are now ready to discuss the feasible GLS estimators 

with PT unknown. These estimators are calculated like their 

infeasible counterparts, using an estimator of PT in equations 
(3) and (6). These estimators will be denoted by |3FCO, 13FCC, 

and ,BFPW Analysis of these estimators is complicated by the 
fact that they implicitly depend on the estimator for PT, and a 
variety of estimators of PT have been suggested. For ,BFCO the 
nonlinear least-squares estimator is often employed, and this 
estimator is studied by Nagaraj and Fuller (1991) for the 
model with general regressors. Their analysis can be simpli- 
fied here because of the special structure of the regressors: 
equation (1) together with assumption 2 can be combined as 

yt=a+bt+pTyt-I+vt, fort=2,3,...,T (7) 

where a = c(I - PT) + ,BPT and b = B(1 - PT). Thus 13FCO 

can be formed from the OLS estimators from equation (7) as 
13FCO = bl/( _ 

PT) for PT 1 and ,BFCO = a for PT = 1, 
where a, b, and AT are the OLS estimators of the coefficients 
in equation (7). Equivalently, ,BFCO can be constructed as the 

9 See Prais and Winsten (1954), Maeshiro (1976, 1979), Beach and 
MacKinnon (1978), Park and Mitchell (1980), Thornton (1987), and 
Davidson and MacKinnon (1993, sec. 10.6). 
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OLS estimator of ,B in equation (3), using PT in place of PT. 
Since the asymptotic distribution T(1 - PT) is readily de- 
duced when PT = (1 + cIT), (see Stock (1991), for ex- 
ample), the asymptotic distribution of T"/2(pFco - 1) can 
also be readily deduced. 

The problem is more complicated when analyzing 13FCC 

and ,BFPw because these estimators are generally based on 
iterative schemes for estimating PT, oc, and P3. Since the 
limiting distribution of PT depends in important ways on the 
precise way the data are "detrended" (for example, see 
Schmidt and Phillips (1992) and Elliott et al. (1996)), the 
limiting distribution of ,BFCC and ,BFPW will depend on the 
precise specification of the iterations. Rather than present 
results for specific versions of these estimators, we present 
limiting representations of ,BFCC and ,BFPW written as func- 
tions of c, the limiting value of T(PiT - 1). Different 
estimators of PT will lead to different limiting random 
variables c and different asymptotic distributions for the 
estimator of 13. A specific example is contained in Durlauf 
and Phillips (1988, theorem 4.1), who derive the limiting 
distribution of ,BFCO when c = 0 and c^ is constructed from 
the Durbin-Watson statistic calculated from the levels OLS 
regression. 

Before presenting the limiting distributions for the fea- 
sible GLS estimators, it is useful to introduce some addi- 
tional notation. The error term in the feasible GLS version of 
equation (1) is 'vt = ut- pTut-1, and the limiting values of the 
feasible GLS estimators can be written in terms of partial 
sums of vt and the initial condition ul. In the appendix we 
show that T-112u1 = WC(K) - N(O, SC(K)), where SC(K) is 
defined in Theorem 2; we also show that T-2 4Tl V 
W(s), where W(s) is a functional of W(s) and WC(K). 

With this notation established, we now present the 
limiting distribution of the feasible GLS estimators: 

THEOREM 5 (Behavior of Feasible GLS Estimators): 
Suppose that assumptions 1-5 are satisfied, PT = (1 + cIT), 
and T(P^T - 1) => C^jointly with T-12 T E = W(S). Then: 

(a) T112(FCO - ) => c-12 J12 (2 -s)dW(s) 

(b) T/2(13Fcc- 13) X (1 -c 
2 + 1c2)-1[(c- i2)WC(K)- 

fo' (Cs - I)dW(s)] 
(C) T112(~7FPW 1) [1-C +C 

[CewC(K)- (1 + 2C -cs)dW(s)]. 

Proof: See the appendix. 

This theorem allows us to offer practical advice about the 
choice of estimators. First, notice that c appears in the 
denominator of the limiting representation of Tl/2(1Fco - ). 
For most commonly used estimators of p, PT can take on 
values arbitrarily close to 1 with positive probability, so that 
c can b- very close to zero. This means that ,BFCO can be very 
badly behaved, since realizations of c close to zero will often 
lead to extreme realizations of BFCOA On the other hand, ,BFCC 
and 13PW are better behaved, since (1 -c + 3c2) > 0 and 

(1 -2 + 1A-2) > 0 for all values of CA. This can be seen in 
figure 3, which plots the limiting probability densities of 
T1I2(IFco - I), T112(I3FCC - I), and Tl/2(BFpw - ,) for the 
case with c = 0, K = 1, and d(l) = 1.10 Also plotted is the 
probability density of the exact (infeasible) GLS estimator 
(which in this case is the standard normal). The estimators 
I3FCC and I3FPW have probability distributions very close to 
the infeasible efficient estimator. On the other hand, the 
distribution of ,BFCO is much more disperse, with thicker tails 
than the other distributions. For example, the limiting 
probability that |T1/2(BFC -) I exceeds 2 is approximately 
20%, while the corresponding values for ,BFCC and I3Fpw are 
approximately 5%. Figure 3 suggests that little is lost using 
either ,BFCC or ,BFPW in place of the infeasible efficient 
estimator, at least for this value of c and K, and that ,BFCO 
performs poorly. Additional calculations (not shown) indi- 
cate that the relative efficiencies of i3FCC and ,BFPw are close 
to their infeasible analogues for a wide range of values of c 
and K. 

Table 1 summarizes many of the results in this section by 
presenting the average mean-squared error for the different 
feasible estimators and different values of K, averaged over 
different ranges of c.11 As a benchmark, the first row of the 
table shows results for the efficient, but infeasible, GLS 
estimator. The next two rows are the OLS and first- 
difference estimators, followed by two of the feasible GLS 
estimators. (Results for ,3FCO are not included because of the 
estimator's poor performance.) The last row of the table 
shows results for a "pretest" estimator (1pr) constructed 
from the OLS and FD estimators. Figure 1 provides the 

FIGURE 3.-DENsITIES oF FEASIBLE GLS ESTIMATORS 

-Infeosible GLS 
-FCO 

0 .FCC 
FPW // 
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10 The densities for the feasible GLS estimators are estimates based on 
5000 draws from approximations to the asymptotic distributions (con- 
structed using T = 500). The estimators ,eFCO and I3FCC were constructed 
using PT constructed as the OLS estimator of equation (5). The Prais- 
Winsten estimator used min(l, PT)- 

1 These MSEs were estimated using the simulations described in 
footnote 10. 
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TABLE 1.-AVERAGE MEAN-SQUARE ERROR OF ESTIMATORS 

K 

Estimator 0.000 0.010 0.050 0.100 0.250 1.000 

-30 c ' 0 
IGLS 0.057 0.067 0.081 0.089 0.097 0.105 
POLS 0.108 0.110 0.116 0.120 0.126 0.133 
P,, FD 0.077 0.085 0.102 0.111 0.121 0.129 
PFCC 0.065 0.083 0.113 0.128 0.142 0.152 
P., FPW 0.077 0.081 0.088 0.094 0.101 0.108 
f3pr 0.082 0.085 0.094 0.102 0.110 0.118 

-2' c ' 0 
UGLS 0.493 0.497 0.512 0.529 0.566 0.634 
POLS 0.678 0.682 0.695 0.710 0.743 0.808 
P,FD 0.498 0.502 0.516 0.532 0.567 0.635 
PFCC 0.595 0.598 0.615 0.641 0.676 0.766 
PFPW 0.529 0.531 0.544 0.559 0.590 0.664 
PPTr 0.509 0.512 0.526 0.541 0.574 0.649 

-10 c ' -2 
6GLS 0.069 0.083 0.115 0.136 0.158 0.168 
UOLS 0.168 0.172 0.186 0.197 0.211 0.219 
.3FD 0.097 0.107 0.134 0.154 0.179 0.190 
PFCC 0.075 0.093 0.135 0.168 0.206 0.220 
P,, FPW 0.106 0.114 0.131 0.146 0.165 0.173 
PPT 0.110 0.118 0.141 0.160 0.182 0.192 

-30'c' -10 
UGLS 0.008 0.018 0.025 0.026 0.026 0.026 
.OLS 0.028 0.028 0.030 0.030 0.030 0.030 
UFD 0.027 0.035 0.049 0.052 0.053 0.053 

UFCC 0.008 0.028 0.054 0.060 0.063 0.063 
PFPW 0.020 0.022 0.025 0.026 0.027 0.027 

PPT 0.028 0.029 0.033 0.035 0.035 0.035 

Note: Entries are mean-square error averaged over range of c indicated. 

motivation for this estimator. Since the OLS estimator 
dominates the first-difference estimator for large negative 
values of c and is dominated by the first-difference estimator 
for small values of c, the pretest estimator corresponds to the 
OLS estimator when c^ is large and negative and corresponds 
to the FD estimators when c8 is close to zero. Specifically, 

Pr= OLS when 8c < c and PIr = FD when c? ' e, where c 
is the prespecified threshold. The results shown in the table 
are for c = - 15, a value that produced good results over the 
range of values of K and c that we considered. 

Table 1 and the figures shown above suggest five conclu- 
sions: 

(i) The infeasible GLS estimator I3co performs very 
poorly for values of c close to 0. This poor performance is 
inherited by the feasible GLS estimator. For all values of c 0 
0 and for all values of K, this estimator is dominated by fOLSs 
Thus this estimator should not be used and is ignored in the 
remaining discussion. 

(ii) For very small values of c (say, -2 c c '- 0), IFD iS 
the preferred estimator with a mean-squared error approxi- 
mately 5% lower than IFCC and 3FPW. For this range of 
values of c, the OLS estimator 1OLS has a relative efficiency 
of approximately 0.75. The pretest estimator performs well, 
and is 1 to 2.5% less efficient than tFD, depending on the 
value of K. 

(iii) For values of c in the range -10 I c c -2, the 
relative performance of the estimators depends critically on 
the variance of the initial error, parameterized by K. When 
K = 0, IFCC dominates the other estimators; fFw is the 

preferred estimator when K > 0.10. When K = 0.05 the 
feasible GLS estimators and IFD are comparable. 

(iv) For values of - 30 ? c ' - 10 and when K = 0, PFCC 
is the preferred estimator. When K ? 0.05, the variance of 
3pFCC is more than twice as large as the variance of the best 

estimator IFPw. The first difference estimator also performs 
poorly relative to IFPW when K ? 0.05. 

(v) Items (ii)-(iv) show clearly that the best estimator 
depends on the values of c and K. Neither of these 
parameters can be consistently estimated from the data, and 
so a good choice must depend on either prior knowledge or 
robustness considerations. Our reading of the results sug- 
gests that when c ' 0, IFPW is the most robust estimator, 
with a mean-squared error close to the optimum for all 
values of the parameters considered. The pretest estimator is 
a reasonable alternative to IFPW- It has slightly better 
performance when c is close to 0, but somewhat worse 
performance for large negative c. 

C. Small Sample Properties of Estimators 

The asymptotic results summarized in Theorems 1, 2, and 
5 are potentially useful for two reasons. First, the asymptotic 
relative efficiencies can provide a criterion for choosing 
among the estimators even in finite samples. Second, the 
asymptotic distributions provide a basis for constructing 
confidence intervals and carrying out hypothesis tests. We 
now evaluate the first of these uses, and ask whether the I(0) 
and 1(1) asymptotic variances provide a useful guide for 
choosing among the estimators in small samples. In the 
following section we discuss confidence intervals and statis- 
tical inference. 

Table 2 shows the exact relative efficiencies of OLS, FD, 

IFCC, IFPW, and fpT for the model with d(L) = d, Et 
- 

NIID(O, 1), for various values of T, p, and for K = 1.12, 

(Results for K = 0 are given in Canjels and Watson (1994).) 
Also shown in the table are the relative efficiencies implied 
by the I(1) asymptotics, calculated using c = T(p - 1). 
The I(0) asymptotic relative efficiencies are not shown 
because they do not vary with T, p, or K; from Theorem 1 
they are 1.00 for IOLS, IFCC, IFpw, and 3PT and 0.00 for 
IFD. In all cases, the I(0) asymptotic relative efficiency 
suggests no difference between the four estimators IOLS, 
IFCC, IFPW, and PT and suggests that these estimators are 
preferred to IFD. 

When p = 0.5, the finite-sample results in table 2 suggest 
that 3OLS, IFCC, and IFpw are essentially efficient for all of 
the sample sizes considered. These estimators are signifi- 
cantly better than IFD. The pretest estimator has a relative 
efficiency intermediate between 10'LS and PFD when T = 30, 
and very close to 1OLS for larger values of T. Thus the I(0) 
relative efficiency predictions are quite accurate when p = 

12The mean-squared errors for PFCC' Fpw, and pp were estimated using 
10,000 Monte Carlo draws, using p = ST=2 aTu_/ET;2' uT- , where ut are the 
OLS residuals from the regression of Yt onto (1, t). This estimator of p is 
suggested by the simulation results in Park and Mitchell (1980). 
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TABLE 2.-RELATIVE EFFICIENCIES OF ESTIMATORS: 
EXACT AND I(1) APPROXIMATION 

K = 1.0 

T= 30 T= 50 T= 100 

Exact I(1) Exact I(1) Exact I(1) 

p = 0.50 
UOLS 0.950 0.856 0.966 0.902 0.982 0.946 
UFD 0.463 0.550 0.308 0.381 0.166 0.213 
UFCC 0.981 0.470 0.960 0.328 1.000 0.174 

FPW 1.000 0.979 0.979 0.974 1.000 0.994 
PPT 0.735 0.698 0.932 0.859 1.000 0.949 

p = 0.80 
UOLS 0.839 0.774 0.867 0.817 0.915 0.883 

FD 0.841 0.859 0.667 0.698 0.420 0.451 
UFCC 0.932 0.756 0.870 0.591 0.844 0.393 

FPW 0.975 0.990 0.958 0.974 1.000 1.000 
PPT 0.834 0.866 0.699 0.721 0.836 0.809 

p = 0.90 
UOLS 0.801 0.753 0.800 0.764 0.842 0.817 
PFD 0.970 0.971 0.895 0.902 0.683 0.698 
,FCC 0.916 0.863 0.870 0.786 0.805 0.621 

FPW 0.950 0.989 0.942 0.960 0.980 0.994 
PT! 0.942 0.971 0.858 0.869 0.720 0.746 

p = 0.95 
UOLS 0.803 0.764 0.781 0.755 0.782 0.764 
PFD 0.997 0.997 0.983 0.983 0.898 0.902 
,FCC 0.886 0.861 0.876 0.829 0.863 0.786 
PFPW 0.95 1 0.959 0.948 0.957 0.983 0.979 
3PT 0.994 0.975 0.970 0.962 0.888 0.898 

p = 1.00 

6OLS 0.860 0.833 0.850 0.833 0.842 0.833 
UFD 1.000 1.000 1.000 1.000 1.000 1.000 

UFCC 0.936 0.895 0.927 0.879 0.863 0.838 
FPW 0.989 0.991 1.000 0.965 0.958 0.959 

PT 1.000 1.000 1.000 0.996 0.980 0.981 
Notes: Relative efficiency is the ratio of the variance of the infeasible GLS estimator to the variance of 

the estimator given in column 1. Columns labeled 1(1) are the asymptotic relative efficiencies using c = 

T(p - 1). The corresponding 1(0) relative efficiencies are 1, 0, 1, 1, 1, 1, respectively, for the estimators in 
column 1 and for all T and Ip < 1. 

0.5. The predictions based on the I(1) asymptotic relative 
efficiencies are off the mark. The I(1) asymptotics suggest 
that IFCC iS strongly dominated by both IOLS and IFPW when 
K = 1 and strongly dominate the other estimators when K = 

0 (not shown). On the other hand, the estimator with the 
largest I(1) asymptotic relative efficiency coincides with the 
largest finite-sample relative efficiency, even when p = 0.5. 

For all of the other values of p considered (0.8, 0.9, 0.95, 
1.0) the rankings implied by the I(1) asymptotic relative 
efficiencies are more accurate than the I(0) rankings. Indeed 
in all but one of the cases studied in the table, the estimator 
with the largest I(1) asymptotic relative efficiency has the 
largest finite-sample relative efficiency as well. Thus this 
experiment suggests that the I(1) asymptotic relative efficien- 
cies provide a useful criterion for ranking estimators in 
typical econometric settings. 

III. Confidence Intervals 

When p < 1 (so that the errors are I(0)), confidence 
intervals for 1B can be constructed in the usual way by 
inverting the t-statistic constructed from any of the asymp- 
totically equivalent estimators IOLS, IFCO, IFCC, 1Fpw, or 
p,3r. These t-statistics can be formed using an estimator for 

the variance V1 in Theorem 1, constructed by replacing p and 
d(l) with consistent estimators. While these confidence 
intervals are asymptotically valid, they can greatly under- 
state the uncertainty about ,B when p is large and the sample 
size is small. (See Park and Mitchell (1980) for simulation 
evidence.) Thus in most situations of practical interest, 
confidence intervals based on I(0) approximations are not 
satisfactory. 

An alternative method pursued here is to construct 
confidence intervals using approximations based on I(1) 
asymptotics. As we show below, this method yields confi- 
dence intervals with coverage rates closer to their nominal 
size than the I(0) approximations. Unfortunately the method 
is also more complicated because the asymptotic distribu- 
tion of the estimators depends on the nuisance parameters c 
and K, and these parameters cannot be consistently estimated 
from the data. Hence the variances of the estimators cannot 
be consistently estimated, so that t-statistics will not have the 
appropriate limiting standard normal distribution. While this 
problem cannot be circumvented entirely, it is possible to 
construct asymptotically conservative confidence intervals 
following the procedures developed by Dufour (1990) and 
Cavanagh et al. (1995). 

Specifically, let BK(c) denote a 100(1 - X1)% confidence 
interval for ,B constructed conditional on a specific value of c 
and K. Similarly, let CK denote a 100(1 - X2)% confidence 
interval for c conditional on K. Assume that 0 ' K - K, 

where k is a prespecified constant. Then the Bonferoni 
confidence interval UOCKCKUCEC BK(c) is a conservative 
100(1 - Ol- 2)% confidence interval for ,B. 

This confidence interval requires the conditional confi- 
dence interval for ,B, BK(c), and the marginal confidence 
interval for c, denoted by CK. Since BK(C) conditions on the 
nuisance parameters c and K, an asymptotically valid 
approximation can be constructed using any of the estima- 
tors IOLS, IFD, Icc, or Ipw, and their asymptotic variances 
given in Theorem 2 and Lemma 4. (These variances require 
d(l), which can be consistently estimated using standard 
spectral estimators.) The set CK, the marginal confidence 
intervals for c, can be constructed using the methods 
developed in Stock (1991).13 

In general this procedure is quite demanding. For each 
K E [0, K], CK must be formed, then BK(c) must be 
constructed for all c E CK and the union taken over all of 

13 Stock (1991) considers the case with K = 0 and, using our notation, 
develops methods for constructing confidence sets CO. However, it is easy 
to modify his analysis for K > 0. Specifically, following Stock, we 
construct confidence intervals by inverting the Dickey-Fuller t-statistic TT. 

Under the assumption that K = 0, Stock shows that 'T 

(.I' WT(s) 2ds)"2[c + .0fol WT(s)dW(s)/(f0 WT(s)2ds)], where W'(s) is the 
"detrended" diffusion: W'(s) = Wc(s) - fI'0 aI(r)Wc(r)dr - s fo 
a2(r)Wc(r)dr, where the diffusion Wc(s) is defined in the appendix, 
al = 4 - 6r, and a2 = -6 + 12r. These results rely on the fact that 
T -IU[,T] X= d(l)Wc(s) when K = 0. As shown in the appendix, when K O 

0, T-1/2U [1T] = d(l)[Wc(s) + escWc(K)], where WC(K)- N(O, SC(K)) and is 
independent of WC(s). Using this result, it is straightforward to show that all 
of Stock's analysis continues to hold, with WC(s) + escWc(K), replacing 
WC(s) in the above limiting representation for iT. 
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these confidence sets. There are three special features of the 
linear trend model that simplify this procedure. First, from 
Theorem 2, the asymptotic variances of- OLS and 1FD are 
monotonically increasing in c. Thus when BK(c) are formed 
using t-statistics constructed from OLS or 1FD, then UcJc 
BK(C) = BK(J), where C = supC(C E CKI. While this simplifi- 
cation does not necessarily hold for the GLS estimators ,Bcc 
and I3pw, experiments we performed suggest that UCECK 
BK (C) - BK(j) appears to be a good approximation for 
confidence sets constructed from these estimators as well. 
The second simplifying feature is that the distributions of the 
statistics used to form CK change little as K changes, so that 
CO CK for all K.14 Finally, for all of the estimators, the 
asymptotic variance is increasing in K and the limit exists as 
K ??, so that BK(C) C BO(c) for all K. Putting these three 
results together implies that UO'KCJCeC BK(C ) 

K 

where c = SUPCIC E C ( . Thus approximate 
100(1 - I- X2)% confidence intervals can be formed by 
(1) choosing the largest value of c in the 100(1 -t2)% 
confidence interval constructed using the procedure from 
Stock (1991), and (2) constructing a 100(1 - (xl)% confi- 
dence interval for ,B using this value of c together with IOLS, 
1FD, Icc, or Ppw and an associated variance from Theorem 2 
or Lemma 4 evaluated at K = ??. 

We make four points before evaluating the small-sample 
properties of this procedure. First, since the variance of all of 
the estimators is increasing in c, smaller confidence intervals 
for 1B can be obtained by constructing one-sided confidence 
intervals for c. Second, when the BK(C) confidence intervals 
are constructed by inverting the t-statistics for the estima- 
tors, the widths of the intervals will be nonrandom condi- 
tional on c and K. This implies that the narrowest of the 
confidence intervals (across all estimators) will also have 
coverage rate exceeding 100(1 - Ol- c2)QO. Thus, for 
example, since 1OLS is efficient relative to 1FD when c < 
-7.6 and K iS large, the confidence interval can be con- 
structed using OLS when c < -7.6 and using fFD when j 
-7.6. Third, since these confidence intervals may be conser- 
vative for all values of c and K, a tighter (1 - ox)% 
confidence interval can be constructed by choosing oxl and 
CX2 so that SUPC,K Pr(,B X BaX1,aI2) = ox, where Ba1, I"2 is the 
confidence interval constructed using oi and (X2. (See 
Cavanagh et al. (1995).) Finally, since the confidence 
intervals proposed here are not based on an efficient 
procedure (like inverting an efficient test statistic), it may be 
possible to construct smaller confidence regions with the 
same coverage. 

Table 3 shows estimated coverage rates for confidence 
intervals for different values of T and c, calculated as 

described above using the Prais-Winsten estimator. (Results 
for analogous experiments using the OLS and FD estimators 
are reported in Canjels and Watson (1994).) The design was 
much the same as in section IIC, i.e., d(L) = d and E, - 

N(0, 1). Results are reported for conservative 90%, 95%, 
and 99% confidence intervals constructed with oal = CX2. 

Results for nonsymmetric ca- and U2 are similar and are not 
reported. The confidence interval for p was constructed from 
theTi' statistic constructed from the regression of Yt onto Yt- 
and (1, t) using the sample t = 2,. . ., T. The sample residual 
variance from this regression was used as the estimator of 
d(1)2 in the construction of the confidence intervals for ,B. 
Since the Prais-Winsten estimator is defined for I p I ' 1, we 
restricted the upper limit of the confidence interval to p 1. 
For comparability, this restriction was also used in the IOLS 

and IFD confidence intervals. Finally, since the bounds are 
essentially tight for c = 0, we did not attempt to form tighter 
bounds by increasing ox, and (X2 as suggested above. 

While the coverage rates are close to their nominal levels 
for c = 0, they are conservative when c < 0. This occurs 
because of the sharp increase in the variance of pw for 
small c. For example, when the true value of c = -5, then 
c = 0 is often in the confidence set C0, the variance of the 

TABLE 3.-CONFIDENCE INTERVAL COVERAGE RATES (PERCENT) 

c 

Level K 0 -1 -5 -10 -20 

T= 30 
90.0 0.0 88.5 96.0 97.7 97.2 93.9 
90.0 0.1 88.6 95.4 97.3 96.5 93.6 
90.0 1.0 89.0 93.7 97.1 96.5 93.6 

95.0 0.0 93.0 97.8 98.7 98.5 96.5 
95.0 0.1 92.9 97.8 98.5 98.2 96.5 
95.0 1.0 93.4 96.6 98.5 98.4 96.5 

99.0 0.0 97.8 99.3 99.7 99.5 98.9 
99.0 0.1 97.9 99.5 99.6 99.5 99.0 
99.0 1.0 97.9 99.2 99.7 99.6 99.0 

T= 50 
90.0 0.0 90.5 97.1 98.4 98.4 96.5 
90.0 0.1 90.7 96.2 97.8 97.9 96.4 
90.0 1.0 90.3 95.1 97.8 98.0 96.4 

95.0 0.0 94.8 98.6 99.1 99.3 98.5 
95.0 0.1 94.7 98.2 99.0 99.1 98.2 
95.0 1.0 94.9 97.6 99.0 99.1 98.3 

99.0 0.0 98.6 99.7 99.8 99.9 99.7 
99.0 0.1 98.7 99.5 99.8 99.8 99.6 
99.0 1.0 98.8 99.6 99.7 99.9 99.7 

T= 100 
90.0 0.0 91.3 97.7 98.9 98.9 98.6 
90.0 0.1 92.1 97.5 98.4 98.8 98.2 
90.0 1.0 91.8 96.3 98.3 98.8 98.2 

95.0 0.0 95.6 99.0 99.5 99.6 99.4 
95.0 0.1 95.8 98.9 99.3 99.5 99.3 
95.0 1.0 95.8 98.5 99.3 99.6 99.3 

99.0 0.0 99.1 99.8 99.9 100.0 99.9 
99.0 0.1 98.8 99.8 99.9 99.9 99.8 
99.0 1.0 99.0 99.8 99.9 99.9 99.9 

Notes: Table shows the exact coverage rates (in percent) for conservative confidence intervals 
constructed with an asymptotic level given in the first column. The confidence intervals were constructed 
from the Prais-Winsten estimator. 

14 When c = 0 the distribution of v is invariant to K. This is not strictly 
true for other values of c, but the distribution changes very little. For 
example, when c = -1.0 the 97.5 percentiles for iT are -3.72, -3.70, 
-3.70, and -3.70 when K = 0.0, 0.5, 1.0, and 10.0, respectively. The 
corresponding percentiles are -3.89, -3.84, and -3.84 for c = -5.0; 
-4.20, -4.20, -4.20, and -4.20 for c = -10.0; and -4.52, -4.54, 
-4.54, and -4.54 for c = -20.0. These percentiles are based on 5000 
simulations with T = 500. 
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TABLE 4.-ANNUAL REAL PER-CAPITA GROWTH RATES 

ID Country Sample Period r3OLS r3FD r3FCO r3FPW C Pmin r3max 

1 Algeria 1960 1990 2.736 1.459 3.316 1.459 1.097 0.297 -1.139 4.057 
2 Angola -1960 1989 -2.038 -1.004 -2.435 -1.605 -6.722 -2.361 -6.155 4.147 
3 Benin 1959 1989 -0.403 -0.370 -0.547 -0.398 -16.035 -2.975 -2.087 1.346 
4 Botswana 1960 1989 5.839 6.079 6.024 5.874 -14.886 -3.266 1.735 10.423 
5 Burkina Faso 1959 1990 0.859 0.006 1.434 0.601 -9.511 -2.585 -1.905 1.917 
6 Burundi 1960 1990 0.567 -0.425 0.963 0.464 -17.725 -3.998 -1.010 1.294 
7 Cameroon 1960 1990 2.698 1.888 2.429 2.387 -7.469 -2.005 -1.076 4.852 
8 Cape VerdelIs. 1960 1989 3.880 3.338 4.402 3.634 -6.118 -2.090 -0.705 7.381 
9 Central Afr. Rep. 1960 1990 -0.486 -0.589 -0.872 -0.542 -4.890 -1.514 -2.235 1.058 

10 Chad 1960 1990 -2.584 -2.010 -2.579 -2.440 -10.915 -2.355 -5.521 1.502 
1 1 Comoros 1960 1987 -0.044 0.520 -0.423 0.087 -10.927 -2.945 -2.721 3.762 
12 Congo 1960 1990 3.314 2.788 3.366 3.244 -15.959 -4.247 2.017 4.323 
14 Egypt 1950 1990 3.002 2.385 3.148 2.821 -10.774 -2.806 0.666 4.104 
15 Ethiopia 1951 1986 0.831 0.669 0.675 0.756 -6.363 -1.562 -0.224 1.562 
16 Gabon 1960 1990 2.298 2.620 -2.668 2.544 -2.499 -1.283 -1.142 6.381 
17 Gambia 1960 1990 1.150 0.935 0.302 1.048 -5.896 -2.039 -2.654 4.524 
18 Ghana 1955 1989 -0.266 -0.089 -0.408 -0.212 -9.673 -2.324 -2.359 2.181 
19 Guinea 1959 1989 -0.304 -0.215 -0.566 -0.263 -6.022 -1.731 -1.737 1.307 
20 Guinea-Biss 1960 1990 0.377 1.036 -0.017 0.622 -7.747 -2.281 -2.744 4.817 
21 Ivory Coast 1960 1990 1.073 0.633 3.638 0.633 4.003 1.635 -1.904 3.170 
22 Kenya 1950 1990 1.179 1.166 1.191 1.177 -16.247 -3.124 -1.386 3.718 
23 Lesotho 1960 1990 4.402 4.053 3.103 4.187 -3.965 -1.524 0.162 7.944 
24 Liberia 1960 1986 0.682 0.3 10 -2.698 0.401 -2.492 -0.965 -2.129 2.749 
25 Madagascar 1960 1990 -1.962 -1.818 -2.297 -1.898 -6.419 -1.902 -3.338 -0.298 
26 Malawi 1954 1990 1.171 1.226 0.796 1.193 -7.884 -1.964 -0.544 2.996 
27 Mali 1960 1990 0.877 0.150 1.304 0.668 -9.779 -3.132 -1.827 2.127 
28 Mauritania 1960 1990 -0.164 -0.207 -0.551 -0.179 -8.263 -2.121 -2.822 2.407 
29 Mauritius 1950 1990 1.340 1.399 2.649 1.374 -4.772 -1.515 -1.128 3.925 
30 Morocco 1950 1990 2.814 2.355 2.824 2.682 -10.958 -2.839 0.017 4.692 
31 Mozambique 1960 1990 -2.309 -1.426 -3.556 -1.824 -4.800 -2.009 -4.098 1.245 
32 Namibia 1960 1989 0.384 0.509 -1.741 0.459 -4.186 -1.554 -2.862 3.880 
33 Niger 1960 1989 -0.415 -0.256 -1.742 -0.345 -6.305 -1.823 -3.383 2.871 
34 Nigeria 1950 1990 1.989 1.337 0.894 1.607 -4.640 -1.776 -3.432 6.106 
35 Reunion 1960 1988 3.764 3.799 3.322 3.774 -9.077 -2.183 1.985 5.612 
36 Rwanda 1960 1990 1.974 0.791 1.999 1.601 -9.008 -2.243 -3.726 5.308 
37 Senegal 1960 1990 0.138 0.204 0.105 0.138 -27.906 -4.943 -0.038 0.323 
38 Seychelles 1960 1989 3.896 3.449 4.064 3.791 -11.245 -2.535 1.123 5.775 
39 Sierra Leone 1961 1990 0.049 0.593 -1.013 0.278 -6.686 -1.972 -1.942 3.129 
40 Somalia 1960 1989 -0.448 -0.551 -0.393 -0.458 -18.231 -3.696 -4.145 3.061 
41 South Africa 1950 1990 1.792 1.343 29.503 1.343 0.127 0.053 0.160 2.525 
42 Sudan 1971 1990 -0.286 -0.886 -0.377 -0.514 -6.173 -2.047 -4.333 2.561 
43 Swaziland 1960 1989 1.626 1.985 -1.587 1.869 -3.303 -1.185 -1.848 5.818 
44 Tanzania 1960 1988 1.532 1.686 1.030 1.600 -6.272 -2.060 -0.698 4.070 
45 Togo 1960 1990 1.777 1.797 0.642 1.787 -5.198 -1.980 -0.687 4.281 
46 Tunisia 1960 1990 3.761 3.222 2.500 3.262 -1.076 -0.455 1.849 4.594 
47 Uganda 1950 1989 -0.188 0.946 -0.016 0.198 -9.253 -1.813 -2.644 4.536 
48 Zaire 1950 1989 0.339 0.648 -2.382 0. 556 -3.239 -1.364 -1.645 2.941 
49 Zambia 1955 1990 -0.613 -0.597 -2.191 -0.603 -3.702 -1.213 -3.212 2.017 
50 Zimbabwe 1954 1990 0.904 1.018 0.795 0.950 -7.632 -2.095 -0.735 2.771 
52 Barbados 1960 1989 3.471 3.619 2.616 3.570 -3.433 -1.312 1.985 5.254 
54 Canada 1950 1990 2.762 2.503 2.823 2.666 -8.576 -2.347 1.538 3.468 
55 Costa Rica 1950 1990 2.310 2.363 1.377 2.343 -4.074 -1.459 0.958 3.767 
57 Dominican Rep. 1950 1990 2.425 1.979 1.982 2.236 -7.323 -1.495 -0.178 4.135 
58 El Salvador 1950 1990 1.063 1.009 -0.048 1.027 -3.504 -1.830 -1.445 3.463 
60 Guatemala 1950 1990 1.239 0.790 -0.051 0.851 -1.676 -0.934 -0.974 2.555 
61 Haiti 1960 1989 0.147 -0.331 0.077 -0.090 -5.497 -1.428 -1.807 1.144 
62 Honduras 1950 1990 1.101 0.788 0.841 0.936 -5.456 -1.640 -0.727 2.303 
63 Jamaica 1953 1989 1.420 2.020 -1.155 1.852 -3.005 -1.724 0.083 3.958 
64 Mexico 1950 1990 2.536 2.259 2.111 2.388 -5.349 -1.756 0.388 4.130 
65 Nicaragua 1950 1987 1.021 0.943 -2.580 0.963 -2.771 -0.962 -2.114 3.999 
66 Panama 1950 1990 2.821 2.181 1.081 2.278 -1.832 -0.596 0.264 4.099 
67 Puerto Rico 1955 1989 3.649 3.930 2.829 3.819 -4.212 -2.179 2.472 5.388 
70 Trinidad & Tobago 1950 1990 2.870 2.596 0.340 2.673 -3.061 -0.991 0.118 5.074 
71 U.S.A. 1950 1990 1.940 1.894 1.958 1.927 -11.035 -2.471 0.963 2.825 
72 Argentina 1950 1990 0.922 0.366 -1.986 0.420 -1.343 -0.427 -1.301 2.032 
73 Bolivia 1950 1990 1.317 0.632 0.848 0.783 -2.480 -0.994 -0.928 2.191 
74 Brazil 1950 1990 3.469 2.858 -64.844 2.859 -0.052 -0.020 1.388 4.329 
75 Chile 1950 1990 0.925 1.234 0.837 0.999 -12.784 -3.004 -1.578 4.045 
76 Colombia 1950 1990 2.146 1.927 2.199 2.023 -4.968 -1.540 1.020 2.834 
77 Ecuador 1950 1990 2.751 2.165 1.961 2.318 -2.885 -1.165 -0.016 4.345 
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TABLE 4.-ANNUAL REAL PER-CAPITA GROWTH RATES (CONTINUED) 

ID Country Sample Period POLS rFD f3FCO f3FPW eTmin 13max 

78 Guyana 1950 1990 -0.218 -0.998 -0.806 -0.719 -3.924 -1.191 -4.007 2.012 
79 Paraguay 1950 1990 2.068 1.407 2.376 1.743 -6.037 -1.816 -0.297 3.112 
80 Peru 1950 1990 1.406 0.886 10.972 0.886 0.908 0.323 -1.131 2.903 
81 Suriname 1960 1989 1.398 0.418 -25.354 0.432 -0.411 -0.129 -3.034 3.869 
82 Uruguay 1950 1990 0.372 0.579 0.272 0.425 -12.139 -3.119 -1.755 2.912 
83 Venezuela 1950 1990 0.439 0.549 -1.673 0.517 -3.255 -1.352 -1.078 2.177 
85 Bangladesh 1959 1990 1.208 1.392 1.183 1.260 -10.046 -2.332 -1.169 3.953 
87 China 1968 1990 5.752 5.984 5.574 5.875 -4.545 -1.979 3.852 8.117 
88 Hong Kong 1960 1990 6.264 6.250 6.185 6.264 -21.335 -4.239 5.817 6.703 
89 India 1950 1990 1.437 1.794 1.674 1.617 -5.870 -1.417 0.410 3.179 
90 Indonesia 1960 1990 4.471 3.779 5.042 4.223 -8.018 -3.603 2.198 5.360 
91 Iran 1955 1989 1.913 1.528 -5.335 1.579 -1.633 -0.733 -1.893 4.948 
92 Iraq 1953 1987 1.767 0.476 -4.640 0.695 -1.950 -0.507 -4.467 5.420 
93 Israel 1953 1990 3.620 3.637 -0.773 3.636 -1.314 -0.634 2.295 4.980 
94 Japan 1950 1990 5.781 5.742 0.500 5.745 -1.037 -0.816 3.693 7.792 
95 Jordan 1954 1990 3.589 3.110 1.431 3.259 -3.336 -1.029 -0.296 6.516 
96 Korea, Rep. 1953 1989 5.944 5.692 6.970 5.813 -5.430 -2.458 4.084 7.300 
99 Malaysia 1955 1990 4.264 3.871 4.439 4.127 -8.698 -2.575 1.287 6.456 

101 Myanmar 1950 1989 2.411 2.563 2.321 2.447 -12.829 -2.674 -0.045 5.171 
102 Nepal 1960 1986 1.924 1.547 2.110 1.814 -9.024 -2.239 -1.348 4.441 
104 Pakistan 1950 1990 2.355 2.126 2.581 2.245 -6.257 -1.792 0.701 3.552 
105 Philippines 1950 1990 2.001 2.073 1.091 2.045 -4.447 -2.200 -0.286 4.432 
108 Singapore 1960 1990 6.724 6.190 6.537 6.370 -3.485 -1.533 3.625 8.755 
109 Sri Lanka 1950 1989 1.854 1.838 2.257 1.846 -5.516 -1.867 0.234 3.442 
110 Syria 1960 1990 3.702 3.222 1.042 3.310 -2.030 -0.521 0.487 5.956 
111 Taiwan 1951 1990 5.653 5.603 6.042 5.627 -5.451 -2.157 4.608 6.598 
112 Thailand 1950 1990 3.922 3.570 4.202 3.871 -17.954 -3.902 3.083 4.382 
114 Yemen 1969 1989 4.727 5.676 4.270 5.001 -7.905 -2.353 3.094 8.258 
115 Austria 1950 1990 3.640 3.664 2.523 3.658 -3.092 -1.774 2.748 4.581 
116 Belgium 1950 1990 2.908 2.767 2.783 2.801 -2.724 -1.086 1.973 3.561 
118 Cyprus 1950 1990 3.970 4.098 3.994 3.995 -15.073 -2.933 1.322 6.873 
119 Czechoslovakia 1960 1990 3.315 3.041 0.058 3.066 -1.208 -0.528 1.567 4.516 
120 Denmark 1950 1990 2.644 2.412 2.383 2.489 -3.629 -1.319 1.360 3.463 
121 Finland 1950 1990 3.434 3.452 3.198 3.442 -6.720 -1.503 2.595 4.308 
122 France 1950 1990 3.080 3.008 -1.350 3.010 -0.634 -0.427 2.332 3.683 
123 Germany, West 1950 1990 3.199 3.576 2.264 3.403 -5.268 -2.918 2.581 4.571 
124 Greece 1950 1990 4.328 3.887 46.239 3.887 0.104 0.066 2.661 5.113 
125 Hungary 1970 1990 2.234 2.322 0.634 2.285 -3.910 -1.744 0.692 3.952 
126 Iceland 1950 1990 3.422 2.969 3.376 3.337 -15.386 -3.097 0.817 5.121 
127 Ireland 1950 1990 3.207 3.102 3.353 3.168 -8.567 -2.509 1.665 4.540 
128 Italy 1950 1990 3.752 3.749 2.120 3.750 -2.177 -1.023 2.841 4.657 
129 Luxembourg 1950 1990 2.185 2.246 2.275 2.196 -15.614 -3.174 0.603 3.889 
130 Malta 1954 1989 5.496 5.024 5.856 5.304 -7.376 -3.413 2.490 7.558 
131 Netherlands 1950 1990 2.763 2.588 2.103 2.633 -2.851 -1.443 1.602 3.574 
132 Norway 1950 1990 3.346 3.051 3.293 3.248 -9.574 -2.370 2.083 4.019 
133 Poland 1970 1990 0.694 1.242 -1.421 0.953 -5.086 -2.846 -14.136 16.621 
134 Portugal 1950 1990 4.320 4.213 2.940 4.229 -1.809 -0.810 2.948 5.477 
136 Spain 1950 1990 3.786 3.998 1.073 3.969 -1.697 -0.941 2.584 5.411 
137 Sweden 1950 1990 2.375 2.312 1.502 2.322 -1.980 -0.994 1.711 2.913 
138 Switzerland 1950 1990 2.083 2.219 1.636 2.160 -4.931 -1.904 1.157 3.281 
139 Turkey 1950 1990 2.746 3.144 2.492 2.860 -11.021 -2.439 1.264 5.024 
140 U.K. 1950 1990 2.241 2.306 2.243 2.247 -24.016 -4.627 2.076 2.431 
141 U.S.S.R. 1970 1989 3.272 3.377 2.988 3.305 -7.166 -4.378 3.071 3.503 
142 Yugoslavia 1960 1990 3.630 2.812 17.556 2.812 0.715 0.306 0.309 5.315 
143 Australia 1950 1990 2.184 1.870 2.150 2.072 -8.909 -2.256 0.664 3.076 
144 Fiji 1960 1990 2.043 2.006 1.856 2.021 -4.244 -1.454 -0.196 4.209 
145 New Zealand 1950 1990 1.674 1.388 1.601 1.561 -7.900 -2.073 0.046 2.730 
146 PapuaNew Guinea 1960 1990 0.215 0.643 -1.454 0.445 -4.967 -2.671 -1.000 2.286 

Notes: Column labeled ID shows the country ID from the Penn World tables. Estimators ,BOLS. ,FD, ,FCO. ,PW are described in the text; e is an estimate of the local-to-unity parameter, constructed as T(p - 1); iT is the 
augmented Dickey-Fuller t-statistic; 3min and Pma, are the end points of the 95% confidence interval for ,B constructed using the Prais-Winsten estimator, as described in the text. 

estimators is much larger when c = 0 than when c = -5, 
and this leads to a wide confidence interval for ,B. 

IV. Economic Growth Rates for Postwar Period 

Table 4 shows estimated annual growth rates of real GDP 
per capita for 128 countries over the postwar period. The 
data are annual observations from the Penn World Table 

(version 5.5) described in Summers and Heston (1991) 
(series RGDPCH). The data set contains 150 countries, and 
we limited our analysis to those 128 countries with 20 or 
more annual observations. Since the logarithm of per-capita 
GDP for many of the countries is reasonably modeled by 
equations (1) and (2), this data set seems well suited for the 
methods developed above. (Of course, caution should be 
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exercised in using the estimates for any specific country, 
since some countries experienced growth far different from 
that assumed in equations (1) and (2).) 

The first column of the table shows the country identifica- 
tion number from the Penn World tables, and the next 
column shows the country name. Columns 4-7 present four 
estimates of average trend growth (13OLS, 13FD, 13FCO, and 
,BFPW respectively); column 8 shows the estimate of c used 
to construct the feasible GLS estimates (c); column 9 shows 
the Dickey-Fuller unit-root test statistic (Ta) used to con- 
struct a confidence interval for c, and columns 10 and 11 
present lower and upper limits of the approximated 95% 
confidence interval for ,B constructed from the ,Bpw (13min and 
I3max~ respectively). The Prais-Winsten estimator used 
min(l, PT) as an estimator of p. The estimate c and the Ti 
statistic were calculated from the regression of AYt onto Yt- 1, 
p lags of AYt and (1, t), where p was chosen by BIC. The 
point estimates from this regression were used to estimate 
d(l). 

We highlight five features of the results. First, for the 
majority of the countries, the different estimators give 
similar results. For example, for the Congo (country 12) the 
estimates range from 2.8% (,BFD) to 3.4% (,BFco). Second, 
while the ,BFCO estimates are usually similar to the other 
estimates, they occasionally deviate substantially. For ex- 
ample, the estimates for Brazil (country 74) constructed from 
i3OLS, I3FD, and I3FPW range from 2.8% to 3.5%, while the 
estimate constructed from ,BFCO is -65%. Indeed for 9 of the 
128 countries, ,BFCO differs from ,BOLS by more than 5 
percentage points. Third, while the differences in the other 
three estimators are much smaller, these differences can be 
quantitatively important. For example, ,BOLS and ,BFD differ 
by more than 1 % in 5 cases and by more than 2% in 35 cases. 
Fourth, the confidence intervals are often wide and include 
negative values for 13. This results from three factors: a small 
sample size, a large error variance, and a high degree of 
persistence in the annual growth rates. For example, the 
approximate 95% confidence interval for Algeria (country 1) 
is -1.14 ? ,B ? 4.06. For Algeria, the Dickey-Fuller 
t-statistic is 0.297, which implies that c = 0 (i.e., p = 1) is 
contained in the 97.5% confidence interval for c. Thus for 
this value of c, ,Bpw corresponds to the first-difference 
estimator. The mean growth rate for Algeria over the sample 
period is 1.46% (=,BFD), and this is the center of the 
confidence interval. The standard deviation of the annual 
growth rates is 7.2%; thus if the annual growth rates were 
serially uncorrelated, the standard deviation of the sample 
mean (=,FD = BPpw) would be 1.31% (=7.2%/!30). For 
Algeria, the growth rates are slightly negatively correlated 
and the estimated standard deviation of ,Bpw used to con- 
struct the confidence interval is 1.18%. 

Finally, a few of the confidence intervals are quite narrow. 
For example, the estimated confidence interval for the 
United Kingdom (series 140) is 2.08 ? 13 ? 2.43. This series 

is less persistent than most of the others, and the Dickey- 
Fuller t-statistic is -4.63. This leads to a confidence interval 
for c with an upper limit of c = - 16.8 (corresponding to 
p = 0.59). Estimates of 1B are much more precise when c = 
- 16.8 than when c = 0. Indeed the ratio of the asymptotic 
standard deviation for ,Bpw for c = -16.8 and c = 0 is 0.17, 
which approximately corresponds to the difference between 
the widths of the confidence intervals for 1B for the United 
Kingdom and the United States (country 71). 

V. Concluding Remarks 

In this paper we study the problems of estimation and 
inference in the linear trend model. While the structure of the 
model is very simple, serial correlation in the errors can 
make efficient estimation and inference difficult. Asymptotic 
results are presented for I(0) and local-to-unity I(1) error 
processes, with the latter being the most relevant for 
econometric applications. The asymptotic distribution of the 
estimators is shown to depend on two important parameters: 
(1) the local-to-unity parameter that measures the persis- 
tence in the errors and (2) a parameter that governs the 
variance of the initial error term. 

Three conclusions emerge from our analysis. First, the 
Cochrane-Orcutt estimator is dominated by the other fea- 
sible estimators and should not be used. When the data are 
highly serially correlated (i.e., the local-to-unity parameter 
is close to zero), the distribution of the Cochrane-Orcutt 
estimator has very thick tails, and large outliers are common. 
Second, the feasible Prais-Winsten estimator is the most 
robust across the parameters governing persistence and 
initial variance. This is the preferred estimator unless the 
researcher has sharp a priori knowledge about these param- 
eters. Finally, inference that ignores uncertainty about p or 
the variance in the initial error term can be seriously flawed, 
leading to large biases in confidence intervals for trend 
growth rates. It is not clear how to optimally account for 
uncertainty in these parameters, but conservative confidence 
intervals and tests are easily constructed. 
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APPENDIX 

Theorem Proofs 

A. 1. Preliminaries 

From assumption 5, T- 121"73 Et =* W(s); in addition, this result, 
together with assumption 4, implies T1-1211'39v, =* d(l)W(s), where W(s) 
is a standard Wiener process. Analogously, accumulating the errors 
backward from time 0, T-1It,?[s1Et =* W(s) and T- 112,0 _ =V 

d(l)W(s), where W(s) is a standard Wiener process, independent of W(s). 
Let u, = 'i_2pTv,-i with PT = (1 + cIT). Then T-112afSf7 =* d(1)Wc(s), 

where WC(s) denotes the diffusion process generated by dWc(s) = 

cWc(s)ds + dW(s). Similarly, T-112u = T-1/2i=OpTvI-i = d(1)WC(K), 
where WC(K) denotes the diffusion process generated by dWc(s) = 

cWc(s)ds + dW(s). Note that WC(K) - N(O, SC(K)), where SC(K) = 

(-2c)-I(l - e2CK). Finally, write ut = u, + ptT-1u1, so that T-1/2U1ST = 

d(l)[Wc(s) + escWc(K)]. 

A.2 Proof of Theorem 2 

Proof of (a): By direct calculation, 

T-312 T (tlT)u -[T-1 I (t/T)](T-3I2 1 ut 
~~~~t=l t=I t=l 

T PO(^LS -P) =T T 

T-1 z (tlT )2 -[T-1 I (tlT)]2 

Thus 

T1P2(POLS- )= 12T3/2 u -it + op(l) 

= d(l)12 f01 ( - [Wc(s) + escWc(K)] ds - N(O, R1) 

where RI =A1 + A2, with 

A1 = var {d(1)12 f (- Wc(s) dsl 

A2= var IWC(K)d(1)12JO (I - )esc dsl. 

To calculate A1, note that 

I1( - Wc) ds = f( 
f-s\) ec(s-T)dW(T)ds 

= j,i [fi (s-2) ec ds] e-dW(T) 

= b(T)dW(T) 
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with 

b(T) f1[ ds] eT. 

Thus 

A1 = 144d(1)2 fo b(s)2 ds 

A2 = 144d(1)2SC(K) ff1 ( e- s c ds]. 

The first term in RI is AI after simplification, and the second term is A2. 

Proof of (b): 

T1/2( D-) = - 1/2U = T-12 UT- 1 
-2UI(l-pT I 

> d(l)[Wc(l) - (1 - ec)Wc(K)] 

- N(O, d(1)2[SC(l) + (1 -ec)2SC(K)]). 

Proof of (c): This GLS estimator is constructed by OLS applied to an 
equation of the form yt = x't + e, where 8 = (ot 0)', x, = (curI cr"1)', 
Xt= [(1-PT) t-pT(t-1)]'fort=2,...,T.LetQ= x,x'tandr= 
lx,et, with elements qij and ri for i, j = 1, 2. Then (PGLS - 13) = (q IIq22 - 

q 2)- (q1r2 - ql2r1). The various parts of the theorem will be proved by 
evaluating the relevant expressions for qij and r1. 

Specifically, 

qll =or2 + (T- 1)(1 - PT)2 

T 

l =u,-2 + (- 1)PT O - PT) + (1 -PT)2 t 
t=2 

T T 

= ul.2 + (T - 1)P2 + 2PT(1 - PT) z t + (1 - PT) I t2, 
t=2 t=2 

T 

r,= or2 Ul + (1 - PT) z VI 
t=2 

T 

r2= rU, + I Vtt(1 - PT) + PT]- 
t=2 

We consider the cases with K = 0 and K > 0 in turn. 
K = 0: By direct calculation, 

T-1(qj1q22 - q2)q-(-c + c2) 

T 

T-1/2 q1jrl2= T-1/2 z vt j1-ci + op(l+ ) 
t=2 \ T 

T-12ql2r, P o 0 

Thus 

T t 
T-12 a 1 -cT 

1/2T1/( 
T 12(PGLS 13) = + op(l) 

1 -c + 3C 

d(l)fJ (1- cs) dW(s)] 

1 -c + 3c2 

The result follows by noting that (1 - c + 3C2)-1 = R3 evaluated at K = 0. 
K > 0: By direct calculation, 

(qlq22 - q2) -[SC(K)1 + C2] 3( -C +- c2) - -C 

T /2qII r2 = [SC(K)' + C2) [T1/2 Y v, i c + o 

T /12ql = (!c2 2-c){SC(K) IT 1l2ul -cT- 1/2 vt] 

Thus 

T1/2(13GLS - 1) = [(SC(K)-F + C2)(1 - c + 3C2) - (IC2-C)2] 

X {-(Ic2 - C)SC(K)-IT -'12u 

+ T 1/2 vt f(1 - !(SC(K) + c2) + ( -c c2)j} + op(l) 

=F [(C2 + S,(K)f1)(1 - c + -c2)- (I2c2-)2]1 

X {d(1)[-( c 2 
(t {dl[(--C)WC(K)SC(K) 1 

+ f( 
{[(S,(K)-1 

+ c2](1 - cs) + (Ic2 - c)c]dW(s)]) 

- N(O, R3) 

where 

c2+ 1 
R3 =d(1)2 - 

[SC(K)C2 + 11(1 - C + -C2) - SC(K)(2C2 C)2 

A.3. Proof of Lemma 4 

As in the proof of Theorem 2 (c), each of the estimators can be written 
as the OLS estimator from an equation Yt = x't + e, where 8 = (a )', 
and the estimators differ in their definition of x1 and el. As above, let Q = 
E xtx' and r = e xte,, with elements qij and ri for i, j = 1, 2. Then, for each 
estimator (,B-) = (qllq22 - 12 )-(qllr2-ql2r,), and for the proof we 
evaluate these expressions for each estimator. 

Proof of (a): When c = 0, T 1/2(Pco - 1) - T =2=2 vt, and the result 
follows directly. For c * 0, 

ql = (T- 1)(1 - PT)2 

T 

q12 = (T - OPT( - PT) + (I - pT)2 f, t 
t=2 

T T 

q22= (T- 1)P 2+ 2PT(1 - PT) E t + (1 - PT)2 t2 

T 
t=2 t=2 

r= (1 PT) vt 
t=2 

T 

= vT-[t(1 - PT) + PT]. 
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Thus 

q -.q22-q2 c2 (1 - c + 3 c2) c-2 = 
- c4 

T1/2ql= =c2T-1/2 vt(c T-1) + op(l) 

T 12ql2rl= c2(1- T-1/2 z v, + o,(l) 

so that 

T P2(1co-) = T(fV)[ I vt( T ) 

+ (12 c)T1I2 v] + oT(l) 

- (-) T T1'2 (- + O (1) (Al) 

( c ) d(l) f ( s- dW(s). (A.2) 

The results follows by noting that 

() d(1) f (2 s- dW(s) - N(O, GI) 

where 

(1212 2 ( \2 12d(1)2 
GI 2 s d(1)2 J0 -s) ds= 2 

Proof of (b): For I3cc, 

qll = 1 + (T- 1)(1 - PT)2 

T 

ql2 = 1 + (T- O)PT(O - PT) + (1 - PT)2 t 
t=2 

T T 

q22 = 1 + (T- 1)pT + 2PT(1 PT)t+(1 PT) a t2 
t=2 t=2 

T 

r, = Ul + (1 - PT) a Vt 
t=2 

T 

r2 = Ul + z Vt[t(1 - PT) + PTI] 
t=2 

Thus 

1 

T - 1(qq22 (= -q C + 2 C2) 

T (i - + lc2 T "12,-T12u1 v + o p(l) 

so that 

c(1 - 2c)T-/2ul - T-1/2 vt (c4- i 

T( Pcc- = -- - 2 (A.3) 

3c 

+ op(l) 

d(1) 

1 - c + ?c2 c + 3c (A.4) 

X c l- f f(K) fo (cs - 1)dW(s)j. 

The result follows by noting that 

d(1) 
I - c + 3 c 2 

[c 
I - 2 C) WC(K)-fO (CS -1) dW (s)] 

N(O, G2) 

where 

G2 c--2C SC(K) + (Cs -1)2ds 
(1 c + c 2)2 21dj 

[() (c - jc2)2 
=- 01+SCI.(K) 

-1c+ Ic22 I-c+Ic2 

Proof of (c): For I3pw, 

qll = (1 - PT) + (T- 1)(1 - PT) 

T 

= (1 -PT) + (T- 1)PT+ -( PT) + (1 ( PT)P2 t 
t=2 

T T 

q22 = (1 - P2T) + (T- 1)T+ 2PT(O - PT +( P) 
t=2 t=2 

r, = (1 - pT)UI + (1- PT) Vt 
t=2 

T 

r2 =(1 - PT)Ul + E vt4t(1 - PT) + PT]. 
t=2 

Thus 

qliq22 - q2- (c2 - 2c) (I - C + 3 C2) - c2 

= (c2 - 2c) 1 - 2c + j2C2) 

T 

T12 qr2 =-(C2 2c)T- 2 + v cT| T-I + op(l) 

T =-2 (C2-2C)ct=2 T 



200 THE REVIEW OF ECONOMICS AND STATISTICS 

so that 

cT- 1/2U- 1 -1/2 V,(T-c1 

1/2(~~~~~~~~~~~1 
T P(lpw - 3) (A.5) 

+ op(l) 

d(1) 

1-2C +12 (A.6) 

* [cWc(K) - f1 (cs - c - 1) dW(s) 

The result follows by noting that 

d(1) 1-- c + 2 c2) [CWC(K) -f (c - c-1) dW(s)] - N(O, G3) 

where 

G3= 
d (K) + f (Cs - - 1) ds] 

(1IC + I C2)22 

d(1)2 2 ] 
= [c2Sc(K) + 1 + 19c2]. 

(1 2+ 1 2)2 

A.4. Proof of Theorem 5 

It is straightforward to verify that the analogues of equations (A. 1), 
(A.3), and (A.5) continue to hold for the feasible GLS estimators, with c' 
replacing c and v, = u,- Tu,-1 replacing v,. The theorem then follows 
from equations (A.2), (A.4), and (A.6) using T-112 IEtS= ̂ V =* W(c). To see 
this, and to derive an expression for W(c), write 

Vt = ut- PTUt-I = Vt (P'T PT)Ut-1 

-2 

= - (CT- C)T1 P'TVj +T U1 

where CT = T(1 - PT). Thus 

[sT] [sT] [sT] 

T 1/2 
1: ^t = T-1/2 Vt- (CT -c)T-1 I T-1/2 
t=1 t=1 t=1 

-2 [ST] 

PI VFdt--I (T- C)(T IIul)T- PT- 
t=1 

= d(l)W(s) 

where 

-esc 
W(S) W(S)-(C-) O WC(T)dT (C' C)fC(K) - 

and the last line follows from CT = C, 

[TT] [sT] 1- eSc 
T / 

PTV[T7]-j =* WC(T) and T-1 I PT 
j=i t=1 -C 
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