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Many linear rational expectations macroeconomic models can be cast in the 
first-order form, 

AEtyt+ 1 =Byt + CEtxt, 

if the matrix A is permitted to be singular. We show that there is a unique 
stable solution under two requirements: (i) the determinantal polynomial JAz - 
B I is not zero for some value of z, and (ii) a rank condition. The unique solution 
is characterized using a familiar approach: a canonical variables transformation 
separating dynamics associated with stable and unstable eigenvalues. In singu- 
lar models, however, there are new canonical variables associated with infinite 
eigenvalues. These arise from nonexpectational behavioral relations or dynamic 
identities present in the singular linear difference system. 

1. INTRODUCTION 

Linear rational expectations models are the workhorse of modern dynamic eco- 
nomics. We provide necessary and sufficient conditions for the solvability of a 
general rational expectations model called a singular linear difference system. These 
theoretical results provide insight into the nature of solutions in rational expecta- 
tions models; they also provide a theoretical base for ongoing development of 
efficient and robust algorithms for computing solutions to quantitative macroeco- 
nomic models. 

The early work of Blanchard and Kahn (1980) studied the linear difference 
system, 

(1) AEtyt+ 1 = Byt + CEtxt, 

where Yt is a vector of endogenous variables, xt is a vector of exogenous variables 
and A, B, and C are matrices of coefficients. Requiring A to be nonsingular, they 
characterized solutions to (1) by producing an equivalent dynamic system involving 
canonical variables. In this transformed system, the distinction between stable and 
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unstable canonical variables was central. In particular, a 'rank' condition was 
necessary and sufficient for the existence and uniqueness of a stable solution: there 
had to be as many unstable canonical variables as nonpredetermined variables, and 
it also had to be possible to associate these two sets of variables. In this solution, Yt 
depended on predetermined variables and on an infinite distributed lead of expected 
exogenous variables. 

Many economic models do not fit directly into the Blanchard-Kahn framework, 
but can be case in first-order form if A is permitted to be singular. Extending the 
canonical variables approach to such singular linear difference equation systems, we 
show there exists a unique stable solution under two conditions: (i) there exists a 
number z such that the determinant polynomial, IAz - Bj, is nonzero; and (ii) a 
direct generalization of the Blanchard-Kahn rank condition (stated precisely in 
Section 4 below) is satisfied. If A is singular, we find a new class of canonical 
variables-associated with infinite roots of the determinantal polynomial-whose 
solution introduces a finite order distributed lead of expected exogenous variables.2 

The outline of this paper is as follows. Section 2 follows the Introduction and 
discusses the condition Az - Bi # 0. Section 3 presents two examples. Section 4 
reviews the Blanchard-Kahn case of nonsingular A and then provides the general 
canonical variables solution. We conclude by discussing the implications of our 
theoretical work for the development of efficient and robust numerical algorithms 
for computing solutions to (1).3 

2. THE MODEL 

To be more explicit about the specification (1), we assume that y, is an m x 1 
vector of endogenous variables, x, is an n x 1 vector of exogenous variables, 
A(m x m), B(m x m), and C(m x n) are coefficients matrices. For any variable wt, 

t =E(wt+sflQt), where f? 1cQf, and (yt, xt) Eft. Finally, we assume that 
the last p elements of yt are predetermined, that is, do not respond to new 
information at period t, and that initial conditions for these variables are given. We 
partition Yt into nonpredetermined variables A and predetermined variables k, 

At 
Yt = |kt|' 

2 In this paper, we extend the canonical variable approach to the important practical case of 
singular A. Models with singular A matrices have been studied using 'undetermined coefficients' 
and 'martingale/martingale difference' methods by Pesaran (1987), Broze et al., (1990), Broze and 
Szafarz (1991), and Binder and Pesaran (1995). 

3When we produced the early drafts of this paper, we were able to list a small group of additional 
references on numerical algorithms for this and related control problems: Anderson et al., (1996), 
Anderson and Moore (1985), King and Watson (1995), Sims (1989), and the previously mentioned 
studies using undetermined coefficient or martingale difference methods. However, in the last two 
years, at least a half dozen other researchers have attacked this problem. 
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with ko = a known vector of constants. For our purposes, it is convenient to write 
the model as 

(2) (AF -B)Etyt = CE xt, 

using a lead operator, F, defined so that FhEtw'+j = Etwt+j+h, that is, application of 
F changes the dating of the variable but not the dating of the expectation.4 

One requirement for the solvability of this model is that IAz - B I # 0 identically 
in z. To exposit this condition, we begin by noting that there are two distinct sources 
of nonuniqueness or nonexistence of solutions in the model. The first arises because 
the model describes expectations of endogenous variables Etyt+1, rather than the 
values of the variables themselves. The literature on rational expectations models 
has focused on this source of nonuniqueness, as do we in Section 4 below. However, 
in our general model, there is a more mundane source that the condition I Az - B I # 0 
rules out: nonuniqueness or nonexistence can arise because certain linear combina- 
tions of y are unrestricted by A and B. 

To see why this is the natural condition, we consider a sequence of increasingly 
elaborate related models. To begin, when A = B = 0, the model places no restric- 
tions on y. More generally, in the static model Ay = By + Cx, a unique solution for 
y will exist (for all values of the variable x) if and only if [A -B] is nonsingular. 
Equivalently, existence of a unique solution requires that IA - BI 0. This condition 
is necessary because if [A - B] has rank k < m, then there exists an (m - k) X m 
matrix a such that a[A - B] = 0; multiplying the static equation by a implies 
0 = a Cx. In turn, this latter condition implies that the system of equations is 
under-determined if a C = 0 or inconsistent if a C #& 0. 

The analogous restriction in a dynamic model is I Az - B I # 0 identically in z. If 
this condition fails to hold, then rank(Az - B) < k < m for all z and there exists an 
(m - k) X m matrix polynomial a (z), such that a (z)[Az - B] = 0. Multiplying the 
dynamic equation (1) by a (F) implies that 0= a (F)CEtxt?+. Since a solution must 
exist for all possible values of Etxt, the system of equations is under-determined if 
a ()C = 0 or inconsistent if a ()C #& 0. The condition that IAz - B I # 0 identically in 
z is obviously much weaker that IA I #& 0 or I B I #& 0, which are common assumptions 
in the literature.5 

3. EXAMPLES 

Our first example is motivated purely by the mathematics of singular systems. The 
second illustrates the kind of economic considerations which lead to a singular 
system. 

4Note that F operates only on conditional expectations and in this sense differs from the usual 
'forward' operator. That is, FEtwt=Etwt+1 is well defined, but 'Fwt' is not defined since the 
conditioning set is not specified. This is the same operator as B- 1 defined in Sargent (1979), p. 269. 

5Formally, JAz - BI A 0 makes Az - B a nonsingular matrix pencil in Gantmacher's (1959) 
terminology. 
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The Scalar Case. With a single endogenous variable y and a single exogenous 
variable x, our general model can be written: 

(3) aEtyt+I = byt + cxt 

with a, b, and c being scalars. With a and b nonzero, this is a textbook rational 
expectations example (see Sargent 1979). The root of laz - bI = 0 is z = b/a. It is 
well known that the existence and uniqueness of a stable rational expectations 
equilibrium depends on whether lb/al < 1 and on whether y is predetermined or 
not. In particular, if y is predetermined then the root must be stable for a stable 
solution exit, while if y is nonpredetermined then the root must be unstable for a 
unique rational expectations solution. 

Singularities arise when a or b or both are zero. If a = b = 0, then the system 
implies that cxt = 0, so that there is no solution for general forcing processes: our 
general condition I Az - B I 0 is evidently necessary for a unique solution. 

If a = 0 then the model is byt + cxt = 0: it is conventional to say that the root of 
Iaz - bi = 0 is infinite, since this is the limit of b/a as a -O 0. For (3) with a = 0, the 
existence requirement is similar to when there is a finite, but unstable, root in the 
nonsingular case. If yt is predetermined, there is no solution because the equation is 
inconsistent. If Yt is not predetermined, the solution is Yt = -(c/b)xt. The solvabil- 
ity condition in this 'infinite' root case is thus the same as the unstable root case in 
the familiar nonsingular model. 

If b = 0, then the equation becomes aEtyt+1 = cxt: there is a zero root. For (3) 
with b = 0, the uniqueness requirement is similar to a nonzero stable root in the 
nonsingular model. If yt is not predetermined, then there will be many solutions of 
the form yt+ 1 = (c/a)xt + (t+ 1, where (t+ 1 is unpredictable given information at 
date t. If Yt is predetermined, then there is a unique solution yt+1 = (c/a)xt. The 
solvability condition in this zero root case is thus the same as when there is a stable 
root in the familiar nonsingular model. 

In this simple example, then, we find that existence and uniqueness of a solution 
to the general singular model requires our determinant condition, IAz - BI 0. In 
addition, we must be able to associate any unstable roots-including infinite 
roots-with nonpredetermined variables. 

A Version of the Cagan (1956) Monetary Model. Let Rt be the nominal interest 
rate, Pt be the logarithm of the price level, and Mt be the logarithm of the money 
stock. The model is comprised of the Fisher equation, Rt =Et Pt+-Pt, and the 
monetary equilibrium condition, Mt -Pt = - aRt. Writing these in first-order form, 
AEtyt+ 1 = Byt + CEtxt, we have 

(4) [0 l][EtRt?i 
1 1 '-] [Ej?[ t]l t . 
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Notice that rank(A) = 1, so that A is singular. Solving out the Fisher identity yields 
Mt-P =P - a(EtPt+ 1- Pt) or equivalently, 

(5) aEtPt+? = (1 + ?a)Pt-Mt, 

which can be uniquely solved if a > 0. This example suggests that one way to 
characterize models with singular A matrices, is that they contain identities, possibly 
dynamic in nature. It also suggests that eliminating the features that lead to the 
singularity of A results in a system of smaller dimension.6 

4. CANONICAL VARIABLES SOLUTIONS 

Canonical variable solutions are constructed by transforming (1) into an equiva- 
lent system that is easier to solve than the original system. Specifically, the trans- 
formed system is constructed by pre-multiplying (1) by a nonsingular matrix T, and 
pre-multiplying Yt by a nonsingular matrix V. This yields 

(6) (A*F - B*)Ety* = C*Etxt 

where A* = TAV-1, B* = TBV-1, C* = TC, and the change of variables is y* = Vyt. 
For a particular choice of V detailed in the Appendix, the transformed variables 

are: 

y*=Vy u [U]' with U [u] 

These three canonical variables have particularly simple dynamics. Two are those 
identified by Blanchard and Kahn (1980): the stable canonical variables (s) are 
associated with roots of I Az - B that have modulus less than unity and the unstable 
canonical variables (u) are associated with roots of IAz - BI that have modulus 
greater than unity. However, in a singular linear difference equation, there is a new 
class of canonical variables (i) that are associated with the 'infinite' roots of 
Az - BI. These new variables are usefully viewed as extreme versions of unstable 
canonical variables and so we allow for a partition of y* that collects i and u into a 
vector U. 

We begin our discussion by reviewing the characterization of solutions in models 
with nonsingular A. Here there is no distinction between U and u, that is, there are 
no elements of i. We then consider the more general model with nonsingular A. 

4.1. Analysis of Nonsingular Systems. With A invertible, the dynamic system 
can be written as Et Yt +1 = A - 1Byt ? A - 1CEt xt. In this case of a nonsingular system, 
the determinantal condition IAz - B I # 0 identically in z is always satisfied. To 
characterize the solution as in Blanchard and Kahn (1980), we begin by taking the 

6 Several other examples are given in King and Watson (1995). In all of these examples, including 
the well-known example Pt = yEt 1Pt + Mt from Blanchard and Kahn (1980), A and/or B are 
singular and yet I Az - B I = 0;. thus their solutions can be characterized using the methods discussed 
in the next section. 
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left eigenvectors of W=A-1B to be L; it follows that LW=JL, where J is the 
Jordan matrix with the eigenvalues (ordered in declining absolute value) on its 
diagonal and zeros or ones (arranged in Jordan blocks) on the first super diagonal. 
Then, taking T = LA-1 and V = L, we can write an equivalent dynamic system as: 

(7) Et s t+1] [( is][t [C ] 
*E 

using the partitioning y* = [u' s']'. As indicated above, the mnemonic is that the u 
variables are unstable canonical variables and the s variables are stable canonical 
variables. That is, the above partitioning is based on locating the unstable eigenval- 
ues in Ju and the stable eigenvalues in J, This equivalent dynamic system indicates 
that the observed variables y are linear combinations of canonical variables y*, 
since y = V-ly*. 

There are many solutions to (1) for {yj7-=1 because initial conditions are only 
specified for a subset of the elements of y, namely the predetermined variables k. 
Blanchard and Kahn (1980) show that initial conditions on A can be determined and 
a unique solution obtained if (i) the solution is restricted to be stable and (ii) a 
certain sub-matrix of V has full rank.7 

To summarize their argument, the stability requirement implies that the equations 
for the ut must be solved forward since eigenvalues of Ju are greater than one in 
modulus, yielding the solution 

00 

(8) ut= -[Ju-FI]1C*Etxt= - E JhC*Etxt+ 
h = O 

That is: the unstable canonical variables are an infinite 'distributed lead' of the 
exogenous variables. Any sequence of candidate perturbations vt from this solution 
will have the expected path Etut?k = jkvt and will thus be asymptotically explosive in 
expected value. 

With {ut}Yt0 determined by the stability condition, the predeterminedness condi- 
tion yields a recursive solution for {At} if the matrix V satisfies a 'rank condition' 
developed in Blanchard and Kahn (1980).8 To exposit this condition, we define the 
partitioned transformations, 

(9) [rSAr'[KVA 
Vuk 

rA[ [ 
RAI, 

RAS 

LsIVsA Vs k]1k] an kj Rku Rk 

with R = V-1 and we use standard notation for blocks of V and R. These 
transformations imply that ut = VuAAt + Vukkt, which links At to ut (which is 

7The stability condition can be written as the requirement that, if IEtxI + kI <x a.s. for some finite 
x and all t and k, then IEt yt+kI < y a.s. for some finite y and all t and k. 

8 The solvability requirement is sometimes described as 'as many unstable canonical variables as 
nonpredetermined variables.' Boyd and Dotsey (1994) give examples of models in which this 
counting rule works but in which a simple monetary model with an interest rate rule for monetary 
policy cannot be solved due to a failure of the invertibility of VUA. 
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determined by the stability condition) and k, (which is predetermined). A unique 
solution requires that VUA is nonsingular, so that 

(10) At VUA Ut - VAVukkt 

To complete the solution of the model, the predetermined variables evolve accord- 
ing to:9 

(11) kt+ 1 RkUEtUt+ 1 + RksssAuAUt +RksCXt +RkSJsRkslkt 

where Rks = (Vsk-VSA1KA1Kk) is nonsingular since V and VUA are nonsingular. 
Equations (11) and (10) can be used recursively to construct {kt,At,ytAt=i, given 
initial conditions for ko and x0 together with the solution for ut. 

4.2. Analysis of Singular Systems. Our analysis of singular models is a natural 
generalization of the preceding approach. In the Appendix, we show how to 
construct matrices T and V such that there is an equivalent dynamic system to (1) of 
the form: 

N ? ? i it+ 1 - I 0 ? it I 

(12) lo I 0 E 0 Js o JLt C* | 
In this expression, N is upper triangular with zeros on its main diagonal. Thus, there 
is a number 1 < rows(N) such that Nh is a matrix of zeros for all h > 1. 

The representation (12) contains the elements u and s stressed by Blanchard and 
Kahn (1980), but it also contains some new elements it. These variables are 
governed by the equations: 

(13) (NF-I)Etit = C*Etxt. 

In terms of the foregoing discussion, the crucial point is that I(Nz - I)l = 1 or -1 so 
that there are no finite eigenvalues and it is conventional to say that there are as 
many infinite eigenvalues as there are elements of i.10 Successive forward substitu- 
tion in (13) yields the unique solution: 

(14) it= (NF-II) C*Etxt=- E NjC*Etxt+j. 
j o 

That is, the variables with infinite eigenvalues depend on expected future exogenous 
variables in a finite order (moving average) manner. In contrast to the solution for 

9To derive this condition, we use kt+ 1 = RkuEtut+ 1 + RkSEtst+ 1. The stable canonical variables 
dynamics are Et st + 1 = Js st + Cs* xt, with the elements of this expression following from the fact that 
St = VSAAt + Vskkt from (9) and the preceding solution for nonpredetermined variables (10). 

10 Since the matrix N is nilpotent, its eigenvalues are all 0, so that the 'reciprocal' roots of 
l(Nz - I)l are infinite. 
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the u variables, which was determined on stability grounds, this solution simply 
involves solving out for some variables using some of the equations of the model." 

Taking the stable solution for the u variables described in the previous subsec- 
tion, we then have that the nonpredetermined variables of the model, A, are 
restricted by: 

Ut= =VUAAt + VUkkt 

where the number of rows of VUA and Vuk is the sum of the number of elements of i 
and the number of elements of u. Requiring that VUA is invertible, we can write the 
solution for the nonpredetermined variables as: 

(15) At VU VAVUkkt, t = 0, 1, 2, ... 

Note that this expression for the singular model is the natural generalization of (10) 
for the nonsingular model. Essentially, the canonical variables attached to infinite 
(and hence unstable) eigenvalues are treated in exactly the same manner as the 
unstable eigenvalues were previously once the solution (14) has been determined. 
The solution for kt,1 then also proceeds in exactly the same fashion as above, 
taking into account the fact that there is a larger vector U that contains the 
solutions for both i and u. 

In this section, we have established that the solvability conditions for the singular 
linear expectations difference equation are twofold. First, we must require that 
Az - RI 0 identically in z. This condition insures a unique solution for the 
difference equation Ayt+1 = Byt + Cxt, given initial conditions for kt. Second, we 
require that VUA be nonsingular. As explained above, this requirement is necessary 
to deduce the values of the nonpredetermined variables, A. 

5. CONCLUSIONS AND IMPLICATIONS 

This paper provides a theoretical characterization of the solution to a singular 
linear difference system, but there are useful implications for applied researchers. 
The first major point is that one necessary condition for solvability is that there must 
exist a number z such that the determinant polynomial, IAz -R, is nonzero. This 
practical condition can be checked as a precondition to attempting the solution of a 
model: if it is violated, then the model is ill-specified. The second point is that 
additional conditions are required that can be validated only as part of the process 
of model solution: in a literal application of our approach, one would need to verify 
that I VUAI # 0 after computing the canonical variables decomposition.12 

The theoretical characterization also provides insight into why there are two 
general approaches to computing solutions in singular models. Proceeding directly 

11 Broze and Szafarz (1991) and Binder and Pesaran (1995) display similar forward-looking 
components. 

12 However, a direct application of this paper's approach is not generally advisable, because the 
Jordan canonical form cannot be accurately computed numerically. 
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from the theory, one approach-as in Sims [1989]-is to find transformation 
matrices like T and V that allow the decoupling of stable and unstable dynamics, 
while allowing for possibly infinite roots of the determinant polynomial JAz-Bl. 
However, the theoretical characterization also explains why there are 'system reduc- 
tion' approaches like those of Anderson and Moore (1985) and King and Watson 
(1995): the structure of singular linear rational expectations makes it possible to 
reduce the dimension of the system by solving out the identities responsible for the 
singularity. Specifically, for any solvable model, our canonical variables analysis can 
be used to show that it is always possible to decompose the y vector into subvectors 
f and d, with these elements evolving as: 

(16) 0 = ft + Kdt + Pf(F) Etxt 

(17) Etdt+1 = Wdt + Pd(F)Etxt 

In this transformed system, the variables ft are a subset of the nonpredetermined 
elements of Yt, and the variables dt are the remaining nonpredetermined elements 
of Yt and all predetermined elements of Yt. The number of elements in f is equal to 
the number of elements of the canonical variables i, from Section 4. In this 
transformation, the system's intrinsic dynamics can be described without reference 
to ft by focusing on the evolution of dt.13 Such system reduction approaches 
explicitly eliminate the dynamic identities that lead to singularities, in much the 
same way that a researcher would working with pencil and paper. 

In summary, we have provided a theoretical characterization of solutions to the 
general linear rational expectations model when A is singular, but IAz - RI # 0. We 
established that a generalization of the familiar canonical variables approach of 
Blanchard and Kahn (1980) can be applied to this model, if canonical variables are 
admitted that have 'infinitely unstable' forward dynamics. Our work provides an 
essential underpinning to ongoing efforts to develop generally applicable efficient 
and robust algorithms for use in quantitative studies. 

APPENDIX 

CONSTRUCTION OF CANONICAL VARIABLES SOLUTION 

As necessary for the canonical system (12), this Appendix constructs matrices T 
and V such that 

N O O I [ 0 
TAV-1 =A* = 0 I 0 and TBV- 1 = B*= 0 Ju 0 

0 0 I 0 0 JI 

13 This system reduction implication was proved in early drafts of the current paper. King and 
Watson (1995) details the construction of (16) and (17) as steps in a numerical algorithm for solving 
(1). It also shows that system reduction is feasible for some models that display dynamic indetermi- 
nacies as well. 
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in four steps, which follow Gantmacher's (1959) construction of the canonical form 
of a nonsingular matrix pencil. 

Step 1. Select a number a such that IA a -B RI 0 and write 

[AF - B] = [A(F - a) - (B -A a)] 

= [A(B-Aa)1(F- a) -I] [B-Aa] 

The existence of this number is assured by the requirement that IAz - RI # 0. 

Step 2. Construct the Jordan decomposition of M A(B - A a)-1 and write it as 
QM = ,uQ with 

Ao'c 0] A 0 A 
1 

The diagonal of pto contains the zero eigenvalues of M and the nonzero eigenvalues 
are on the diagonal of t,u. Since pto is a Jordan matrix with a zero diagonal, it is 
nilpotent, that is, there is a number 1 such that p4 is a matrix of zeros. Using this 
decomposition of ,t, write 

[AF - B] = Q-1[ ,t(F - a) -I]Q[B - aA], 

where 

pt(F- a)-I= [-Lo ]Fi-[+ 
a +2o I+2+] 

This construction insures that I + ap,uo is invertible and that p,u is invertible. 

Step 3. Define the matrix S such that 

si1=[I+a/1Lo 0] 

and write (AF-B)=Q-1S1-{S[t,t(F-a )-I]}Q(B- aA), where the term in 
braces is 

[(I + aplo) pto 01 
I 

[I 
t~~ ~~ 

F 
I] Lo ,u-t(I + a/,u ) 

Note that (I + a,pto) -'-o is upper triangular with all zeros on its main diagonal and 
is nilpotent. 
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Step 4. Construct the Jordan decomposition of +t 1 (I + ao/,+) and write this as 

G-11 j[,-1(I+ aqt+)]G+= [ j0 

where the diagonal elements of J,, are those eigenvalues whose modulus exceeds 
unity. Let 

pI -0 
G= [ G+] 

be a matrix with the same dimension as A and B. Then, it follows that 

(AF -B) = Q-lS- lG- l[A*F -B*]GQ(B - aA). 

where 

N O O I O O 

A* 0 1 0 and B*=[0 Ju 0 
O O I O O J5 

with N= (I + a t-o)-Y '-. Our desired result thus is obtained by setting 

T=GSQ and V=GQ(B- aA). 
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