doi: 10.3872/j.issn.1007-385X.2013.04.011

· 基础研究 ·

红景天提取物对 Lewis 肺癌小鼠移植瘤中 CD4 + CD25 + Treg 的抑制作用

张敏 1 ,赵亚玲 2 ,孙芳云 1 (1. 西藏民族学院医学院 高原环境与基因实验室,陕西 咸阳 712082; 2. 西安交通大学医学院 预防医学系,陕西 西安 710061)

[摘 要] **旬** 的:观察红景天提取物(sachalin rhodiola rhizome extract, SRR)对 Lewis 肺癌小鼠移植瘤中 CD4 + CD25 + 调节性 T细胞(regulatory T cell, Treg)的抑制作用,初步探讨其抑制肿瘤生长的机制。 **方法**:建立小鼠 Lewis 肺癌移植瘤模型,随机分为 3 组:SRR 组,紫杉醇(paclitaxel, PTX)阳性对照组和 PBS 组,记录各组小鼠移植瘤体积变化,计算抑瘤率并观察小鼠生存期。流式细胞术检测移植瘤组织中 CD4 + CD25 + Foxp3 + Treg 的比例,荧光定量 PCR 检测移植瘤组织中 Foxp3 和 TGF- β mRNA的表达水平。 **结果**:在建模第 20 天,SRR 组小鼠移植瘤体积明显小于 PBS 组[(719.6 ± 2.4) vs (1030.5 ± 3.1)mm³, P < 0.05],但与阳性对照 PTX 组无显著差异(P > 0.05)。SRR 组小鼠生存期较 PBS 组显著延长[(36.0 ± 1.0) vs (22.0 ± 2.0)d,P < 0.01],而与 PTX 组无显著差异(P > 0.05)。SRR 治疗组小鼠移植瘤组织中 CD4 + CD25 + Foxp3 + Treg 占 CD4 + T 细胞的比例显著低于 PBS 组[(8.5 ± 0.3)% vs (11.2 ± 0.2)%, P < 0.01],但与 PTX 组无显著差异(P > 0.05)。SRR 组小鼠移植瘤组织中 CD4 + CD25 + Foxp3 + Treg 占 CD4 + T 细胞的比例显著低于 PBS 组[(1.2 ± 0.2)vs (2.1 ± 0.2), P < 0.05]表达均明显低于 PBS 组,而与 PTX 组无显著差异(P > 0.05)。**结论**:SRR 可能通过下调肿瘤组织中 CD4 + CD25 + Treg 比例、Foxp3 和 TGF- β mRNA的表达,增强机体的抗肿瘤免疫应答。

[关键词] 红景天;肺癌;调节性T细胞;紫杉醇;Lewis 肺癌;Foxp3;TGF-β

[中图分类号] R734.2; R730.3; R285

[文献标志码] A

「文章编号] 1007-385X(2013)04-0444-05

Inhibitory effect of sachalin rhodiola rhizome extract on CD4 * CD25 * regulatory T cells in xenograft tumors of Lewis lung cancer bearing mice

Zhang Min¹, Zhao Yaling², Sun Fangyun¹(1. Laboratory of Altitude Environment and Gene, Medical College, Tibet National College, Xianyang 712082, Shaanxi, China; 2. Department of Preventive Medicine, Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China)

[**Abstract**] **Objective**: To observe the inhibitory effect of sachalin rhodiola rhizome extract (SRR) on regulatory T cells (Tregs) in xenograft tumors of Lewis lung cancer bearing mice and primarily discuss its mechanism of suppressing tumor growth. **Methods**: Lewis lung cancer-bearing mice were established and randomly divided into 3 groups: SRR group, paclitaxel (PTX) positive control group and PBS group. The changes of tumor volume were recorded in different groups, the tumor inhibition rates were calculated and the survival time of Lewis-bearing mice was observed. The proportion of CD4 $^+$ CD25 $^+$ Foxp3 $^+$ Tregs in the xenograft tumor tissues was detected by flow cytometry. The mRNA expression levels of Foxp3 and TGF- β in the tumor tissues were detected by real-time PCR. **Results**: On day 20 after the establishment of the Lewis-bearing mouse model, the tumor volume of mice in the SRR group was significantly smaller than that in the PBS group ([719.6 \pm 2.4] vs [1 030.5 \pm 3.1] mm³, P < 0.05), and showed no significant difference with the PTX positive control group (P > 0.05). Compared with the PBS group, the survival time of mice in the SRR group was significantly prolonged ([36.0 \pm 1.0] vs [22.0 \pm 2.0] d, P < 0.05), and showed no significant difference with the PTX group (P > 0.05). The proportion of CD4 $^+$ CD25 $^+$ Foxp3 $^+$ Tregs in CD4 $^+$ T cells of the tumor tissues in the SRR group was significantly lower than that of the PBS group ([8.5 \pm 0.3]% vs [11.2 \pm 0.2]%, P < 0.01), and no significant difference

[[]基金项目] 西藏自治区自然科学基金资助项目(No. 2011)。 Project supported by the Natural Science Foundation of Tibet Autonomous Region (No. 2011)

[[] 作者简介] 张敏(1971 –),女,山东省济南市人,副教授,硕士生导师,主要从事肿瘤免疫学研究。E-mail;11111010056@ fudan. edu. cn

[[]通信作者] 张敏(Zhang Min, corresponding author), E-mail:11111010056@ fudan. edu. cn

was observed between the SRR group and the PTX group (P > 0.05). The mRNA expressions of Foxp3 ($[1.2 \pm 0.2] vs$ [2.1 ± 0.2], P < 0.05) and TGF- β ($[1.2 \pm 0.2] vs$ [2.1 ± 0.2], P < 0.05) in SRR group were significantly lower than that in the PBS group, and no significant difference was observed between the SRR group and the PTX group (P > 0.05). **Conclusion:** SRR may enhance the antitumor immune response by down-regulating the proportion of CD4 ⁺CD25 ⁺ Tregs and the mRNA expressions of Foxp3 and TGF- β in the tumor tissues.

[**Key words**] sachalin rhodiola rhizome; lung cancer; regulatory T cell (Treg); paclitaxel; Lewis lung cancer; Foxp3; TGF-β

CD4 + CD25 + 调节性 T 细胞(regulatory T cell, Treg)在控制肿瘤免疫逃逸、自身免疫性疾病和移植 耐受等方面发挥着重要作用[1]。在肺癌患者外周 血、肿瘤局部微环境和引流淋巴结中, CD4 + CD25 + Treg 比例明显增高[2],且数量与患者肿瘤进展程度 和预后呈负相关,是造成肿瘤免疫逃逸重要原因之 一,导致抗肿瘤免疫治疗难以获得预期效果[3-5]。紫 杉醇(paclitaxel, PTX)是抗肿瘤的一线化疗药物,可 通过上调肿瘤细胞表面抗原转运肽的表达以及消除 肿瘤局部 Treg 的产生达到抗肿瘤的效果[6]。藏药 红景天具有增强机体免疫功能、抗疲劳、抗衰老、抗 肿瘤、抗病毒、抗辐射、减轻高原反应等多种功 能[7]。本研究观察红景天提取物(sachalin rhodiola rhizome extract, SRR)对 Lewis 肺癌移植鼠肿瘤微环 境中 CD4 + CD25 + Treg 细胞的影响,比较 SRR 与 PTX 的抗肿瘤效果,探讨 SRR 用于肿瘤免疫治疗的 可能性。

1 材料与方法

1.1 细胞株和材料

小鼠 Lewis 肺癌细胞株购自美国 ATCC。C57BL/6 雌性小鼠 30 只,购自上海斯莱克公司,体质量 16 ~ 18 g, 6 ~ 8 周龄,动物合格证号:200700543538。红景天100 g,用8倍量的60%乙醇提取 3 次,每次 1 h,合并 3 次提取液;将药渣用6倍量的水提取 2 次,每次 1 h,将 2 次提取的水溶液和前面 3 次提取的醇提液合并浓缩,65 ℃真空干燥,共提纯出 46 g 干粉样提取物,用 PBS 配制成 0.1 mg/ml。PTX 购自重庆赛诺药业有限公司,用 PBS配制成 2 mg/ml。FITC 标记的抗 CD4 小鼠单克隆抗体、PE 标记的抗 Foxp3、APC 标记抗 CD25 以及相应的同型对照和 Foxp3 破膜固定液均购自 eBioscience 公司,TRIzol 购自 Invitrogen 公司,荧光定量PCR 试剂盒(SYBR Green PCR Master Mix)购于美国 ABI 公司。

1.2 Lewis 细胞荷瘤小鼠的构建

[Chin J Cancer Biother, 2013, 20(4): 444-448]

取对数生长期的 Lewis 细胞,调整细胞密度为 1×10^7 个/ml,每只小鼠腹股沟注射 1×10^6 个细胞。成瘤后,将荷瘤小鼠随机分为 3 组,每组 10 只,均腹腔注射给药,SRR 组每次 0.2 ml(0.1 mg/ml)、PBS组(阴性对照组)每次 0.2 ml、PTX组(阳性对照组)每次 0.2 ml(2 mg/ml),均为 1 次/d,疗程 2 周。以肿瘤体积衡量疗效,每 3 d 测量肿瘤的最长径 a (cm)和最短径 b(cm),肿瘤体积 V(cm³) = $ab^2/2$,绘制肿瘤生长曲线。记录各组小鼠生存期,绘制生存曲线。

1.3 流式细胞术检测肿瘤组织 CD4 + CD25 + Treg 比例

模型建立后的第20天常规处死荷瘤鼠,肿瘤组 织用含抗菌素的 Hank's 液浸泡 20~30 min,将瘤 体剪成1 mm3 的碎块,加入含0.01%胶原酶的RPMI 1640, 室温下 50~70 r/min 磁力搅拌 4 h。200 目铜 网过滤消化后的细胞悬液,除去未消化好的肿瘤组 织块。用 RPMI 1640 洗涤后重悬,向试管内加入 70% 和 30% Ficoll-HyPaque 淋巴细胞分离液,离心 并收集两比重液间富集的肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte, TIL), PBS 洗涤。锥虫蓝染 色[8]检测细胞活力大于90%。每份样本按1×106 个细胞加入 FITC-CD4 和 APC-CD25 抗体,4 ℃避光 染色 20 min, PBS 洗 2 遍, 破膜固定, 加入 PE-Foxp3 进行 Foxp3 胞内染色,4 ℃避光染色 20 min 后,每管 加入 0.5 ml PBS 混匀。流式细胞术检测 CD4、CD25 和 Foxp3 的表达,分析 CD4 + CD25 + Foxp3 + Treg 在 CD4⁺T细胞中所占比例。

1.4 荧光定量 PCR 检测肿瘤组织 Foxp3、TGF-β mRNA 的表达

荷瘤小鼠治疗 20 d 后摘取肿瘤组织,取肿瘤局部淋巴细胞悬液,按 TRIzol RNA 提取试剂盒说明书提取总 RNA。将 RNA 8 μ l 和 1 μ l 引物置于混匀器混匀 5 \min , 室温放置 10 \min 。加入 2 × 第一链缓冲溶液 10 μ l 和逆转录混合物 1 μ l,总体积 20 μ l,置于混匀器中 42 ∞ 混匀 50 \min ,再加热至 90 ∞ 、5 \min

后,置于 -20 °C 保存备用。荧光定量 PCR 反应体系: $2 \times %$ 冲液 $10 \mu l$,染料 $0.4 \mu l$,上、下游引物各 $0.5 \mu l$,cDNA $1 \mu l$,ddH $_2$ O $7.6 \mu l$ 。反应条件: 94 °C、30 s, 58 °C、30 s, 72 °C、30 s, 40 个循环。以 β -actin 作为内参,设定定量模式分析[9], β -actin 的比值采用 $2^{-\Delta\Delta Ct}$ 方法计算。

1.5 统计学处理

计量数据用 \bar{x} ±s表示,采用 SPSS17.0 软件分析,组间比较采用方差分析和两样本的t检验,以P<0.05或P<0.01表示差异有统计学意义。

2 结 果

2.1 SRR 抑制小鼠 Lewis 肺癌移植瘤的生长

小鼠接种 Lewis 肺癌细胞 $5 \sim 7$ d 后,即能触摸到皮下成瘤,在第 7 天左右肉眼可观察到肿瘤病灶。PBS 组小鼠移植瘤生长迅速,生长曲线陡直; SRR 组小鼠在治疗初期移植瘤生长速度与 PBS 组无明显差距,随着治疗时间延长, SRR 组小鼠移植瘤生长缓慢。第 20 天, SRR 组小鼠移植体积显著小于 PBS组[(719.6 ± 2.4) vs(1 030.5 ± 3.1) mm^3 , P < 0.05],但与 PTX 组[(516.4 ± 3.5) mm^3]相比差异无统计学意义(P > 0.05)(图 1)。

图 1 SRR 对 Lewis 肺癌小鼠移植瘤生长的影响 Fig. 1 Effect of SRR on the growth of xenograft tumor in mice with Lewis lung cancer * P < 0.05 vs PBS group

2.2 SRR 治疗延长 Lewis 肺癌荷瘤小鼠的生存期

SRR 可显著延长 Lewis 肺癌荷瘤小鼠的生存期,SRR 治疗组小鼠的生存期较 PBS 组显著延长 [(36 ±1) vs(22 ± 2)d,P<0.01],接近 PTX 治疗组[(46 ±1)d,P>0.05](图 2)。25 d 时,PBS 组小鼠已全部死亡,而 SRR 组与 PTX 治疗组小鼠仍100%存活,SRR 组较 PBS 组平均延长肺癌荷瘤小

鼠生存时间 14 d,生存率增加 63.6%。

2.3 SRR 治疗降低移植瘤组织 CD4⁺ CD25⁺ Foxp3⁺Treg 的比例

为观察 SRR 对 Lewis 肺癌荷瘤小鼠 Treg 的影响,本研究以 CD4 $^+$ CD25 $^+$ Foxp3 $^+$ 作为 Treg 的标志。 先用 CD4 圈门,再用 CD25 圈门,检测各组 CD4 $^+$ CD25 $^+$ Foxp3 $^+$ Treg 占 CD4 $^+$ T 细胞的比例。 SRR 治疗组 CD4 $^+$ CD25 $^+$ Foxp3 $^+$ Treg 占 CD4 $^+$ T 细胞的比例。 D显著低于 PBS 组[(8.52 ± 0.33)% vs(11.20 ± 0.19)%, P < 0.01],但与 PTX 组的(9.43 ± 0.12)% 无显著差异(P>0.05)(图3)。

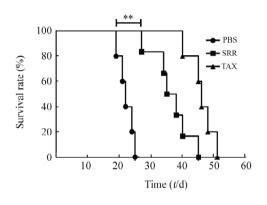


图 2 SRR 对 Lewis 肺癌荷瘤小鼠生存期的影响 Fig. 2 Effect of SRR on the survival of mice with Lewis lung cancer **P<0.01 vs PBS group

2.4 SRR 抑制移植瘤组织 Foxp3 和 TGF-β mRNA 的表达

SRR 治疗组移植瘤组织中 Foxp3 mRNA [(1.16±0.15)vs(2.05±0.20),P<0.05]、TGF- β mRNA[(1.22±0.10)vs(2.10±0.16),P<0.05] 表达均明显低于 PBS 组,而与 PTX 组无显著差异(P>0.05)(图4)。

3 讨论

肺癌是临床常见的恶性肿瘤之一,其发生发展与肿瘤免疫逃逸密切相关^[10]。明确肿瘤的免疫逃逸机制对于揭示肿瘤发生发展原理、提高机体免疫状态从而逆转肿瘤免疫逃逸具有极大的促进作用^[11]。在肿瘤免疫逃逸中发挥重要作用的 CD4⁺ CD25⁺ Foxp3⁺ Treg 可来源于胸腺,也可在未成熟的树突状细胞、IL-10、IFN-α、TGF-β 或者低剂量抗原诱导下由外周 CD4⁺ CD25-T 细胞转变而来^[12]。该类细胞主要表现为对 TCR 传递的抗原刺激呈低反应性,并且具有抑制其他 T 细胞增殖^[13]和抑制效应

性免疫细胞的作用。临床研究^[14-16]证实,肺癌患者的外周血中 CD4 * CD25 * Foxp3 * Treg 的数量明显高于健康人群。在肺癌的发生、发展过程中,Treg 的数量与临床分期、肺癌的侵袭转移、复发有关。CD4 * CD25 * Foxp3 * Treg、髓源抑制细胞(myeloid-derived

suppressor cell, MDSC)的数量增多和功能增强为肺癌细胞提供免疫逃逸环境, 随着对 CD4 + CD25 + Foxp3 + Treg 研究的不断深入,以其为靶点的新型抗肿瘤治疗策略已成为肿瘤学的研究热点[17]。

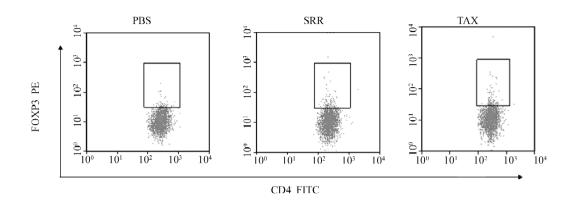


图 3 SRR 降低 CD4 * CD25 * Foxp3 * Treg 占 CD4 * T 细胞的比例 Fig. 3 SRR supresses the ratio of CD4 * CD25 * Foxp3 * Treg in CD4 * T cells

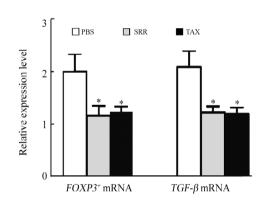


图 4 SRR 抑制移植瘤组织中 Foxp3、 $TGF-\beta$ mRNA 的表达

Fig. 4 SRR inhibits expression of Foxp3 mRNA and $TGF-\beta$ mRNA in xenograft tumor tissue

 $^*P < 0.05 \ vs \ PBS \ group$

PTX 能够上调肿瘤细胞表面抗原转运肽的表达以及消除肿瘤局部 Treg 的产生,可能部分参与了逆转肺癌免疫逃逸。已有研究[18]表明,低剂量 PTX 可选择性抑制 Treg 的活性和功能,而高剂量 PTX 可能会削弱 CTL 的免疫功能。PTX 还可通过直接诱导 CD11b+Gr-1+MDSC 的凋亡来减少肿瘤宿主体内MDSC 的数量,同时 PTX 可直接杀伤具有免疫抑制活性的 MDSC。但因 PTX 药品昂贵,多数病人使用其存在一定的经济困难,而藏药红景天在我国储量丰富,种植容易、产量高,显然有着自身的经济优势。

本研究发现, SRR 治疗后小鼠移植瘤局部 CD4+ CD25 + Foxp3 + Treg 比例显著降低,可有效抑制 Lewis 肺癌荷瘤小鼠移植瘤的生长、提高小鼠生存期,其效 果与 PTX 无显著性差异,同样可以逆转肿瘤局部的 免疫抑制环境,具有成为 PTX 替代药物的潜力。目 前研究发现, TGF-β 是与 CD4 + CD25 + Foxp3 + Treg 关系最为密切的抑制因子[19-20]。肿瘤细胞和各种 免疫细胞均可产生 TGF-β, TGF-β 可通过 TGF-β II 信号通路将 CD4 + CD25-Foxp3-Treg 转化为 CD4 + CD25 + Foxp3 + Treg,同时CD4 + CD25 + Foxp3 + Treg 还 能通过分泌 TGF-B,抑制 CD8 + T 细胞和 NK 细胞对 肿瘤的直接杀伤作用,从而抑制免疫细胞功能[21]。 本研究发现 SRR 可显著降低移植瘤组织中 Foxp3、 TGF- β mRNA 的表达水平,这可能是其下调 CD4 ⁺ CD25 + Foxp3 + Treg 比例, 逆转免疫抑制环境从而治 疗肿瘤的重要机制之一。

本研究表明,SRR 在抑制 Lewis 肺癌小鼠移植瘤生长、延长小鼠生存期、降低 CD4⁺ CD25⁺ Foxp3⁺ Treg 比例和 Foxp3、TGF-β mRNA 表达水平方面的作用与 PTX 无显著差异,可能通过下调 Foxp3 mRNA 表达,降低小鼠局部 CD4⁺ CD25⁺ Foxp3⁺ Treg 比例来增强机体的抗肿瘤免疫应答。因此,SRR 作为高效治疗肺癌的潜在药物,有良好的应用前景,本研究为其将来的临床应用提供了实验基础。

[参考文献]

[1] Beyer M, Schultze JL. Regulatory T cells in cancer [J]. Blood,

2006, 108(3): 804-811.

- [2] Andreev K, Graser A, Maier A, et al. Therapeutical measures to control airway tolerance in asthma and lung cancer [J]. Front Immunol, 2012, 3: 216-220.
- [3] Tanchot C, Terme M, Pere H, et al. Tumor-infiltrating regulatory T cells: Phenotype, role, mechanism of expansion in situ and clinical significance [J]. Cancer Microenvironment, 2012 [Epub ahead of print].
- [4] 杨伟芳, 胡炜, 丁维军, 等. 肺癌患者 CD4+CD25+调节性 T 细胞的检测及临床意义[J]. 现代实用医学, 2009, 21(11): 1215-1216.
- [5] 于益芝,曹雪涛. 调节性 T 细胞在肿瘤免疫和肿瘤免疫治疗中的作用[J]. 中国肿瘤生物治疗杂志, 2010, 17(1): 1-6.
- [6] 钟华,韩宝惠. 紫杉醇通过上调 TAP-1, TAP-2 以及消除调节性 T 细胞逆转肺癌免疫逃逸 [J]. 中国肺癌杂志, 2010, 13 (10): 937-940.
- [7] 曾满红,黄清松,张德兴. 红景天总黄酮对自然衰老大鼠抗 氧化和免疫功能的影响[J]. 解剖学研究,2012(2):135-137.
- [8] 魏明,涂玲,梁颖红,等. 乳腺癌 CD4 * CD25 high Foxp3 * 调节性 T 细胞数量和分布及 Foxp3 mRNA 表达与肿瘤分期的相关性研究 [J]. 中国实验诊断学, 2012(12): 2227-2231.
- [9] 何晓烨, 蔡映云. 肺癌患者调节性 T 细胞的变化及 CpG ODN 的干预作用 [J]. 中国免疫学杂志, 2010(4): 365-367.
- [10] Shimizu K, Nakata M, Hirami Y. Tumor-infiltrating Foxp3 * regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer [J]. J Thorac Oncol, 2010, 5(5): 585-590.
- [11] Schreiber TH, Wolf D, Bodero M, et al. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination [J]. Oncoimmunology, 2012, 1(5): 642-648

- [12] 谷伟伟, 叶韵斌. 调节性 T 细胞与肿瘤相互作用机制的研究进展[J]. 医学综述, 2012, 18(5): 680-684.
- [13] 陈祚珈, 高雅懿, 李志远, 等. Foxp3 + 调节性 T 细胞 [J]. 生命科学, 2010, 22(6): 515-528.
- [14] 郭净, 王菊勇, 郑展, 等. 肺岩宁方对肺癌小鼠 CD4 + CD25 + 调节性 T 细胞比例及 Foxp3 表达的影响 [J]. 中西医结合学报, 2012, 10(5): 584-598.
- [15] 樊慧婷, 林洪生, 李杰, 等. 人工蛹虫草子实体对 Leiws 肺癌 荷瘤小鼠 CD4 + CD25 + 调节性 T 细胞的影响 [J]. 中华肿瘤防治杂志, 2009, 15(6): 1130-1134.
- [16] 王成刚, 蒋霆辉, 陈越, 等. 中药复方对 Lewis 肺癌移植鼠肿瘤微环境中吲哚胺 2,3-双加氧酶表达的影响 [J]. 2012, 3 (16): 225-226.
- [17] 王雪野, 韩梅, 高长斌, 等. 恶性肿瘤患者外周血 CD4 * CD25 high Foxp3 * 调节性 T 细胞的检测及临床意义 [J]. 吉林大学学报: 医学版, 2009, 35(2): 373-376.
- [18] 罗光华, 郭莉莉, 刘丽华. 紫杉醇与肿瘤免疫的研究进展 [J]. 中国肿瘤生物治疗杂志, 2013, 20(2): 251-254.
- [19] Yi Y, He HW, Wang JX, et al. The functional impairment of HCC-infiltrating gammadelta T cells, partially mediated by regulatory T cells in a TGFbeta- and IL-10-dependent manner [J]. J Hepatol, 2012, 58(5): 977-983.
- [20] 李颖, 徐林. CD4 + CD25 + Foxp3 + 调节性 T 细胞研究的新进展 [J]. 现代免疫学, 2010, 30(6): 520-523.
- [21] Strauss L, Bergmann C, Szczepanski M, et al. A unique subset of CD4 + CD25 high Foxp3 + T cells secreting interleukin 2 transforming growth factor beta1 mediates suppression in the tumor microenvironment [J]. Clin Cancer Res, 2007, 13 (15): 4345-4354.

[收稿日期] 2013-03-18 [修回日期] 2013-06-20 [本文编辑] 黄静怡

・读者・作者・編者・

参考文献题名后须标注文献类型和文献载体标志代码

本刊参考文献按照国家标准 GB/T 7714-2005《文后参考文献著录规则》的要求进行著录。该国家标准要求,每条文献的题名后都须标上[文献类型标志]或[文献类型标志/文献载体标志]。对纸质文献,如为期刊中析出文献,题名后应标上[J];如为专著中析出文献,题名后应标上[M]。对电子文献,如为网络期刊析出文献,题名后须标上[J/OL];如为网络专著中析出文献,题名后须标上[M/OL]。

现把常用的文献类型标志代码和电子文献载体标志代码介绍如下:

表 1 文献类型和文献载体标志代码

文献类型	标志代码	文献类型	标志代码	载体类型	标志代码
期刊	J	报 纸	N	磁帯	MT
专 著	M	专 利	P	磁盘	DK
汇 编	G	标 准	S	光 盘	CD
会 议 录	С	数 据 库	DB	联机网络	OL
学位论文	D	计算机程序	CP		
报 告	R	电子公告	EB		