文章编号: 0253-2409(2013)10-1256-06

多级孔 ZSM-5 分子筛的制备及催化噻吩烷基化性能研究

赵 岑, 刘冬梅, 魏 民, 孙志岩, 王海彦

(辽宁石油化工大学石油化工学院,辽宁抚顺 113001)

摘 要:用不同浓度的 Na₂CO₃ 溶液处理 ZSM-5 分子筛,采用 XRD、XRF、SEM、N₂ 吸附脱附及 NH₃-TPD 方法对处理前后的 ZSM-5 分子筛进行表征,并考察了 Na₂CO₃ 溶液处理对 ZSM-5 分子筛孔结构、酸性以及噻吩烷基化性能的影响。结果表明, Na₂CO₃ 溶液处理在保持 ZSM-5 分子筛微孔骨架结构的同时,增加了 ZSM-5 分子筛的比表面积、外表面积和介孔体积,并调 变了酸性。Na₂CO₃ 溶液处理提高了 ZSM-5 分子筛催化剂的噻吩烷基化活性和噻吩选择性。一定反应条件下,随着 Na₂CO₃ 溶液浓度增加,多级孔 ZSM-5 分子筛的噻吩烷基化性能逐渐提高,而噻吩选择性先增加后下降。当 Na₂CO₃ 溶液浓度为 2 mol/L时,分子筛的噻吩转化率和噻吩选择性分别为 81.26 % 和 73.15%。当 Na₂CO₃ 溶液浓度为 3 mol/L 时,噻吩转化率 和选择性分别为 90.57 % 和 72.59%。

关键词:碱处理; Na₂CO₃; ZSM-5; 噻吩; 烷基化 中图分类号: TQ426.95 文献标识码: A

Preparation of hierarchical ZSM-5 zeolites and their catalytic performance in thiophene alkylation

ZHAO Cen, LIU Dong-mei, WEI Min, SUN Zhi-yan, WANG Hai-yan (School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, China)

Abstract: ZSM-5 zeolites were treated by Na_2CO_3 solutions with different concentrations and characterized by XRD, XRF, SEM, N_2 sorption and NH_3 -TPD techniques; the influence of Na_2CO_3 treatment on their pore structure, acidity and performance in thiophene alkylation was investigated. The results showed that the BET surface area, external surface area and mesoporous volume of the ZSM-5 zeolites were enhanced through Na_2CO_3 treatment and the acidity was also modulated without altering the microporous structure of ZSM-5 zeolites. The activity and the selectivity to alkylates of the ZSM-5 zeolites in thiophene alkylation are also improved after Na_2CO_3 treatment. With the increase of Na_2CO_3 solution concentration, the thiophene conversion over the hierarchical ZSM-5 zeolites increases gradually, while the selectivity to alkylates increases first, reaches a maximum and then decreases along with the Na_2CO_3 solution concentration. When the Na_2CO_3 concentrations are 2 and 3 mol/L the thiophene conversions and alhylation selectivities are 81. 26%, 73. 15% and 90. 57%, 72. 59%, respectively.

Key words: alkali-treatment; Na₂CO₃; ZSM-5; thiophene; alkylation

噻吩类硫化物在酸性催化剂的作用下与 FCC 汽油中烯烃进行烷基化反应是脱除噻吩硫的有效途 径^[1]。噻吩烷基化过程无需加氢,可避免由于 FCC 汽油烯烃的过度饱和造成的辛烷值损失,并节约运 行成本。英国 BP 公司首先提出噻吩烷基化脱硫技 术,目前,比较典型的 OAST 工艺是 BP 北美分公司 的两级/多级烷基化脱硫工艺^[2]和美国 Mobil 公司 的烷基化脱硫工艺^[3]。

有关分子筛催化噻吩烷基化反应的研究较 多^[4~15]。罗国华等^[10,11]的研究表明,噻吩烷基化活 性与分子筛孔径密切相关。在相同反应条件下,平 均孔径大于 0.6 nm 的 HMCM-41、Hβ、HM 及 HY 分子筛上的噻吩转化率均达到 99% 以上,而平均孔 径小于 0.6 nm 的 ZSM-5 分子筛上噻吩转化率仅有

收稿日期: 2013-02-04;修回日期: 2013-04-27。

联系作者: 王海彦, Tel: 024-56860958, E-mail: fswhy@126.com。

5.2%。另有报道^[13~16]指出,分子筛的酸性对噻吩 烷基化反应有重要影响。Xu等^[15]比较了 HZSM-5 (以拟薄水铝石为载体)、HY、Hβ和 SAPO-11 的噻 吩烷基化活性,在相同反应条件下,酸强度最强的 HZSM-5 分子筛上的噻吩转化率高于其他分子筛。

碱处理可以有效调变 ZSM-5 分子筛的孔结构 和酸性^[17-23]。一般使用浓度较低的 NaOH 溶液,高 浓度的 NaOH 溶液会破坏分子筛的晶型结构,因 此,强碱性的 NaOH 在成孔过程中不利于控制。 Na₂CO₃ 溶液碱性适中,处理过程中不易破坏分子 筛的骨架结构,更利于调变分子筛的孔结构^[24]。本 实验采用 Na₂CO₃ 溶液制备多级孔 ZSM-5 分子筛, 并研究了 Na₂CO₃ 溶液浓度对分子筛孔结构、酸性 及噻吩烷基化反应的影响。 1 实验部分

1.1 试剂

 噻吩(分析纯)、二甲苯(分析纯)、正己烷(分析 纯)、Na₂CO₃(分析纯)均来自国药集团化学试剂有 限公司;1-己烯(98%),美国 Alfa Aesar 公司; NH₄NO₃(分析纯),天津大茂化学试剂有限公司; HZSM-5(硅铝比为50),南开大学催化剂厂。

1.2 催化剂的制备

HZSM-5 分子筛原粉在 550 ℃下焙烧 4 h。分 别取 10 g HZSM-5 加入到 500 mL 浓度分别为 0.5、 1、2、3、4 mol/L 的 Na₂CO₃ 溶液中,80 ℃水浴搅拌 2 h,冷却后抽滤。滤饼用蒸馏水洗涤至中性,110 ℃ 干燥过夜后恒温 550 ℃焙烧 2 h,得到 NaZSM-5 分 子筛。用 1 mol/L 的 NH₄NO₃ 溶液,通过三次离子 交换与焙烧将 NaZSM-5 转换为 HZSM-5。根据 Na₂CO₃ 溶液浓度不同,将所得 ZSM-5 分子筛催化 剂分别记做 ZSM-5(0.5)、ZSM-5(1)、ZSM-5(2)、 ZSM-5(3) 和 ZSM-5(4),ZSM-5 分子筛原粉记做 ZSM-5(0)。

1.3 催化剂的表征

分子筛的晶相结构由日本理学 D/max-RB X 射线衍射仪测定,Cu Kα 辐射(λ =0.154 06 nm),管 电压 40 kV,管电流 100 mA。采用岛津 XRF-1700 型 X 射线荧光光谱分析仪分析催化剂的硅铝比。 催化剂形貌由日本日立公司 S4800 场发射扫描电镜 观察。N₂吸附等温线在 Micromeritics ASAP22010 型吸附仪上获得,用 BET 法计算催化剂的比表面 积,BJH 法计算孔容和孔径分布,*t*-plot 法计算外表 面积和微孔体积。分子筛表面酸性由 NH₃程序升 温脱附 (NH₃-TPD) 法测定,将 0.100 g 催化剂在 He 中 600 ℃活化 30 min,冷却至 150 ℃,吸附 NH₃ 至饱和,经 He 吹扫除去物理吸附的 NH₃ 后,以 18 ℃/min 升至 700 ℃,脱附的 NH₃用 TCD 检测。

1.4 催化剂的性能评价

在固定床反应器上进行催化剂噻吩烷基化性能 评价,不锈钢反应器长 80 cm,内径为 10 mm。将催 化剂压片,取 5 mL 筛分至 20~40 目的 ZSM-5 分子 筛与等体积相同粒径的石英砂混合均匀装填到反应 器中部,反应器两端填满石英砂。反应原料为噻吩、 1-己烯、二甲苯和正己烷组成的模型化合物(体积比 为 1.6:12.8:4.9:500)。评价条件为温度350 ℃、压 力 1.0 MPa、质量空速 1.0 h⁻¹。反应开始后第二个 小时排空一次,第四个小时接样。

采用美国安捷伦公司 7890A 型色谱仪分析原

料及产物中的硫化物,355 型 SCD 硫化学发光检测 器,HP-5 毛细管柱 30 m×320 µm×0.2 5 µm,升温 速率 15 ℃/min,进样口温度 250 ℃,燃烧器温度 800 ℃,载气为氮气,流量1.5 mL/min,分流比10:1。 采用上海分析仪器厂 1002 气相色谱仪分析原料及 产物中的烃类组成,FID 检测器,初始温度为30 ℃, 恒温 10 min,以 5 ℃/min 的速率由 30 ℃升温至 200 ℃,恒温 10 min。用噻吩转化率评价催化剂的 催化性能,用噻吩选择性评价催化剂的烯烃与噻吩 烷基化反应选择性,计算公式如下:

$$x = \left(\frac{n(\text{TP}, \text{F}) - n(\text{TP}, \text{P})}{n(\text{TP}, \text{F})}\right) \times 100\%$$
(1)

$$s = \left(\frac{n(C_6H_{12}, \text{OATS})}{n(C_6H_{12}, \text{F}) - n(C_6H_{12}, \text{P})}\right) \times 100\% \quad (2)$$

式中,x,n(**TP**,**F**) 和n(**TP**,**P**) 分别为噻吩转 化率、原料及产物中的噻吩含量;s、n(**C**₆**H**₁₂,**F**), n(**C**₆**H**₁₂,**P**) 和n(**C**₆**H**₁₂,**OATS**),分别为噻吩选择 性、原料及产物中的1-己烯含量和参与噻吩烷基化 反应的1-己烯含量。

- 2 结果与讨论
- 2.1 Na₂CO₃ 溶液浓度对 ZSM-5 晶体结构的影响 图 1 为 Na₂CO₃ 溶液处理后 ZSM-5 分子筛的 XRD 谱图,其相对结晶度和硅铝比见表 1。

图 1 Na₂CO₃ 溶液浓度对 ZSM-5 晶相结构的影响 Figure 1 XRD patterns of ZSM-5 before and after treated with Na₂CO₃ solutions

由图 1 可知,与 ZSM-5 分子筛原粉相比,ZSM-5(0.5)~ZSM-5(4)在8.0°、8.9°、23.1°和、23.9° 处的 MFI 结构特征峰位置未改变,特征峰强度变化 微弱,说明 Na₂CO₃ 溶液处理的样品保留了 ZSM-5 的晶相结构。分子筛的硅铝比随 Na₂CO₃ 溶液浓度 升高而下降,说明脱硅程度加深。分子筛的颗粒结 晶度随 Na₂CO₃ 溶液浓度增加而先升后降,这是因 为 Na₂CO₃ 溶液浓度较低时,主要脱除无定形物质, 疏通了分子筛的孔道,有利于暴露出更多的微孔,而 对分子筛骨架的影响较小,所以结晶度升高。随 Na₂CO₃ 溶液浓度增加,分子筛骨架的腐蚀程度逐渐加重,因此,结晶度降低。

表 1 Na₂CO₃ 溶液处理前后 ZSM-5 相对结晶度和硅铝比的变化

Table 1 Relative crystallinity and the SiO_2/Al_2O_3 molar ratio of ZSM-5 treated with Na_2CO_3 solutions

Sample	ZSM-5(0)	ZSM-5(0.5)	ZSM-5(1)	ZSM-5(2)	ZSM-5(3)	ZSM-5(4)
Relative crystallinity /%	100.00	109.89	112.99	108.08	106.43	99.27
$SiO_2/Al_2O_3(mol ratio)$	50	48	46	43	38	34

2.2 Na₂CO₃ 浓度对 ZSM-5 分子筛形貌的影响

图 2 为分子筛的扫描电镜(SEM)照片。由图 2 可知, Na₂CO₃ 溶液处理后, ZSM-5 分子筛颗粒间的 边界变得模糊, 颗粒边缘发生变形, 表面出现裂纹和 凹陷。随 Na₂CO₃ 溶液浓度增加, 粒径减小, 颗粒的 破损程度加深, 颗粒间排列的规整程度下降。当 Na₂CO₃浓度为4 mol/L 时,晶粒表面有明显的断裂和破损,颗粒腐蚀较严重,但仍保持基本的晶体形貌,与 XRD 表征结果相符。由此说明,本实验中Na₂CO₃溶液处理的 ZSM-5 分子筛,保持了 ZSM-5 分子筛的基本晶体结构。

图 2 Na_2CO_3 处理前后 ZSM-5 的扫描电镜照片 Figure 2 SEM images of ZSM-5 before and after treated with Na_2CO_3 solutions (a): ZSM-5(0); (b): ZSM-5(2); (c): ZSM-5(4)

2.3 Na₂CO₃处理对 ZSM-5 分子筛孔结构的影响 图 3 和图 4 分别为 Na₂CO₃ 溶液处理前后

ZSM-5 的 N_2 吸附-脱附等温线和孔径分布图。

图 3 Na₂CO₃ 处理前后 ZSM-5 的 N₂ 吸附-脱附等温线
Figure 3 Nitrogen adsorption-desorption isotherms for ZSM-5 before and after treated with Na₂CO₃
⊲: ZSM-5(4); ◆: ZSM-5(3); ⊽: ZSM-5(2);
▲: ZSM-5(1); ●: ZSM-5(0.5); ■: ZSM-5(0)

表2为Na₂CO₃溶液处理对ZSM-5结构性质的影响,由图3可知,Na₂CO₃溶液处理前后样品的吸

附曲线均为IV型等温线,是典型的含介孔分子筛的 吸附等温线。Na₂CO₃浓度越高,处理后滞后环越 明显,说明介孔增加越多。由图4可知,Na₂CO₃处 理后介孔体积明显增加,孔径在2.5~5.5 nm。

图 4 Na₂CO₃ 处理前后 ZSM-5 的孔分布变化 Figure 4 Pore size distributions for ZSM-5 before and after treated with Na₂CO₃

 \triangleleft : ZSM-5(4); ♦: ZSM-5(3); \forall : ZSM-5(2); ♦: ZSM-5(1); \bigcirc : ZSM-5(0.5); **■**: ZSM-5(0)

表2中A_{BET}、A_{ext}、v_{micro}、v_{meso}和 d_{aver}分别代表比

表面积、外表面积、微孔孔容、介孔孔容和平均孔径。 由表2可知,ZSM-5分子筛的外表面积和介孔体积 随 Na₂CO₃溶液浓度增加而不断增加,当 Na₂CO₃溶 液浓度为2 mol/L 时,外表面积升高幅度变缓,当 Na₂CO₃浓度为4 mol/L 时,介孔体积达到 0.1109 cm³/g。这是因为 Na₂CO₃处理优先脱除分 子筛表面的无定形硅,生成少量介孔,当 Na₂CO₃溶 液浓度较低时,外表面积即有明显增加。逐渐增加 Na₂CO₃溶液浓度,分子筛的骨架硅开始被溶解,生 成更多的介孔,同时孔径范围略有扩大。当Na₂CO₃ 溶液浓度到达一定程度后,对分子筛孔结构的影响 趋于稳定。Na₂CO₃溶液处理后,催化剂的比表面 积均大于分子筛原粉,但随 Na₂CO₃溶液浓度增加, 比表面积没有明显提高,这与 Ogura 等^[17]采用 NaOH 处理 ZSM-5 分子筛所得的规律基本一致。

表 2 Na₂CO₃ 溶液处理对 ZSM-5 结构性质的影响 Table 2 Textural properties of ZSM-5 samples treated with Na₂CO₃ solutions

Sample	$A_{\rm BET}/({ m m}^2 \cdot { m g}^{-1})$	$A_{\rm ext}/({\rm m}^2 \cdot {\rm g}^{-1})$	$v_{\rm micro} / (10^{-2} \cdot {\rm cm}^3 \cdot {\rm g}^{-1})$	$v_{\rm meso}/(10^{-2} \cdot {\rm cm}^3 \cdot {\rm g}^{-1})$	d _{aver} /nm
ZSM-5(0)	317.91	78.70	11.94	2.14	2.09
ZSM-5(0.5)	335.07	102.96	13.83	4.92	3.68
ZSM-5(1)	337.18	123.68	15.95	6.54	3.95
ZSM-5(2)	335.65	130.67	15.15	7.57	4.06
ZSM-5(3)	338.72	131.84	10.25	9.87	4.83
ZSM-5(4)	342.81	133.38	11.78	11.09	5.26

2.4 Na₂CO₃处理对 ZSM-5 表面酸性的影响

图 5 为 Na₂CO₃ 溶液处理前后 ZSM-5 分子筛的 NH₃-TPD 曲线,表 3 为其相对酸密度。图 5 中 250 ~350 ℃及 530 ~ 620 ℃的脱附峰分别对应 ZSM-5 分子筛的弱酸及强酸中心。ZSM-5 分子筛的强酸 与弱酸中心含量均随 Na₂CO₃ 溶液浓度增加而先降 低后 升高。当 Na₂CO₃ 溶液浓度为 1 mol/L 时, ZSM-5 分子筛的相对酸密度最低,当 Na₂CO₃ 溶液 浓度大于 2 mol/L 时,ZSM-5 分子筛的相对酸密度 高于 ZSM-5(0)。ZSM-5 分子筛上的 Si-OH 及 Si-O-Al-OH 分别对应其弱酸位及强酸位。Na₂CO₃ 处 理初期优先脱除分子筛的非骨架成分(包括非骨架 硅及非骨架铝)^[17,18],造成酸量明显减少,此时强酸 位的下降可能与脱除非骨架铝有关^[18]。

图 5 Na₂CO₃ 处理前后 ZSM-5 的 NH₃-TPD 曲线 Figure 5 NH₃-TPD profiles for ZSM-5 before and after Na₂CO₃ treatment

 $\triangleleft: \text{ZSM-5}(4); \blacklozenge: \text{ZSM-5}(3); \forall: \text{ZSM-5}(2);$

▲: ZSM-5(1); \bigcirc : ZSM-5(0.5); **■**: ZSM-5(0)

表 3	Na_2CO_3	溶液处理前后	ZSM-5	的相对酸密度	
-----	------------	--------	-------	--------	--

Table 3	Relative acid	density o	f ZSM-5	samples treated	with Na ₂ CO ₃	solutions
---------	---------------	-----------	---------	-----------------	--------------------------------------	-----------

A .: J			Relative acid	l density /%		
Acid strength	ZSM-5(0)	ZSM-5(0.5)	ZSM-5(1)	ZSM-5(2)	ZSM-5(3)	ZSM-5(4)
Strong	100	99.17	87.19	100.80	108.28	111.79
Weak	100	99.12	86.32	92.86	94.52	106.25
Total	100	99.14	86.74	95.49	101.12	108.91

随着处理条件逐渐苛刻, Na₂CO₃处理过程开始选择性地溶解骨架硅原子^[25], 而此时 Si-O-Al 键不活泼^[26],该过程未脱铝^[17],则骨架铝的相对含量增加。当 Na₂CO₃ 溶液浓度为 2~4 mol/L 时,分子筛硅铝比下降较迅速(见表 1)。一般认为, 分子

筛强酸位的浓度与其骨架铝的浓度成正比,因此,强 酸含量增加。同时,硅铝比的降低影响了铝原子的 配位不饱和度,导致由三配位 Al 产生的 L 酸增加, 因此,弱酸含量增加^[27]。

2.5 Na₂CO₃ 浓度对催化剂噻吩烷基化性能影响

表4为ZSM-5分子筛的噻吩烷基化性能和噻 吩选择性。烯烃在酸性催化剂的作用下形成正碳离 子,噻吩-烯烃烷基化和芳烃-烯烃烷基化都遵循正 碳离子机理^[28]。原料中二甲苯的含量明显高于噻 吩,当噻吩与烯烃进行烷基化反应时,伴随着一定的 芳烃烷基化副反应。

由择形催化可知,当产物的体积大于催化剂孔体积时,将限制反应生成该产物。由于 ZSM-5 分子筛原粉的平均孔径与噻吩和二甲苯的直径相当,不

满足生成大分子烷基化产物的空间条件,限制了噻 吩烷基化反应和芳烃烷基化反应,所以 ZSM-5(0) 的噻吩转化率和选择性都较低。Na₂CO₃ 溶液处理 增加了 ZSM-5 分子筛的外表面积和孔径大于 2 nm 的介孔结构,使分子筛外表面孔口处的吸附位数量 增加,促进了反应物的扩散和催化活性,为烷基化反 应提供了有利条件。研究表明,噻吩烷基化反应速 率明显大于二甲苯烷基化反应^[28],因此,Na₂CO₃ 溶 液处理后,分子筛的噻吩烷基化活性和噻吩选择性 均有提高。

表 4	不同 ZSM-5 分子筛的噻吩转化率和噻吩选择性	
-----	--------------------------	--

Table 4	Conversion	and	selectivity	of	thiophene	over	different	ZSM-5	zeolites
---------	------------	-----	-------------	----	-----------	------	-----------	-------	----------

Sample	ZSM-5(0)	ZSM-5(0.5)	ZSM-5(1)	ZSM-5(2)	ZSM-5(3)	ZSM-5(4)
Conversion $x / \%$	29.63	30.71	60.33	81.26	90.57	90.72
Selectivity s /%	53.22	67.18	71.35	73.15	72.59	71.83

由图 4 可知, 分子筛的噻吩转化率随 Na₂CO₃ 溶液浓度的增加而增加, 当 Na₂CO₃浓度大于 3 mol/L时,转化率提高变缓。分子筛的噻吩选择性 随 Na₂CO₃溶液浓度的增加表现出先升高后下降的 趋势。这可能是因为,催化剂的酸性变化对噻吩选 择性的影响较大。有研究指出,酸性相对较弱的催 化剂的芳烃烷基化活性较弱,降低催化剂的酸密度 有利于提高其噻吩选择性^[29,30]。ZSM-5(0)~ ZSM-5(4)的相对酸密度先降低后升高,由于同时受 到催化剂孔结构的影响,虽然 ZSM-5(1)的相对酸 密度最低,但噻吩选择性最高的是 ZSM-5(2),此时 选择性的增加速率明显变缓。当 Na₂CO₃ 溶液浓度 大于 2 mol/L 时,分子筛的选择性略有下降。

ZSM-5(0) ~ ZSM-5(1)的孔体积及孔径逐渐 增加,酸量逐渐减小,但噻吩转化率逐渐升高。 ZSM-5(3)的孔体积和孔径大于ZSM-5(2),且两者 酸量相当,但前者的噻吩转化率高于后者。说明 ZSM-5 分子筛的噻吩烷基化性能与其孔结构的关系密切。

3 结 论

Na₂CO₃溶液处理 ZSM-5 分子筛,能够在保持 分子筛微孔结构的基础上,增加其外表面积与介孔 体积,同时调变了分子筛的酸性。一定反应条件下, 随 Na₂CO₃溶液浓度增加,催化剂的噻吩转化率逐 渐升高,噻吩选择性先升高后下降。当 Na₂CO₃溶 液浓度为 2 mol/L 时,分子筛的噻吩转化率和噻吩 选择性分别为 81.26 % 和 73.15%。当 Na₂CO₃溶 液浓度为 3 mol/L 时,分子筛表现出良好的噻吩烷 基化性能和较好的噻吩选择性,转化率和选择性分 别为 90.57 % 和 72.59%。继续增加 Na₂CO₃溶液 浓度,催化剂的噻吩烷基化活性及噻吩选择性变化 较小。多级孔 ZSM-5 分子筛的孔结构对催化剂噻 吩烷基化反应活性影响较大,ZSM-5 分子筛的孔结 构和酸性质对催化剂的噻吩选择性有重要影响。

参考文献

- [1] ALEXANDER B D, HUFF G A, PRADHAN V R, REAGAN W J, CAYTON R H. Multiple stage sulfur removal process: US, 6059962
 [P]. 2000-05-09.
- [2] PRADHAN V R, BURNETT P A, STACEY M D, HODGES M. Multistage process for removal of sulfur from components for blending of transportation fuels: US, 6733660[P]. 2004-05-11.
- [3] STUNTZ G F. The production of low sulfur naphtha streams via sweetening and fractionation combined with thiophene alkylation: WO, 2005019387[P]. 2005-03-03.
- [4] ZHANG Z K, LIU S L, ZHU X X, WANG Q X, XU L Y. Modification of Hβ zeolite by fluorine and its influence on olefin alkylation thiophenic sulfur in gasoline[J]. Fuel Process Technol, 2008, 89(1): 103-110.
- [5] BELLIÈRE V, GEANTET C, VRIANT M, BEN-TAÂRIT Y, YOSHIMURA Y. Alkylation of 3-methyl- thiophene with 2-methyl-2-butene over a zeolitic catalyst[J]. Energy Fuels, 2004, **18**(6): 1806-1813.
- [6] DUPUY B, LAFORGE S, MORAIS C, BACHMANN C, MAGNOUX P, RICHARD F. Alkylation of 3-methylthiophene by 2-methyl-1pentene over HY, HBEA and HMCM-22 acidic zeolites [J]. Appl Catal A: Gen, 2012, 413-414(31): 192-204.
- [7] DUPUY B, LAFORGE S, BACHMANN C, MAGNOUX P, RICHARD F. Desulfurization of model FCC feedstocks by alkylation: Transformation of thiophenic compounds in presence of 2-methyl-1-pentene over acidic zeolites [J]. J Mol Catal A: Chem, 2012, **363-364**:

273-282.

- [8] HU L Y, ZHANG Z K, XIE S J, LIU S L, XU L Y. Effect of grain size of zeolite Y on its catalytic performance in olefin alkylation thiophenic sulfur process[J]. Catal Commun, 2009, **10**(6): 900-904.
- [9] ZHANG Z K, NIU X L, LIU S L, ZHU X X, YU H W, XU L Y. The performance of HMCM-22 zeolite catalyst on the olefin alkylation thiophenic sulfur in gasoline[J]. Catal Commun, 2008, 9(1): 60-64.
- [10] 罗国华,徐新,佟泽民,彭少逸. 分子筛催化噻吩类硫化物与烯烃烷基化脱硫研究[J].化学反应工程与工艺,2005,21(2):132-137.
 (LUO Guo-hua, XU Xin, TONG Ze-min, PENG Shao-yi. Alkylation of thiophenic sulfur compounds with olefin over zeolite catalysts[J]. Chemical Reaction Engineering and Technology, 2005, 21(2):132-137.)
- [11] 王素珍,罗国华,徐新,佟泽民,彭少逸.介孔分子筛 MCM-41 的合成及其催化噻吩与异丁烯烷基化反应性能[J].石油化工,2004, 33(2):113-117.

(WANG Su-zhen, LUO Guo-hua, XU Xin, TONG Ze-min, PENG Shao-yi. Preparation and alkylation performance of HMCM-41 mesoporous molecular sieve[J]. Petrochemical Technology, 2004, 33(2): 113-117.)

[12] 魏书梅,徐亚荣,徐新良,王吉德. HY 分子筛催化噻吩类硫化物的烷基化反应动力学[J]. 化学反应工程与工艺, 2012, 28(2): 159-163.

(WEI Shu-mei, XU Ya-rong, XU Xin-liang, WANG Ji-de. Kinetics of alkylation of thiophene over HY zeolite [J]. Chemical Reaction Engineering and Technology, 2012, 28(2): 159-163.)

- [13] 郭晓野,张泽凯,刘盛林,李玉宁,戴洪义,徐龙伢. 汽油在钾修饰 MCM-41 分子筛上的烷基化脱硫[J]. 工业催化, 2008, 16(6): 31-34. (GUO Xiao-ye, ZHANG Ze-kai, LIU Sheng-lin, LI Yu-ning, DAI Hong-yi, XU Long-ya. Alkylation desulfurization of thiophene in gasoline over potassium modified MCM-22 zeolites[J]. Industrial Catalysis, 2008, 16(6): 31-34.)
- [14] ZHENG X D, DONG H J, WANG X, SHI L. Study on olefin alkylation of thiophenic sulfur in FCC gasoline using La₂O₃-modified HY zeolite[J]. Catal Lett, 2009, 127(1/2): 70-74.
- XU Y, LONG J, ZHANG J S. Study on alkylation reaction of thiophenic compounds for desulfurization of FCC gasoline on zeolite catalysts
 Preprint Paper Am Chem Soc Div Fuel Chem, 2005, 50(2): 235-238.
- [16] 刘植昌,胡建茹,高金森. 离子液体用于催化裂化汽油烷基化脱硫的实验室研究[J]. 石油炼制与化工, 2006, 37(10): 22-26.
 (LIU Zhi-chang, HU Jian-ru, GAO Jin-sen. FCC Naphtha desulfurization via alkylation process over ionic liquid catalyst[J]. Petroleum Processing and Petrochemicals, 2006, 37(10): 22-26.)
- [17] OGURA M, SHINOMIYA S Y, TATENO J, NARA Y, NOMURA M, EIKUCHI E, MATSUKATA M. Alkali-treatment technique-New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A: Gen, 2001, 219(1/2): 33-34.
- [18] SONG Y Q, FENG Y L, LIU F, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance [J]. J Mol Catal A: Chem, 2009, 310(1/2): 130-137.
- [19] SUZUKI T, OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution [J]. Micropor Mesopor Mater, 2001, 43(1): 83-89.
- [20] TAO Y, KANOH H, KANEKO K. Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites[J]. Adsorption, 2006, 12 (5/6): 309-316.
- [21] ZHAO L, GAO J, XU C, SHEN B J. Alkali-treatment of ZSM-5 zeolites with different SiO₂/Al₂O₃ ratios and light olefin production by heavy oil cracking[J]. Fuel Process Technol, 2011, 92(3): 414-420.
- [22] SONG Y Q, ZHU X X, SONG Y, WANG Q X, XU L Y. An effective method to enhance the stability on-stream of butane aromatization: Post-treatment of ZSM-5 by alkali solution of sodium hydroxide[J]. Appl Catal A: Gen, 2006, 302(1): 69-77.
- [23] GIL B, MOKRZYCKI L, SULIKOWSKI B, OLEJNICZAK Z, WALAS S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties[J]. Catal Today, 2010, 152(1/4): 24-32.
- [24] ZHU X L, LOBBAN L L, MALLINSON R G, RESASCO D E. Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal [J]. J Catal, 2010, 271(1): 88-98.
- ZHAO L, XU C M, GAO S, SHEN B J. Effects of concentration on the alkali-treatment of ZSM-5 zeolite: A study on dividing points[J].
 J Mater Sci, 2010, 45(19): 5406-5441.
- [26] SU L L, LIU L, ZHUANG J Q, WANG H X, LI Y G, SHEN W J, XU Y D, BAO X H. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catal Lett, 2003, 91(3/4): 155-167.
- [27] NIKOLOPOULOS A A, OUKACIO R, GOODWIN J G, MARCELIN G. Selective behavior during the guilibrium-limited high temperature formation of MTBE on acid zeolites[J]. Catal Lett, 1994, 27(1/2): 149-157.
- [28] BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review [J]. Fuel, 2003, 82(6): 607-631.
- [29] 柯明,汤奕婷,曹文智,彭洪湃,周爱国. 二烯烃与噻吩烷基化反应研究[J]. 西安石油大学学报(自然科学版),2008,23(5):75-80.
 (KE Ming, TANG Yi-ting, CAO Wen-zhi, PENG Hong-pai, ZHOU Ai-guo. Study on alkylation reaction of diolefin with thiophene[J].
 Journal of Xi'an Shiyou University (Natural Science Edition), 2008, 23(5):75-80.)
- [30] 郭晓野,张泽凯,刘盛林,李玉宁,戴洪义,徐龙伢. 汽油在钾修饰 MCM-22 分子筛上的烷基化脱硫[J]. 工业催化, 2008, 16(6): 31-34.
 (GUO Xiao-ye, ZHANG Ze-kai, LIU Sheng-lin, LI Yu-ning, DAI Hong-yi, XU Long-ya. Alyalation desulfurization of thiophene in gasoline over potassium modified MCM-22 zeolites[J]. Industrial Catalysis, 2008, 16(6): 31-34.)