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Abstract

This paper examines the allocative performance of rotating savings and credit
associations (roscas), a financial institution which is observed world-wide. We
develop a model in which individuals save for an indivisible good and study roscas
which distribute funds using random allocation and bidding. The allocations achieved
by the two types of rosca are compared with that achieved by a credit market and
with efficient allocations more generally. We find that neither type of rosca is
efficient and that agents are better off with a credit market than a bidding rosca.
Nonetheless, a random rosca may sometimes yield a higher level of ex ante expected

utility to prospective participants than would a credit market.



I. Introduction

Rotating savings and credit associations (roscas) are a widespread institution for
financial intermediation. They are found all over the world, particularly in developing
countries, and have heretofore received scant attention from economists.! This paper and
its companion piece (Besley, Coate and Loury (1992)) constitute a first attempt to analyze
their economic role and performance.

Roscas come in two main forms. The first type allocates funds randomly. In a
random rosce, members commit to putting a fixed sum of money into a "pot" for each
period of rosca’s life. Lots are drawn and the pot is randomly allocated to one of the
members. In the next period, the process repeats itself, except that the previous winner is
excluded from the draw. The process continues, with every past winner excluded, untif
each member of the rosca has received the pot once. At this point, the rosca is either
disbanded or begins over again. Individuals may also form a bidding rosca in which the pot
is allocated via a bidding procedure. The individual who receives the pot in the present
period does so by bidding the most in the form of a pledge of higher future contributions to
the rosca or one time side payments to other rosca members. In a bidding rosca,
individuals may still only receive the pot once — the bidding process merely establishes
priority.

The extensive informal literature on the subject takes the view that roscas are
primarily institutions whose tole is to facilitate "saving up" to purchase indivisible goods.
In Besley, Coate and Loury (1992) we explained how, in a world with an indivisible good, a

group of individuals without access to credit markets could improve their welfare by

tRoscas travel under a large number of different names. For example, they are called Chit
Funds in India, Susu in West Africa, Kye in Korea. Bouman (1977) reports that 60% of
the population in Addis Ababa belongs to a rosca. Radhakrishnan ef al. (1975), reports
that in 1967, there were 12491 registered chit funds in Kerala state in India alone. The
classic anthropological studies are by Ardener (1964) and Geertz (1962). Further
references to the literature on Roscas can be found in our companion paper.



forming a tosca. Roscas permit the mobilization of savings that would lie idle under
autarkic saving and thus take advantage of gains from intertemporal trade. That paper
also compared the allocations achieved by the two different types of rosca finding that,
with homogeneous individuals, a random rosca produces a higher level of expected utility
for participants than a bidding rosca (under a plausible restriction on preferences). The ez
ante desirability of randomization stems from the non-—convexity created by the indivisible
good.

Given that a group of individuals can get together to form a rosca?, they could
potentially allocate funds in other ways, such as by organizing an informal credit market.
Comparing roscas with a competitive credit markets is also interesting because the latter is
the usual economists’ benchmark of an efficient way to allocate resources. Thus to
understand why roscas are sometimes chosen, we propose characterizing the full set of
allocations that are feasible for the group. This places roscas in a broader context. As
evidenced by their world—wide popularity, roscas are a simple and easily organized method
of mobilizing savings. It is important to know how far these simple institutions go towards
realizing the maximal possible gains from trade. Do they produce efficient allocations or
does their simple structure ‘impose a cost? In what ways do the allocations they produce
differ from that which would result from formation of an informal credit market? Are
bidding roscas more like a market than random roscas? Does the randomization inherent
in a random rosca give it an advantage over a market? These more abstract and
theoretically challenging questions about the allocations achieved using roscas are the

subject of this paper. Answering them should give insights into both the strengths and

2The typical scenario for a Rosca is a group of individuals who work in the same office block
or belong to the same community. Social enforcement is important in explaining why
individuals honor their commitment to participate. We are not concerned with
enforcement problems here, which are discussed in our companion paper. We shall ask
questions about what a group might achieve for a given membership, assuming that there
is sufficient social enforcement power for any of the allocations that we describe to be
implemented. This seems like a reasonable first step in studying these issues.



weaknesses of roscas as institutions for financial intermediation and, along with
appreciating their simplicity, may go some way towards explaining why they are so widely
observed in practice.

One of our main findings is that roscas do not, in general, produce efficient
allocations.  Their simple structure allows insufficient flexibility in the rate of
accumulation of the indivisible good. We also find that bidding roscas are Pareto
dominated by credit markets. Nonetheless, the element of chance offered by random roscas
is still of value when compared with credit markets. Indeed, we present an example in
which an ez post efficient credit market allocation is dominated (under the ez ante expected
utility criterion) by a random rosca.

The remainder of the paper is organized as follows. Section II describes the model
which provides the framework for our analysis. Section IIT then describes the allocations
achieved by the two types of rosca and a credit market. Section IV develops properties of
efficient and optimal allocations. Section V uses these results to assess the allocative

performance of roscas and section VI concludes.

II. The Model

The model is the same as in our companion paper. A group of individuals would
each like to own an indivisible durable consumption good. The group is assumed to have
no access to an external credit market. Each individual in the group lives for a length of
time T, receiving an exogenous flow of income over her lifetime of y > 0. Individuals have
identical intertemporally additive preferences. FEach individual’s instantaneous utility
depends on non—durable consumption, ¢, and on whether or not she enjoys the services of
the durable. The durable does not depreciate and can be purchased at a given cost of B.
Once purchased it yields a constant flow of services for the remainder of an individual’s
1ife. We also agsume that the durable’s services are not fungible across individuals; a

consumer must own it to benefit from its services.



There is no discounting, which precludes any motive for saving or borrowing apart
from the desire to acquire the durable. An individual’s instantaneous utility with
non—durable consumption ¢ is v(c)+¢ if he owns the durable, and v(c) otherwise. We
assume that v(+) is twice continuously differentiable, strictly increasing and strictly
concave on (0,0). We also assume that v(c) + —w as ¢ - 0 and v(c) + +o as ¢ ~» w. Abusing
notation slightly we will write v(A,c) = v(c)+A€, for 0<A<1, as instantaneous expected
utility when ¢ is non—durable consumption and A is the probability of owning the durable.

We depart from our companion paper, by adopting the fiction that the group
consists of a continuum of individuals. This is convenient since it allows the fraction of
group members holding the indivisible good at any point in time to be treated as a
continuous variable. This greatly simplifies the task of characterizing efficient allocations
without affecting the economic logic. The character of the results would be maintained in
the analytically more cumbersome finite case. We assume, without loss of generality, that
the group’s members are uniformly distributed over the unit interval and we index different
individuals with numbers a€[0,1].

A consumption bundle for an individual in the group may be described by a pair
<s,¢(+)>, where s € [0,T] denotes the date of receipt of the durable good, and ¢:[0,T] - [R+
gives the rate of consumption of the non—durable at each date. An allocafion is then a set
of consumption bundles, one for each individual, and may be represented by a pair of

functions <s(-),c(-,-}>, such that s:[O,lr] =+ [0,T] and ¢:[0,1]x[0,T] - R . The function s(-),

"
hereafter referred to as the assignment function, tells us the dates at which different
individuals receive the durable.? By relabelling individuals as required, we may assume

with no loss of generality that individuals with lower index numbers receive the durable

earlier. Thus we may suppose that s(-) is non—decreasing on [0,1}. The second component

3Throughout we restrict attention to allocations in which all the group’s members receive
the durable at some time during their lives. This requires that the value of owning the
durable, £, be sufficiently large.



of an allocation gives us the consumption path {c(a,7):7€[0,T]} of each individual a.4

Under the allocation <s,c>, individual a enjoys utility:
T
21)  u(g<s,es) = J v(e(a,r))dr + £(T—s(a)).
0

To be feasible for the group, the allocation must .consume no more resources than its
members have available over any time interval. To make this precise, for any assignment
function s(-) and any date 7€[0,T], we define N(7;s) to be the fraction of the group’s
members which has received the durable by time 7 with assignment function s(+).5 Then

an allocation <s,c> is feasible if and only if, for all 7¢[0,T}:

T 1
(2.2) Jo(y - Joc(a,x)da)dx > N(7:5)B.

The left hand side of (2.2) denotes aggregate group saving at r and the right hand side
denotes aggregate investment. Ience, an allocation is feasible if aggregate investment
never exceeds aggregate saving. In the sequel we will let F denote the set of feasible

allocations.

HI. Allocations In Roscas and a Credit Market

Our aim is to understand allocations in roscas in the context of the full set of
allocations which are feasible for the group. This section begins by describing the
allocations achieved by both types of rosca and, for purposes of comparison, that which can

be achieved were the group to form a credit market.

4The function ¢:[0,1}x[0,T] = R
integrable for all (a,7).

4 i8 required to be such that ¢(-,7) and ¢(q,-) are (Lebesgue)

5Thus N{7;s) is the measure of the set Swl([O,T])E{aE[O,l] |s(a)<T}.



III.1 Random Rosca

Before explaining how a random rosca operates in our model, we briefly review the
workings of a finite membered rosca.® Consider, then, a random rosca of length t with n
members. Contributions will optimally be set so that the pot available to each winning
member is equal to the cost of the indivisible good, B. This precludes the necessity of
saving outside the rosca. The rosca will meet at the uniformly spaced meeting dates
{t/n,2t/n,...,t}, and at each meeting every member will contribute the sum B/n. A
different individual is selected at each meeting to receive the pot of B, which allows him to
buy the durable good. Prior to its initiation, a representative member of this rosca
perceives his receipt date for the pot to be a random variable, 7, with a uniform
distribution on the set {t/n,2t/n,...,t}. FEach member will optimally save at the constant
rate equal to B/t over the life of the rosca. Thus each member’s lifetime utility is the
random variable:

(3.1) W(t,7) = t-v(y=B/t) + (t=r)¢ + (T—t)-v(L,y).

The continuum case may be understood as the limit of this finite case as n
approaches infinity.” As n grows, the rosca meets more and more frequently. In the limit

it is meeting at cach instant of time, and the receipt date of the pot, 7, becomes a con-

§For further detail on the operation of finite membered random and bidding roscas see our
companion paper.

"Notice that the particular limit obtained depends upon the assumption that the spacing of
meeting dates is uniform and the contribution at each meeting is constant. By having the
meetings occur with different frequencies at different times during the life of the rosca, and
by varying the rate of contribution across meeting dates, it may be shown that one can, in
the limit, generate every feasible allocation <s,c> in which the consumption paths c(a,7)
are constant in «, as the ez post outcome of a random rosca. (Moreover, one can in similar
fashion generate every feasible allocation <s,c> in which the utility u{a;<s,c>) is constant
in @, as the limiting outcome of a bidding rosca.) However, we do not attempt to exploit
these fact in this paper. To do so would run contrary to the spirit of our analysis. The
point of this exercise is to analyze the allocative performance of roscas as they operate in
practice.



tinuous random variable uniformly distributed on the interval [0,t]. Thus the ez ante
expected utility of a representative individual who joins the rosca of length ¢ is given by

the expectation of (3.1), taking 7 10 be uniform on [0,t]. Hence,
(3.2) W(t) = t-v(1/2,y-B/t) + (T—t)-v(1,y).

It seems natural to assume that the length of the rosca, t, will be chosen to
maximize members’ er anie expected utility — W(t). Thus consider the problem of
choosing t to maximize (3.2). We denote the solution by t , and use W to represent the
maximum expected utility. As in our companion paper, we exploit a simple way of writing

down Wr' Defining ¢ = y—B/t to be the consumption rate during the rosca, we can view

the problem as choosing ¢ to maximize T-v(1,y) — B- [v(1,§2; v(1/ 2’(:)]. Then, defining

(33) H) = o' by A, for 0gac,
we may write:
(3.4) W, = T-v(1,y) - B-u(1/2).

T

The first term in (3.4) represents lifetime utility were the durable free, while the
second i8 the minimized utility cost of saving up for the durable. This minimization trades
off the benefit of a shorter accumulation period (or rosca length) against the benefit of
higher consumption during this period (or smaller contributions). Letting ¢*(A) denote the
consumption level which solves (3.3), the optimal consumption rate in the random rosca is
crsc*(l /2).  As established in our companion paper, the minimized cost u(-) is a
decreasing, strictly concave function of A, and the cost—minimizing consumption rate c*(-)

is an increasing function of A. Both are twice—continuously differentiable on [0,1], where



they satisfy the identity p(A)=v’(c*{})).

Let <8,C.> denote the allocation achieved with the optimal random rosca. By
relabelling as reQuired, we can assume that individual « receives the durable at meeting
date at . Thus the assignment function will be the linear function s(@)=at_. This implies
that the fraction of the membership who have received the durable is increasing and linear
over the interval of accumulation. All individuals have identical consumption paths which
fall into two distinct phases. During the life of the rosca they consume at rate ¢ and after
it ends they consume at rate y. Thus, cr(a,T)#cI, for 7€[0,t.]; and, ¢ (a@,7)=y, for r€(t,T].
Notice that while group members have identical expected utilities, they enjoy different ez

post utility levels.

0.2 Bidding Rosca

We turn next to the bidding rosca, where the order in which individuals receive the
pot is determined by bidding. It is simplest to assume that the bidding takes place when
the rosca is formed at time zero, and involves individuals committing to various
contributioﬁ rates over the life of the rosca. Of the many auction protocols that might be
imagined, all must result in individuals being indifferent between bid/receipt pairs, since
individuals have identical preferences and complete information. Moreover, any efficient
auction procedure must be structured so that total contributions committed through bids
are just adequate to finance acquisition of the durable. These two requirements completely
determine the outcome of the bidding procedure and it is unnecessary to commit to a
particular auction protocol.®

If the bidding roéca is of length t, bidding determines the order of receipt over the
interval [0,t]. Let b(a) denote the promised contribution of member o who, without loss of

generality, can be assumed to receive the durable at date at. A set of bids {b(a):a€]0,1]}

8Qur companion paper discusses how an ascending bid auction could implement this
outcome.



constitutes aﬁ equilibrium if: (i) no individual could do better by out bidding another for
his place in the queue; and (ii) contributions are sufficient to allow each member to acquire
the durable upon receiving the pot.

Member « receiving the pot at date at, will have non—durable consumption
c(a@)=y—b(a)/t at each moment during the rosca’s life. Thus we can characterize the
bidding rosca in terms of the consumption rates {c{«):ae{0,1]}. Condition (ii) implies that
individual o’s equilibrium utility level is t-v(1—a,c{a)) + (T—t)-v(1,y) in a bidding rosca

of length t. Condition (i) implies, for all individuals & and some number x, that:
(3.5) v(1-a,c{a)) = x.

The number x represents the members’ common average utility during the life of a bidding
rosca of length t, in a bidding equilibrium.
Now define ¢ to be the average non—durable consumption rate of members during

the life of the rosca, i.e., Ezjéc(a)da. Then condition (ii) is equivalent to:
(3.6) t-{y—¢) = B.

Given the rosca’s length t, the relations (3.5) and (3.6) uniquely determine members’ non-
durable consumption rates and their average utility over the life of the rosca.
Equivalently, one could take as given the equilibrium average utility level for the duration
of the rosca, x. Then (3.5) gives individuals’ equilibrium consumption levels, {c({a):
ac[0,1]}; and these, via (3.6) can be used to find the rosca’s length, t.

As in the random rosca, it is natural to assume that the length of the bidding rosca
is chosen to maximize the common utility level of its members. The foregoing discussion
and (3.5) imply that this common welfare is T.-v(1,y)-B-{[v{L,y)—x]/[y—<c]}. Now let

¢(a,x) be the function satisfying v(1—q,¢)=x, and define E(x)zjé&(a,x)da. Then, when the
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equilibrium average utility during a bidding rosca is x, ¢(a,x) is individual o’s non-durable
consumption rate during the rosca, and B/[y—C(x)] is the rosca’s length. Denote by t; and
Wy respectively, the duration and common utility level of the optimal bidding rosca.

Then, we may write:

(3.7) Wy, = T-v(1,y) —B o

where

(3.8) fn, = Min [M].
x  y-&(x)

Letting x* give the minimum in (3.8), then tb:B/[y-—E(X*)] is the length of the optimal
bidding rosca. Individual ¢’s consumption rate during the life of the rosca will be
o (@)=e(ax*).

Lifetime utility expressed in (3.7) admits the same interpretation noted for the
random rosca; it is the difference between lifetime utility if the durable were free, and the
minimal cost of saving up. The latter, determined in (3.8), again trades—off higher welfare
during the rosca versus faster acquisition of the durable.

Let <850y, > denote the allocation generated by the optimal bidding rosca. As with
the random rosca, the assignment function is linear, i.e. s;(a) = oty. Unlike the random
rosca, each individual receives a different consumption path under a bidding rosca.
However the general pattern is similar with an accumulation phase followed by a phase in
which members consume all of their incomes. Hence the allocation of non—durable

consumption is described by Cb(a, T)=cb(a), for TE[O,tb] and cb(a,'r)zy, for TE(tb,T].

1.3 A Credit Market
The final institution that we consider is a credit market. There are at least two

reasons for including this in our study of roscas. First, informal credit markets are
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widespread in developing countries and it clearly constitutes one option open to our group.?
Second, one is naturally curious to compare a credit market with a bidding rosca, both of
which use bidding to determine the allocation of funds. We specify the behavior of such a
market as follows. Let r(r) denote the market interest rate at time 7. It is convenient to
define &(7) as the present value of a dollar at time 7, i.e. §(7) = exp(—/ gr(z)dz) and to think
of the market as determining a sequence of present value prices {§(7):7€[0,T]} at which the
supply of and demand for loanable funds are equated. Hence, an individual who buys the
durable good at time s pays &(s)B for it. Given the price path, an individual & chooses a
purchase time s(a) and a consumption path {c(e,7):7€[0,T]} to maximize utility; that is,

he solves

T
w5 JOV(C(T))d'r + §(Ts)

(3.9)

T T
subject to jo §(r)e(r)dr + 6(s)B < y JO §(r)dr, s € [0,T].

We define a market equilibrium to be an allocation <s_,c > and a price path &)
satisfying two conditions: first, <s_(a),c (e,7)> must be a solution to (3.9) for all

a€[0,1], and second, at each date t€{0,T],

t 1
(3.10) Jo[y - Jocm(a,'r)da]d'r = N(t;s.,)-B.

Since individuals are identical, the first condition implies that, in equilibrium, all

9It should be noted however that we model credit as being allocated in an idealized
competitive market which may not characterize the reality of informal credit. To treat it
otherwise would risk stacking the deck in our comparisons below. Moreover, there is no
generally agreed upon model of how such informal markets function.
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individuals are indifferent between durable purchase times. The second condition just says
that savings equals investment at all points in time. We use Wm to denote the
equilibrium level of utility enjoyed by members with a credit market. Below, we show that
this can be written in a form analogous to (3.4), and (3.7).

Direct computation of equilibrium prices and the associated allocation is difficult,
even in the simple case of logarithmic utility studied in section V. However, we are able to
infer the existence and some of the properties of the credit market equilibrium in our model
by using the fact that, with identical individuals, it must coincide with d Pareto efficient
allocation which gives equal utility to every individual. Hence, describing properties of the

credit market allocation must await consideration of efficient allocations more generally.

IV. Efficient and Fz Ante Optimal Allocations

The previous section described the allocations achieved by roscas and a credit
market. We now turn to characterizing the group’s "best" feasible allocations. Two
welfare criteria are natural here. The first is ez post Pareto efficiency, or more simply,
efficiency. We consider an allocation to have been efficient if there is no alternative
feasible allocation which makes a non—negligible set of individuals strictly better off, while
leaving all but a negligible set of individuals at least as well off.

The second criterion is defined in terms of ez ante expected utility. The allocation
<s,c>> is better than <s’,c’>, in this sense if fé w{a;<s,c>)da > j(1] u(e;<s’,c’>)da. The
thought experiment required is as follows: an individual will be assigned to any position in
the queue for the durable with equal probability. We then ask which allocation would be
best for any individual viewed from behind this "veil of ignorance". This allocation will
thus be that which yields the highest level of expected utility. We call this the ez ante
optimal allocation. It is obvious that this must correspond to a particular ez post efficient
allocation.

Notice that, since all group members enjoy the same level of utility with a bidding



13

cosca and a credit market, the criteria of ex post utility and €T ante expected utility
coincide when applied to allocations emerging from any one of these institutional'forms.
This is not the case for the random TOSC2. Tt is possible that an allocation generated by a
random rosca might be Pareto dominated, and yet itself be preferred 10 some Pareto
efficient allocation in terms of the €z ante optimality criterion. Indeed, we will present an

example in which precisely this reversal occurs.

1v.1 Efficient Allocations

To characterize officient allocations, W€ introduce weights 6(a) > 0 for each agent
ac0,1]; normalized so that I%O(a)da _ 1. Define the set of all such weights: 0={0 :[0,1]
4R, +\ 0 integrable and { éO(a}da =1}. A standard result in ihe welfare economics of

finite economies 18 that an efficient allocation maximizes 2 weighted sum of individuals’

utilities. This result also holds for our continuum model as we show in:

Lemma L M <g’ ¢’ > 18 officient then there exists a set of weights in 8 such that

I%G(a)u(axs’ o/ >ydaz jlé O(a)u(a;<s,c>)da, for all feasible allocations, <S,¢>-
Prool: See Appendix. O

To investigate the properties of efficient allocations we€ therefore study, for fixed

fcB, the problem:

1
(4.1) max W(0<s,c>) = j 9(&)u(a;<s}c>)da,
' <, c>€F 0

for u(oz;<s,c>) as defined in (2.1). Let <8pC g denote an allocation which solves this

probtem, and W, = W(0;<s 9,cg>) denote the maximized value of the objective function.
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Although (4.1) may appear to be a "non—standard” optimization problem, it can be solved
explicitly under our simplifying assumptions on preferences. The solution is exhibited in
Theorem 1 below. We develop the Theorem and discuss its implications at some length in
what follows. The proof of this result exposes the nature of the resource allocation problem
which any institution for financial intermediation that the group chooses must confront.

The first point to note about the efficiency problem is that it can be solved in two
stages, loosely corresponding to static and dynamic efficiency. The first requires that any
level of aggregate consumption be optimally allocated across group members, i.e.
maximizes the weighted sum of instantaneous utility at each date, while the second
determines the optimal acquisition path for the durable good.

Let ¢ 0( 7) denote aggregate consumption in period 7, i.e. ¢ 6,(',_r)s / (1}0 9( a,7)da. A brief
inspection of the efficiency problem should convince the reader that this should be
distributed among group members so as to maximize the weighted sum of utilities from

consumption in period 7. To state this more precisely, define the problem

(4.2)

for all w > 0. Let Xg(':W) denote the solution and let V (w) denote the value of the
objective function. Then individual «'s consumption at time 7€[0,T] is given by
cylayT)= X glae /7)), and total weighted utility from non—durable consumption is given by
V(e (). It remains, therefore, to determine s (@) and cy(7).

Note first that since preferences are strictly monotonic, the feasibility constraint

that <s,c> e ' [see (2.2)] may without loss of generality be written as:
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T 1
(4.3) Jo[y - Joc( a,7)da]dr = N(78)B, for all 7€[0,T].

That is, all savings must be put immediately to use. Moreover, in the absence of
discounting, if the flow of aggregate savings [ é[y—-c(a,'r)]doz equals zero at some date T,
then efficiency demands that it must also be zero at any later date 7 > 7. Otherwise, by
simply moving the later savings forward in time one could assign some individuals an
earlier receipt date for the durable without reducing anyone’s utility from non—durable
consumption. The foregoing implies that any assignment function solving (4.1) must be
continuous, increasing, and satisfy s(0)=0. This in turn implies that such an assignment
function is invertible, and that it is differentiable almost everywhere. We can use these
facts to write N{7;3) = s_l(r), for 7€[0,8(1)], and N(7;8) = 1, for 7€(s(1),T]. Substituting
this expression for N(t;s) in (4.3) and differentiating with respect to 7, we find that for all
7€[0,5(1)) we have wa(fr):B/s’(s_l(fr)), and for all 7e(s(1),T] we have y—c(r)=0.
Therefore, we may conclude that the following condition must be satisfied by any solution

to (4.1):
(4.4) s' () = B/[y—c(s())], for all a€[0,1); and, c(r)=y, for all 7€(s(1),T].

Equations (4.4) are the analogue of "production efficiency” in our model, i.e. there
can be no outright waste of resources. Hence, for part two of the solution, we are

interested in the problem of choosing functions s (o) and ¢ ,(7) to maximize

1

T —_—
(4.5) Jov JE(r)dr + €7 — {JOO(a)s(a)da

subject to (4.4). Employing a notational convention analogous to that introduced earlier,

we write V (A,c) to denote the quantity V,(c}+A¢, and define the function pel-) as
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follows:

[v A1)V 4(A,0)

(4.6) fg(A) = min =

0<osy

For each A denote the solution of the minimization in (4.6) by ¢ 9()\). We now have:

Theorem 1: Let <s,c> be an efficient allocation, and let #c® be the weights for which

<s,¢> provides a solution in (4.1). Then the maximized value can be written in the form

1
W,=T-V,(Ly) - B-Jopo(l—f}lcﬂ(z)dz)dx

and the assignment function satisfies:
I 1 -1
s(a) = B- [y—ag(l—fxﬂ(z)dz)] dx, «€[0,1].
0

Moreover, for all we[0,1], non—durable consumption obeys
c(as(x)) = Xg(a,crg(l—fiﬂ(z)dz)), for x€[0,1]; and ¢(a,7) = xﬂ(a,y), for re(s(1),T].

Proof: In view of the discussion preceding the statement of the Theorem:
s(1) 1
W, Max{jo VE)AT + (T—5(1))-V ) + £T¢| Ka)s(a)de)
0

subject to
s/(a) = B/ [y—c{s(a))], «€[0,1).
Now employ the change of variables: 7=s(«), dr=s’(a)de, 7€[0,5(1)]; note that s(1) =

j‘és’(a)da; and use {4.4) and the definition in (4.6) to get the following:

s(1) 1
g = Max plelm))dr + —-$(1))- fy)+ & (1= a)s{a)da
W= Max{| VAT (T-s(1)-V o) + (0] oeds(a)de}

1
= Max{T-V {L,y) ~JOS’(Q)-[V ALYV (1~f L0(z)dz,e(s()))d}
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1
= TV L) = Min{B] {[V {19}V 1 4 0r)dnTls( @)}/ [y-~Sls(]}do}

1 1
=TV, (1y) - Bjoﬁa(l—faﬂ(z)dz)da.

This proves (i). Note that the minimization above is pointwise, with respect to c(s{ a)), at
each a€{0,1]. So it implies that for a€{0,1], E(s(a))zaﬁ(l—f éﬁ(z)dz). In view of this and
(4.4) we conclude that s(a):fgs’(x)dx satisfies (ii). Now also from (4.4) we know that
c(r)=y, for 7>5(1), and we noted earlier in the text that c(at)=x{ac(t)), Vae[0,1],
¥ief0,T]. Taken together, these prove (iii). o

As noted, Pareto efficiency requires two conditions beyond the absence of physical
waste of resources. First, any given aggregate level of non—durable consumption should be
allocated efficiently among individuals and second, it must optimally manage the
intertemporal trade—off between aggregate consumption of the non—durable and faster
diffusion of durable ownership. We discussed above how V (-) summarized the first of
these stages. More needs to be said about the dynamic efficiency considerations — in
particular, the relevance of the minimization conducted in (4.6).

To see this consider the expression for W g in Theorem 1. This welfare measure is
the difference of two terms. The first, T-V ,(1,y), would be the maximal weighted utility
sum if the durable were a free good. The second term is, therefore, the (utility equivalent)
cost of acquiring the durable. Tt is this cost which is minimized in (4.6). It has two
competing components: non—durable consumption foregone in the process of acquiring the
durable (since c(s(a)) < y) and durable services foregone in allowing some non—durable
consumption {since s’(a) < B/y). During the small interval of time that the durable is
being acquired by agents &e(w,a+da), then the sum of these two components is approxim-
ately [Vg(l,y)—\/a(l—jz()(z)dz,"é'(s(a)))], while the duration of this time interval is
s'(a)do=Bda/[y—(s(a))]. Efficient accumulation therefore means minimizing the product

of these terms at each a€[0,1]. This is precisely the problem described by (4.6).
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A geometric treatment of the minimization problem (4.6) may also be helpful (see
Figure 1). The function Vﬁ(') ié smooth, increasing and strictly concave because we have
agsumed that v(.) has these properties. Therefore, choosing ¢ to minimize the ratio
[V (Ly)=V y(2,0)/ly—0] = [V(y)-Vyo)+(1-A)¢g/[y—0] means finding that point
(0,V(0)) on the graph of V (-) such that the straight line containing it, and containing
the point (y,V,(y)+(1-2)¢), is tangent to the graph of V,(-). Notice from the diagram
that 00()\) must be increasing, rising to y as A increases to 1.

This observation, together with Theorem 1, permits us to deduce some useful

properties of efficient allocations:

Corollary 1. Let <s,c> be an efficient allocation. Then
(i)  the assignment function s(-) is increasing, strictly convex and satisfies

lim s’{a) = +w, and
o1

(ii)  for all ael0,1], c(a,+) is increasing on the interval [0,5(1)], and constant

thereafter.

Proof: (i) In view of (4.4) and Theorem 1, we know that any efficient allocation <s,c>
satisfies s* (@) = B/[y—o (1] éﬂ(z)dz)], for some fc©. As noted above ag()\) is increasing
and approaches y as A increases to 1. Hence, the result.

(ii) This follows immediately from Theorem 1 after noting that XO(O"") is increasing and

that 00()\) is increasing. O

The properties of the assignment function imply that, in an efficient allocation, the fraction
of the group who have received the durable by time 7 is increasing and strictly concave. In
addition, the rate of accumulation (the time derivative of N(7;s)) approaches zero as 7 goes

to s(1).
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Finally, it is worth drawing attention to the relationship between the characteriza-
tion in Theorern 1 and the welfare expressions found for the random rosca in (3.4) and for
the bidding rosca in (3.7). These expressions all take the same general form, allowing the
intuitive interpretation that welfare is the hypothetical utility achieved when the durable is
a free good, net of the implicit utility cost of acquiring the durable’s services. This

observation is the basis for the results in section V.

1V.2 The Optimal Allocation

The optimal allocation is that efficient allocation in which individuals are equally
weighted, a) = 1, Va € [0,1]. Since individuals are identical and are assigned types
randomly, this solution maximizes the ex ante expected utility of a representative group
member. This is also clear from (4.1). Hence, noting that 1€0, we can write ez ante
expected utility as W(L;<s,c>), and the optimal allocation <85:Co> must satisfy:
W(1;<so,co>) > W(1;<s,c>), for all <s,c>¢F.

Notice also that V,(w)=v(w), and x,(a,w)=w, for all (a,w). This implies that if all
individuals have equal weights and utility is strictly concave, then aggregate non—durable
consumption should be allocated equally among group members. Tt is also useful to note
that py(A)zu(A), where p(-) is defined in (3.2), and that ' (1)=—¢/[y—c((})], using the

Envelope Theorem. These facts, together with Theorem 1, yield:

Theorem 2: Let <s %™ be the optimal allocation. Then, ez ante expected utility can be

written in the form

1
W(l<s ,c >y=sW_=T-v(l,y)—B J i a)da,
070 0 0
and the optimal assignment function satisfies
B (¢
s,(a) = — E"JO#'(X)dX

Moreover, for all ae[0,1], non—durable consumption obeys
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colas (%)) = y+&/w (x) for x€[0,1], and ¢ (@) =y for re(s (1), T].

In addition to the properties outlined in Corollary 1, therefore, the optimal
allocation also gives individuals identical consumption paths. This consumption path rises
smoothly to y at the end of the accumulation phase. The fraction of the group with the
durable is increasing and concave over the interval of accumulation.

It is helpful to note the relationship between the problem solved by the optimal
allocation and that of a single individual accumulating a perfectly divisible good. Since
individuals are identical in our model, if the durable good were perfectly divisible, then
there would be no gains from trade and autarkic saving would be optimal.1¢ It is precisely
the indivisibility of the durable which creates the problem for the group. Nonetheless, the
group may approximately replicate the situation under perfect divisibility, even in the
presence of indivisibilities, by randomly assigning individuals to positions in the queue at
the initial date. This is tantamount to granting each individual a "share" of the aggregate
amount of the durable good available at any subsequent date.

Indeed, it can be shown that the optimal non—durable consumption path, EO(-), is

precisely that attained by an individual accumulating a perfectly divisible durable good.!

tEven with indivisibility the allocation problem reduces in this way if the durable’s services
were fungible across agents - if there were, e.g., a perfect rental market for its services.
There are, of course, good (adverse selection/moral hazard) reasons why such trade in dur-
able services might not obtain, especially in a LDC setting. Moreover, some reports on the
use of roscas stress their role in financing personal expenditures (daughter’s wedding, feast
for fellow villagers, tin roof for house) which, though not producing a fungible asset, gener-
ate private consumption benefits lasting for some time that are not transferable to others.

IITo be more precise, it can be shown that the optimal aggregate consumption path
{EO(T)ITE[O,T]} solves the problem:
T

Mo || [(etr) + - ()] dr
subject to B-K*(7)=y—c(7); K(0)=0; K(T)=1; 0<c(r)<y.

Here, the function K(7) is to be interpreted as the stock of the divisible asset the individual
holds at time 7.
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In the absence of trade in durable services, financial intermediation provides the only
means to overcome the limitations imposed on the group members by the constraint of
indivisibility. In the optimal allocation it is completely overcome in the sense that ez ante
expected utility is just the same as it would be under perfect divisibility.

The credit market and rosca allocations can be related to the efficient and optimal
ones. The random rosca maximizes er anfe expected utility subject to the assignment
function being linear. The bidding rosca imposes the constraint that utilities be equal, in
addition to the constraint that the assignment function be linear. A credit market
corresponds to the efficient allocation where life~time utilities are equal. These

relationships are important in understanding the results of the next section.

V. The Allocative Performance of Roscas
Having characterized efficient and optimal allocations, we are now in a position to

evaluate the allocative performance of roscas. We begin by discussing efficiency.

Proposition 1: The allocations achieved by bidding and random roscas are inefficient.

Proof: By Corollary 1(i) efficient allocations have strietly conver assignment functions,
while the analysis of sections TII.1 and II1.2 showed that roscas, with their uniformly
spaced meeting dates and constant contribution rates, lead to linear assignment

functions. o

This proposition tells us that the simple structure of roscas does have a cost and
identifies the nature of it. The convexity of efficient assignment functions is a consequence
of the fact that, as the remaining horizon becomes shorter, the value of the durable good to
a group member who acquires it diminishes, so the amount of current consumption

foregone to finance diffusion of durable goods should also decline. Roscas, with their



22

uniformly spaced meeting dates and constant contribution rates, cannot achieve this subtle
intertemporal shift in resource allocation. Their simple form therefore prevents the
realization of maximal gains from trade.

Notwithstanding, the best random rosca does yield maximal ez ente expected utility
to its members subject to the constraint of the assignment function being linear. Moreover,
the best bidding rosca generates the highest common level of utility for its members,
among all feasible allocations satisfying the linear assignment function requirement.

As noted in the introduction, our companion paper established that random roscas
resulted in higher expected utility than bidding roscas; that is, W_ > Wb. Using the
analysis of this paper, we can complete this ranking by noting that the Optimum will be
best of all. This can be proved directly by using the fact, from Theorem 2, that the cost of
saving up equals fé,u(a)da. Using Jensen’s inequality and the strict concavity of yf-), we
obtain fé,u(a)da < u(1/2) to prove that the cost of saving up will be greater under a
random rosca. The Optimum is better than a random rosca precisely because it can offer a
non-linear assignment function.

The credit market allocation which is constrained by definition to provide group
members with equal utilities, generates lower ez ante expected utility than the optimal
allocation <s O,CO>.12 In general, however, a credit market Pareto dominates a bidding
rosca. To understand this, recall that, in addition to being constrained to provide
individuals equal utilities, the bidding rosca is also constrained to have a linear assignment

function. We summarize these observations in

Proposition 2: While not achieving the optimal allocation, a credit market is preferred to a

12The failure of the market to achieve the ex—ante optimum parallels results in other
literatures where indivisibilities are important. See, for example, the model of conscription
in Bergstrom (1986), the location models of Mirrlees (1972) and Arnott and Riley (1977),
the club membership model of Hillman and Swan (1983), and the labor market model of
Rogerson (1988). '
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bidding rosca, i.e. Wo > Wm > Wb'

Proof: Since each individual’s utﬂity is constant in both <s wtm> and <8:Cp > and since
<s,,¢,> is Pareto inefficient while by the First Fundamental Theorem of Welfare Econom-
ics <8¢ ig efficient, we must have Wm>Wb. Moreover, the constancy of individuals’

utility in a competitive equilibrium implies:

W

(5.1) V0eO: W= W(li<syep>) 2 Wli<s o >) = W(l;<s_.c >)
where Om are the weights associated with the competitive allocation. The inequality in
(5.1) reflects the fact that <s (Cp> maximizes the weighted sum of utilities with weights &,
the equality is due to the fact that the weighted average of a constant function does not

depend on the weights. So W _=Min{ Max W(f<s,c>)}! The competitive
fe® <s,c>eF

equilibrium solves an elegant mini—max problem. Thus, not only is W <W, (equality is
impossible since then, by the strict concavity of v(-) and the fact that C ¥, @ strict
convex combination of <s_,c > and <85> would be feasible and would dominate

<8,,¢,>), but W is less than eny maximized weighted sum of utilities. o

This proof demonstrates that the credit market equilibrium uses weights which
minimize W, This is key to our constructive demonstration, in Proposition 3 below, that
there exist circumstances under which the credit market allocation is strictly dominated, in
terms of ex ante expected utility, by the optimal random rosca. Hence, our final result on
welfare comparisons shows that the *equal utility" constraint can be more of an
impediment to generating ez ante welfare than the "linear assignment function" constraint.
As already mentioned, Wr is the maximal er ante welfare subject to having a linear

assignment function, while W maximizes the same criterion subject to the constraint that
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utilities are equal. The question naturally arises whether one can prove a general result on
the relation of these values. One might have suspected that under some plausible
conditions the competitive allocation would dominate the inefficient random rosca.
However, this is not the case. What follows is an illustration of the fact that a simple
institution of financial intermediation, allocating its funds by lot, can actually out perform

a credit market.

Proposition 3: In the case of logarithmic utility, there exists a € such that for all £ > ¢, a

random rosca dominates the credit market; i.e. WI > Wm.

Proof: See the Appendix.

The technique of proof is indirect, since explicit representation of credit market
allocations, even in the case of logarithmic utility, seems intractable. We use the fact,
from the proof of Proposition 3, that the market gives the least maximized weighted utility
sum, over all possible weights. We then construct a set of weights whose maximized utility
sum is less than Wr, to infer the result. Intuitively the result may be understood by
recognizing that, when £ is very large, respecting the equal utility constraint means those
receiving the durable early must get much lower non—durable consumption than those
acquiring it late. 'This causes individuals’ marginal utilities of income to diverge.
However, since preferences are additive and there is no discounting, an ideal intertemporal
path of consumption would equate marginal utilities of income through time, something
which is achieved under a random rosca. The effect of increasing £ is thus to increase this
divergence in marginal utilities thereby lowering ez ante expected utility in a market. The
magnitude of ¢ does not, however, affect the utility cost of having a linear assignment

function. Thus when £ is sufficiently large the random rosca dominates.
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VI. Conclusion

Given the world—wide prevalence of roscas, it is important to understand their
economic role and performance. Following the large informal literature, we have sought
their rationale in the fact that some goods are indivisible. This makes autarkic saving
inefficient. Owur companion paper spelled out how, in a world with an indivisible good, a
group of individuals without access to credit markets could improve their welfare by
forming a rosca and compared the allocations achieved by the two different types of rosca.
It found that with homogeneous individuals, randomization is preferred to bidding as a
method of allocating funds within roscas.

This paper completes the picture by considering roscas in the larger context of the
set of feasible allocations which can be attained by a group of individuals. One important
finding is that roscas do not, in general, produce efficient allocations. Their simple
structure allows less flexibility in the rate of accumulation of the indivisible good than is
necessary to achieve maximal gains from trade. A further finding is that bidding roscas are
Pareto dominated by credit markets. This is not so surprising since both institutions use
prices to allocate access to the indivisible good, but the credit market has greater
flexibility. Nonetheless, the element of chance offered by random roscas is still of value.
Credit market allocations may be dominated (under the ez ante expected utility criterion)
by those produced by a random rosca. In light of the significantly greater complexity of a

credit market, this is a noteworthy finding.
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Appendix

Proof of Lemma 1: Each feasible allocation <s,c>¢F gives rise to an allocation of utility
u(a;<s,c>), 0el0,1]. Let U= { u(-;<s,¢>) | <s,c>€F }. Given the convention of labelling
agents according to their order of receipt of the durable, U constitutes the utility
possibility set for our model. Under our assumptions U is a convex subset of the space of

Lebesgue integrable functions on the unit interval, LY[0,1]), with a non—empty interior,
closed in the norm topology. Convexity is assured by the fact [see equation (4.4) in the
text] that on the efficient frontier of F s’(a) is inversely proportional to the aggregate
savings rate |[y—[c(x,s{@))dx]. Thus the convex combination of two consumption alloca-
tions allows receipt dates for every agent which are less than the same convex combination
of the corresponding assignment functions. It is obvious that the set is closed. Moreover,

it will have an interior point in LY([0,1]) by virtue of our assumption that the flow utility
function v(c) ranges from —w to +w as ¢ varies over (0,0).

Now an efficient allocation <s’,c’>€F generates an allocation of utility u’eU satis-
fying (suppress dependence of u on <s,c> hereafter): u(a) > u’(a) a.e. if and only if ugU.

The Hahn—Banach Theorem implies a continuous linear functional p:L([0,1]) = R exists,

such that p(u’) > p(u), YueU. Tt is well known that the dual of Ll([O,It] may be identified
with the set of bounded, measurable functions on [0,1}. (See, e.g., Goffman and Pendrick
(1965), Theorem 1, p.147). Therefore, there exists such a function, ¢, satisfying:

p(ur) = Jgu (@)¢(e)da > [fu(a)¢(e)da = p(u), ¥ ueU.

Obviously ¢(-) must be non—negative, a.e. Moreover, if u’ corresponds to an allocation in
which all agents enjoy positive utility from the flow consumption good then, given any
subset A of agents of measure strictly less than one, there is an alternative feasible
allocation making all agents in A strictly better off, and all agents in [0,1]\A strictly
worse off. Therefore ¢ must be strictly positive, a.e. The weights 6(-) correspond to the
function ¢(-) normalized to integrate to one. 0O

Proof of Proposition 3: When v(c)=In(c), simple but tedious calculation reveals that
welfare under the random rosca is:

W, = Tn(y)+€] - S+(6/2)

where the function () is implicitly defined by x(&)-1In(1+x(£))=€, £20. Similarly, for the
market we have

1 1 1
W_ = Tlln(y)+&+ fo Om(a)ln(ﬁm(a))da]—l;l fo [1+x(¢ fx 0_(z)dz)]dx,

s _ min
for some UmEG. We know from the proof of Proposition 3 that Wm = el W 7 Hence,

W >W_ if and only if 30 such that W >W, The proof constructs some weights for
which this is so. First we need:
Lemma 2: Let {(+) be an increasing, strictly concave function satisfying fEU; =

and let g(-) be a function on [0,1], strictly decreasing satisfying g(1) = 0 and g(0
Then _
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1

1
fo f(g(x))dx > (1) fo g(x)dx

Proof: Let % be a random variable which is uniformly distributed on [0,1]. Define
= g(%), and 7 = 1,if £ < [Lg(x)dx, and & = 0, i % > /7 g(x)dx. Then

where E(-) denotes the expectations operator. Moreover, z is riskier than § in the sense of
second order stochastic dominance. Therefore, since {(-) is strictly concave:

1 1
B(I()) = f Hgl)dx > B({(E) = (1) f g(x)dx
This proves the lemma. o
This lemma implies that
(¢ z)dz)dx > x( 0z
s e w0

This in turn implies that

W, < Tlin(y) +5+f ()l (4(x) dx——1+[f0xo ] (€,

1,1 1
where we have also used the fact that f f f(z)dzdx = f xf(x)dx.
0 "x 0

Hence, a sufficient condition for W]r > Wm, is that:

1

30c0 such that —?X(g/zp fo 0(x)1n( (x) x——x fo x(x
Now define (D) = [fgég fo o)l 0(x))dx s.t. f x0( x)dx—_ﬂJ Then W, >W_ if

Ud

30e(0,1) such that (7 ) Ox(&—x(£/2)] > B(D).

*
Let %576(0,1), and consider the problem: . IFax ]{'yx(ﬁ)_ﬂ — E(F)}=0 . We conclude
e[0,1
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*
that it is sufficient for W >W_ that Q >vx(¢/2).

Lemma 3: (i) E(7) is strictly convex, and E(?)ZE(%), Y@e{0,1]; and, (ii) if E/(8)=A,
then E(D)=AT+In()(e*—1)"1).
Proof: Define the Lagrangean

1 1 1
L= fo 0(x)In{ 0(x))dx + A0~ fo x0(x)dx] + p[1— fo 0(x)dx].

The first order condition with respect to 0(x) is: In{(x))+1-Ax—u=0, x€[0,1]. Inverting

and integrating this condition, using the constraint, yields: 1 F—}l— = 1. Solving this

for f, substituting into the first order condition, multiplying by #(x) and integrating yields
(ii). To prove (1% observe that integrating the first order condition, after inverting and
multiplying through by x, and using the above derived expression for g yields:

fl

0

1 A A A
xW(x)dx = 7= elu’_lf xe ¥ dx = [)\e —(e _1)]/[6 Xl} = eA/(eA_l) SN $(A)-
0 A?
It is straightforward now to see that ¢(A) - 0 as A - —w; @A) = 1 as A - +o and
¢(A)-1/2as A - 0. Part (i) is now proved by noting that E/(7) = ¢—1(_0), from the
envelope condition. o

* 1x(€)_
This result and simple calculation reveals: © > yx(¢/2) if and only eW(?Tl— >

eMX(8/2) Note also that, from the definition of y(-), that x/ (&) = (T+x(£))/x(£)) > 1.
Thus x(£) > x(£/2) + £/2. Moreover, (e?—1)/z = jéezxdx is a strictly increasing function.
So: |

WOy (5 %/2 _
R L T 1 s | - luer) + g™
7x(£) wx(£/2) + /2 X(E/2)+7¢/2
The first of the two terms on the right hand side grows unboundedly as £ - w. Moreover,
for a sufficiently large £, the second term vanishes. Hence, for large enough ¢,
[e’YX(f) — 1/ vx(€) > e’rX(S/Q) and W_ > W_. (Note that &, the critical value of ¢,
depends only on v=B/Ty.) ©
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