Metamodeling and development of information systems
Metamodelovani a vyvoj informacnich systémii

M. PicKA

Czech University of Agriculture, Prague, Czech Republic

Abstract: Metamodeling isbecaming an important part of information systems devel opment. When metamodeling we are working
with metamodel which define the syntax and the semantics of models. There are alot of standardsfor definition of metamodel e.g.
COMMA, GOPRR, MOF. Metamodeling isused for defining and creating of new methodologies, their implementation into CASE
and metaCA SE tools. Metamodeling is used for manipulation of dataand metadata and for optimalization of information’s system
design with utilization of generic models. The aims of this article are: to discusse fundamental concepts of metamodeling,
demonstrate some theoretically and practically important meta-metamodels and to position metamodeling principles in the
development of information systems.

Key words: model, metamodel, meta-metamodel, metamodeling, methodology, metaCASE, MOF, COMMA, GOPRR, generic
model

Abstrakt: Metamodelovani se stava dllezitym nastrojem pii tvorbé informacnich systémi. Pfi metamodelovani pracujeme
s metamodelem, ktery zachycuje syntaxi a sémantiku modelu. Pro definici metamodelu existuje mnoho vice ¢i méné rozsire-
nych standardt, jako napi. COMMA, GOPRR a MOF. Metamodelovani se pouziva pfi tvorbé novych metodologii, pti
vytvateni CASE a metaCASE nastrojl, pfi manipulaci s daty a metadaty a pii optimalizaci navrhu informa¢niho systému
pomoci generického modelu. Cilem tohoto ¢lanku je ukazat zakladni koncepty metamodelovani, nékteré teoreticky a prakticky
vyznamné meta-metamodely a pouziti principti metamodelovani pfi tvorbé informacnich systému.

Kli¢ova slova: model, metamodel, meta-metamodel, metamodelovani, metodologie, metaCASE, MOF, COMMA, GOPRR,

genericky model

FOREWORD

Today, when modern software programming tools are
available in the market, it may look, that information sys-
tems analysis and development are easier than in the
past. This statement might be true, but only when user
requirements are still the same and are well defined. But,
in the area of agricultural information systems, there is a
significant demand for software support of new business
processes, the need for data structures being very com-
plex, time dependent etc. This is in contrast with the
“more conventional” requirements, as they are usually
simpler but typically use more data. This means that the
most complicated step in any agricultural information
system is to perform system analysis, which must be fast
and seamless.

INTRODUCTION INTO META

At present, the new “modern” word (or rather prefix)
appears to be meta-. We are providing operations with
metadata. We have a metaCASE tool driven by the meta-

model and we use them for metamodeling new methodol-
ogies. The methodology for designing new method is
called metamethod. Programs can be generated from
metadata. Even we can program (or better metaprogram)
in metaprogramming languages.

To understand the meaning of the word, there are en-
cyclopedias and there we see that meta- is a prefix origi-
nating from Greek language and it means beyond or after
(spatially). The other meaning of this word (fundamental
for information systems) — one level of abstraction high-
er- is that metadata is data defining another data, meta-
model is a model describing concepts used in another
model (the model of models). On the other hand, a meta-
system is not the system composed of other systems.
This is a typical misinterpretation of the “meta” concept.

METAMODEL ARCHITECTURE

According to MOF specification, the classical frame-
work for metamodeling is based on an architecture with
four metalayers. These layers are conventionally de-
scribed as follows:

The contibution presented at the international conference Agrarian Perspectives XII (CUA Prague, September 18—19, 2003).

AGRIC. ECON. — CZECH, 50, 2004 (2): 65-70

65



—Theinformation layer is comprised of the data that we
wish to describe.

—The model layer is comprised of the metadata that de-
scribedataintheinformation layer. Metadataareinfor-
mally aggregated as models.

— The metamodel layer is comprised of the descriptions
(i.e.,, meta-metadata) that define the structure and se-
mantics of metadata. Meta-metadata is informally ag-
gregated as metamodels. — A metamodel isan “ abstract
language” for describing different kinds of data; that is,
alanguage without a concrete syntax or notation.

— The meta-metamodel layer iscomprised of the descrip-
tion of the structure and semantics of meta-metadata.
In other words, it is the “abstract language” for defin-
ing different kinds of metadata.

The classical four layer meta-modeling framework is il-
lustrated in Figure 1. This example shows metadata and

the corresponding model for simple composition between
an employee and a car (i.e. instances of Employee and
Car) along with its metamodel for describing and hard-
wired meta-metamodel. The layer of metamodel consists
of meta-metadata that describe the nature of Class, Com-
position and Attribute and their relationships. The top
layer consists of the hard-wired meta-metamodel, that
defines the metamodeling constructs (e.g., meta-Class-
es and meta-Attributes).

While the example shows only one model and one
metamodel, the main aim of having four meta- layers is to
support multiple models and metamodels. Just as the
class Car describes many Car instances at the informa-
tion level, the Class metamodel can describe many class-
es at the model level. Similarly, the meta-metamodel level
can describe many other metamodels. These metamod-
els that represent other kinds of metadata describing oth-
er kinds of information.

85 ]
) %* 1 -8
&= gE
£ 3 g S
E S Hardwired meta-matamodel “E’
E I I S S S S S S S S S S e .
Attribute Class whole Composition §
class Attribut £
< =]
) name name e name b+
= =
=
2
o “ s tL
£ MetaClass (“Attribute -
s MetaAttribute(“name”), String); =
g MetaClass (“Class” 'g
MetaAttribute(“name”), String); k3
MetaClass (“Composition” ?
MetaAttribute(“name”), String); g
MetaAssociation (“AssociationClass” £
MetaAssociationEnd(“whole”)
Car
5 Employee =
> . type =]
= name assignedCar color g
% suname registration
=
Class (“Employee” 8
Attribute(“name”), String); %
Attribute(“subname”), String); g
Class (“Car”; £
L)
Composition (“assignedCar”, Employee, Car)
: ;
'g o Jan Novak >< Octavia, green, AHK 78 05 'g
£ 2 Josef Horak _ | Fabia, black, 1A1 02542 g
s= Karel Jonak | Favorit, white, AEH 78 05 3
= k=

Figure 1. Four layer metadata architecture

66

AGRIC. ECON. — CZECH, 50, 2004 (2): 65-70



The classical four layer metadata architecture has a
number of advantages over simple modeling approach-
es. If the framework is designed appropriately:

—it can support any kind of model and modeling para-
digmimaginable,

—it can alow different kinds of metadata to be related,

— it can allow metamodels and new kinds of metadata to
be added incrementally, and

— it can support the interchange of arbitrary metadata

(models) and meta-metadata (metamodel s) between par-

tiesthat use the same meta-metamode!.

METAMODELING INSTRUMENTS

Metamodeling methods define a framework for meta-
modeling, which consists of the definition of the meta-
metamodel and metamodeling language that is used for
defining derived metamodels. For the purpose of meta-
modeling (and defining metamodels), there were a lot of
approaches defined by information and software engi-
neers—COMMA, GOPRR, MOF, OPRR, CoCoA, NIAM,
COOM etc. There are three metamodel frameworks char-
acterized in the following paragraps.

COMMA

Project COMMA (Common Object Methodology
Metamodel Architecture) tried to find common core of all
object oriented methodologies and then represented the
concepts of these methodologies in a common meta-
metamodel (see Henderson-Sellers, Bulthuis 1998). On
the basis of this meta-metamodel, the metamodels of com-
mon object oriented methodologies were built.

COMMA usies these basic concepts:

— Concept — expresses an entity. It has got name and at-
tributes.

— Inheritance— expresses arel ation of generalization-spe-
cialization between concepts.

—Association — expresses a relation between two con-
cepts and thisrelation is undirected.

—Aggregation —is a special kind of association and ex-
pressed relation of whole part.

— Role — can be used, when concept assume characteris-
tics of other concept. Roleistemporary and concept is
ableto have moreroles.

The main outcome of COMMA project is a simple (but
powerful) object oriented metamodeling framework. The
outcomes of this project are mostly theoretical, because
there is no connection to the CASE tools.

GOPRR

Metamodeling framework GOPRR (Graph-Object-Prop-
erty-Role-Relationship) was developed as a form of ER
model modified for metamodeling (Kelly 1997). The main
aim of GOPRR is to develop a quick and easy to use meta-

AGRIC. ECON. — CZECH, 50, 2004 (2): 65-70

modeling framework and then to implement it into a
CAME (Computer Aided Method Engineering) tool.

Primary concepts of GOPRR are:

— Graph — represents diagram. It contains a number of
other non-properties: object, roles and relationships.

— Object —represents the entity which hasan existencein
itsown right.

— Property —describes graph, object, role or relationship.

— Relationship — represents connection among two or
more objects.

— Role — exists between object and relationship.

These are to be viewed in an object-oriented fashion:
every element has an existence in its own right, indepen-
dent of the other element. In addition to these primary
concepts, GOPRR also uses some secondary concepts,
many of which are better considered as simple data struc-
tures: sets, collections and bindings. These do not have
existence in their own right (i.e. they exist only if contained
within the primary element).

GOPRR is intended to be easy to use, implemented in
and thus supported by a metaCASE environment (e.g.
MetaEdit+ — see Web of MetaCase company), and to
work the same for both metamodels and models. Two oth-
ers guidelining ideas of GOPRR have been object-orien-
tation and reuse.

OMG standards

Standards of OMG (Object Management Group) are
based on four level metadata architecture (see Metamod-
el architecture). Meta-metamodel layer is defined by
standard MOF (Meta Object Facility —see MOF Specifi-
cation). OMG defines several metamodel standards — all
of them are based on MOF:

—the UML metamodel (Unified Modeling Language) —
standard of object modeling language (see OMG Uni-
fied Modeling L anguage Specification),

—the DL (Interface Definition Language) —standard de-
scription object interfaces of distributed objects based
on CORBA standard and their mapping into program-
ming languages,

— the CWM metamodel (Common Warehouse M etamodel)
— standard defining architecture of datawarehouses etc.
Data among metamodels based on MOF can be ex-

changed by the XMI (XML Metadata Interchange) stan-

dard.

The MOF metadata architecture has a few important
features that distinguish it from the earlier metamodeling
architectures:

1. The MOF Model (the MOF core meta-metamodel) is
object-oriented, with metamodeling constructsthat are
aligned with UML object modeling constructs.

2. The meta-levelsin the M OF metadata architecture are
not fixed. Whiletherearetypically 4 meta- levels, there
could be more or less than this, depending on how
M OF isdeployed. Indeed, the M OF specification does
not requirethere being discrete meta-levelsat all at the

67



implementation level. MOF meta-levelsare purely acon-
vention for understanding the relationships between
different kinds of data and metadata.

3. A model (inthe broad sense of acollection of metada-
ta) isnot necessarily limited to one meta- level.

4. The MOF Moded is self-describing. In other words,
theMOF Model isformally defined using itsown meta-
modeling constructs.

MOF metamodeling is primarily about defining infor-
mation models for metadata. The MOF uses an object
modeling framework that is essentially a subset of the
UML core. In a nutshell, the 4 main modeling concepts are:
1. Classes, which model M OF metaobjects.

2. Associations, which model binary relationships be-
tween metaobjects.

3. DataTypes, which model other data (e.g., primitive
types, external types, etc.).

4. Packages, which modularize the models.

The UML metamodel may by considered as an instance
of MOF meta-metamodel. The UML metamodel and MOF
meta-metamodel are based on the same principles and
differ only in a few things (MOF is simpler —e .g. associ-
ation in MOF is only binary etc). The result is that map-
ping between MOF meta-metamodel and UML core
metamodel is straightforward. For example, class in UML
diagrams is defined as an instance of class Class form
UML metamodel. Analogous to this, Class from UML
metamodel is defined as an instance of class Class from
MOF meta-metamodel.

The main advantages of OMG standards are wide ac-
ceptance of them, coverage of many domains and cohe-
sion among these standards. The main disadvantage is
the complexity of these standards.

APPLICATION OF METAMODELING
PRINCIPLES

Metamodeling takes part in definition and creating new
methodologies, in the implementation methodologies at
CASE tools, for structuring of repositories, system inte-
gration, generation of program code from model, genera-
tion the reports and model checks. Understanding a
metamodel can be used for flexible design of information
system by generic models.

Applications of metamodels for definition
methodologies

Methodologies are defined by metamodels. Each meth-
odology is defined by its own metamodel. It can be for-
mally or informally described. Informal descriptions of
metamodels are included e.g. in books written about
methodologies. For example, in each of book about UML,
we can read that representation of class is a rectangle
with three areas. In these areas, there are the name, at-
tributes and methods of the class. We can read that as-

68

sociation is a relationship between classes and it can be
drawn by a firm line. These examples are a very informal
description of part of metamodel concerning with class-
es and associations. For superior understanding of meta-
model or computer aid of modeling, we need a formalized
definition of metamodel (see OMG Unified Modeling
Language Specification).

Metamodeling is the base of new methodologies de-
velopment (ME — Method Engineering). The new meth-
odology can be defined entirely new or as an extension
of an existing methodol ogy (see Picka2003a). It provides
appliances for finding the common characteristics of
methodologies, their standardizations and possibility of
their mutual interoperation.

CASE and metaCASE tools

One of the first applications of metamodel were CASE
tools. Methodologies are defined by metamodel and
CASE tools have to implement it. The other application
of metamodels is formats for exchanging data among
CASE tools —e.g. older CDIF (Common Data Interchange
Format) and XML based XMI.

Later, the metaCASE tools are arising. The metaCASE
(or sometimes called CAME) tools allow to define own
metamodel (based on hardwired meta-metamodel) and
thereby define own methodology.

There is a schema of metaCASE tool in Figure 2. The
main parts are:

— Graphicscore + GUI —they provide proper painting and
interaction with the user.

— Hard-wired meta-metamodel —it isaninterpreter of meta-
modeling language.

— Modeling core — through the use of modeling core, an
appropriate model isbuilt.

— Meta-modeling core — through the use of it, the meta-
model is programmed in alanguage that is defined by
the meta-metamodel. This part is the main difference
compared to the classical CASE tools. It provides the
ability to program one's own methodol ogies.

—Model — data of model typically placed in a database.

— Metamodel — data of metamodel (i.e. meta-metadata)
typically placed in a database.

MetaCASE tools are sometimes called metamodel-driv-
en software, because by change of the metamodel, we can
change their behavior.

Metamodel and manipulations with data and
metadata

Understanding the metamodel of data enables the pos-
sibility of understanding the structure of data and ma-
nipulating with them. Typical examples are the repository
standards for store metadata. One of the first applications
of metamodel is concerning the repository standards
(e.g. PCTE or ISO standard IRDS — Information Resource
Dictionary Standard). If we have data in the standardized

AGRIC. ECON. — CZECH, 50, 2004 (2): 65-70



GUI + drawing program

Modeling Model
g / core \
= ©
S g \
- <
B ~
g g Meta \
< 8
= \ modeling N Meta-
core model
Program Data

Figure 2. Schema of MetaCASE tool

repository (in the database), it is easy to manipulate with
them. Typical examples of processing that data are con-
sistency checking, metrics measure, generation of re-
ports and programs.

Metamodeling admits characterization of different data
structures of more systems in the same ways that pro-
vide an ability to compose them to the superior system.
This system is able to work with data of its subsystems
and to aid their integration. By contrast, the metamodel
provide a good abstraction of the system and help us to

divide it to the subsystems and thus help us to produce
complex projects.

The generic model

For project optimization, the generic model can be used
(see Polak, Merunka, Carda 2003)). Generic model is a
model that combined the features of model and metamod-
el (see Figure 3).

model corresponding metamodel
Project
tangibleAssets .
intangibleAssets Class . Attribute
services name C classAtributee name
material
literature
travelExpenses
N\ /
N/
generic model
Project TracedEntry
K> name
value

Figure 3. The generic model

AGRIC. ECON. — CZECH, 50, 2004 (2): 65-70

69



There is a class Project in the figure that is a part of
“standard” design of information system. Instances of
this class have got a lot of attributes concerning the
project finances (tangibleAssets, intangibleAssets, ma-
terial, literature, travelExpenses etc). This design is func-
tional but there will be problems when these attributes
do not cover all of our needs (e.g. we need to cover infor-
mation about domestic and foreign travel expenses sep-
arately). The other disadvantage of this design is that
many of these attributes cannot be used (i.e. they have a
zero value) and we need additional attributes for cover-
ing our new needs. A graceful solution is creation of
class TracedEntry and its composition with class
Project. This model has got the features of metamodel.
Structure of the metamodel exemplifies as a pattern of
modeling.

Importance of generic models is in creation of easily
modifiable software that can fulfill the needs that are not
known during the analysis.

CONCLUSION

Metamodeling is used for still more problem solutions
at present . The most important cases for metamodeling
are developing new methodologies (Method Engineer-
ing) and their computer support, providing interopera-
bility of methodologies, system and data integration,
model checks, generation of software from the model. For
these cases, there exist many metamodeling frameworks

. OMG metamodeling standards (such as MOF or UML
metamodel) seem to be very perspective.

REFERENCES

Community site for metamodeling and semantic modeling:
http://www.metamodel.com

Henderson-Sellers B., Bulthuis A. (1998): Object-Oriented
Metamethods. Springer-Verlag New York; ISBN 0-387-
98257-4.

Kelly S. (1997): GOPRR Metamodel. Apendix of doctor the-
sis Towards a Comprehensive MetaCASE and CAME En-
vironment: Conceptual, Architectural, Functional and
Usability Advances in Metaedit+, Ph.D. Thesis. Jyvaskyld
University.

Meta Object Facility (MOF) Specification, version 1.4. Avail-
able at http://www.omg.org.

OMG Unified Modeling Language Specification, version 1.5.
Available at http://www.omg.org.

Picka M. (2003a): Metamodel BORMu jako rozsifeni meta-
modelu UML. Objekty 2003. Sbornik konference Objekty
2003, Ostrava; ISBN 80-248-0274-0.

Picka M. (2003b): Metamodelovani v praxi. Sbornik praci
z mezinarodni védecké konference Agrarni perspektivy XII,
dil 2., Praha; ISBN 80-213-1056-1.

Polék J., Merunka V., Carda A. (2003): Uméni systémového
navrhu. Grada, Praha; ISBN 80-847-0424-2.

Web site of MetaCase company: http://www.metacase.com.

Arrived on 8" December 2003

Contact address:

Ing. Marek Picka, Ceskéd zemédélska univerzita v Praze, Kamycka 129, 165 21 Praha 6-Suchdol, Ceska republika

e-mail: picka@pef.czu.cz

70

AGRIC. ECON. — CZECH, 50, 2004 (2): 65-70



