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The East Asian climate history during the Neogene is a complicated and contentious issue, in particular
because of its bearing on the development of the East Asian monsoon and Tibetan uplift chronology. Here we
present a paleoprecipitation analysis based on mean molar tooth height (hypsodonty) of large herbivorous
mammals to investigate the spatial pattern of climate zonation in East Asia during the middle Miocene. We
show a generally humid and uniform situation before the late middle Miocene, replaced by a mid-latitude
arid belt from the late middle Miocene, into the earlier part of the late Miocene. These findings are
concordant with the global phenomena of the middle Miocene climate optimum and the subsequent cooling,
and suggest that the predominant climate in East Asia for most of the Miocene was planetary rather than
monsoonal. Our results support a late initiation of the East Asian summer monsoon, coincidentally with the
beginning of eolian red clay deposition in the later late Miocene at 7–8 Ma.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The Neogene climate system represents the transition from the
green house climate of the Paleogene to the icehouse climate of the
Quaternary (Zachos et al., 2001; Retallack 2001; Willis and McElwain
2002; Bruch et al., 2007). Within the Neogene the middle Miocene is
considered the most critical interval, known as “The Middle Miocene
Transition” (Flower and Kennett,1994; Zachos et al., 2001). As a result,
the latitudinal gradient increased through time and arid belts
appeared in the middle latitudes (Flower and Kennett, 1994).

While the occurrence of continental mid-latitude drying in the
later Neogene is well documented from Europe, America, East Africa,
Australia and Siwaliks (Flower and Kennett, 1994; Fortelius et al.,
2002; Barry et al., 2002; Ivanov et al., 2002; Böhme, 2003; Jiménez-
Moreno and Suc, 2007), its occurrence in East Asia remains unclear. In
particular, the contentious question of when the Asian monsoon
became established complicates the issue. One view holds that the
Asian monsoon began in the later late Miocene, ca 7–8 Ma (Sun et al.,
1998; Ding et al., 1999, 2001; An et al., 2001), another view has it
beginning much earlier, in the early Miocene (Guo et al., 2002; Sun
and Wang, 2005). The monsoon shifted the control of East Asian
climate from a planetary (north–south gradient) to a monsoonal
(west–east gradient) system. Since a dry band at the mid-latitudes
represents the north–south gradient such a pattern is unexpected
after the shift. In this paper, we present a paleoprecipitation analysis
to investigate the spatial pattern of humidity zonation in East Asia
stematics of Vertebrates, IVPP,
ing, China.

ll rights reserved.
during middle Miocene. The investigation makes use of mean
hypsodonty, a mammalian proxy for paleoprecipitation (Fortelius
et al., 2002). Our data provide independent proof that significant mid-
latitude aridity existed in East Asia during the middle Miocene.

2. Analytical methods

We use a method developed by Fortelius et al. (2002) to map the
rough rainfall estimation based on large mammal hypsodonty (molar
tooth crown height). The higher the crown part of a tooth, the more
hypsodont is the animal. For examplemodern horses of the genus Equus
are very hypsodont, with high tooth crowns,whileAlces alces (moose) is
brachydont, with low tooth crowns. Increased tooth height or
hypsodonty is fundamentally an adaptive response to increasing
demands for wear tolerance and functional durability brought about
by the development ofmore fibrous or abrasive plants in a progressively
more open and arid-adapted vegetation (Van Valen, 1960; Fortelius,
1985; Janis and Fortelius, 1988; Solounias et al., 1994; Fortelius and
Solounias, 2000). The factors favoring hypsodonty are many, but
virtually all increase in effect with increasing aridity and openness of
the landscape (increased fibrousness, increased abrasiveness due to
intracellular silica or extraneous dust, and decreased nutritive value)
(Fortelius, 1985; Janis, 1988; Janis and Fortelius, 1988). It should be
explained here that once a species has evolved hypsodont teeth, they
appear not to revert to amore brachydont state even if the diet becomes
less demanding (Fortelius, 1985). However, the main proximate
mechanism determining mean hypsodonty is not evolutionary change
but geographic sorting of species. A lowering of mean hypsodonty is
easily accomplished by immigration of specieswith low-crowned teeth,
even in the unlikely case of all hypsodont species remaining unaffected
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by the change. Even today, after millions of years of increasing tooth
height in many lineages, there is a strong relationship between local
mean hypsodonty and local mean annual precipitation in modern
mammal communities (Damuth and Fortelius, 2001). In our view,
hypsodonty implies a condition of the vegetation that might be termed
‘generalized water stress’, either in overall conditions, or perhaps more
commonly, as a regularly occurringextremeperiod, suchas a dry season.
The higher themean hypsodonty, themore arid the environment, while
low hypsodonty value indicates more humid conditions. Further
description of the method can be found in Fortelius et al. (2002, 2006)
and Eronen (2006).
Fig. 1. Correlation of Chinese (NMU) and European (MN) mammal zones according to
Our analysis is based on a dataset derived from the Neogene Old
World Database (NOW) (Fortelius, 2008). The dataset was down-
loaded on 6th April 2008.We constrained our investigation to Chinese
localities, and we selected only large mammals classified as plant-
eaters or plant-dominated omnivores for our analysis. Thus, all pigs
were included but no carnivoran omnivores. Localities with only one
large herbivore species were omitted from the analysis to minimize
random noise, indeterminate species were also omitted if the same
genus species was already present in the locality. The three
hypsodonty classes were assigned scores of 1 (brachydont), 2
(mesodont) and 3 (hypsodont). The mean hypsodonty value in
Deng (2006), with Cenozoic temperature history and events from Zachos (2001).
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every locality was calculated by averaging its herbivore scores. The
possible range of mean hypsodonty is thereby constrained to values
between 1 and 3. The mean hypsodonty values were plotted on maps
using interpolated contours.

As in previous analyses (Fortelius et al., 2002, 2003, 2006), we
used modern maps as a background for these patterns. All GIS maps
were made in MapInfo Professional 8.0 using the inverse distance
weighted (IDW) algorithm and the following settings: cell size 50 km,
search radius 500 km, grid border 500 km, number of inflections 10,
and values rounded to 1 decimal. After this, they were imported to
Vertical Mapper 8.0 and contoured to 4 classes.

We tested the statistical differences of mean hypsodonty values
between timeslices (NMUs) using ANOVA and Kruskal–Wallis tests in
JMP 7.01.

3. Study area and age control

Our investigation covers the whole of China. In order to better
understand the middle Miocene climate evolution, we recently
updated all relevant Chinese localities to correlate with the most
detailed dating scheme available (Fig. 1) — the Chinese Neogene
Mammal Unit (NMU) zonation described by Qiu et al. (1999). We also
Table 1
Localities included in the analyses, with age references and mean hypsodonty values (⁎ sig
on by mammal biostratigraphy).

Mammal zones are correlated according to Steininger (1999), withMN-NMU-correlation from
Qiu, 2006, Li et al., 1981, Deng et al., 2004, and Deng, 2006.
reviewed the taxon occurrence data for these localities. In contrast to
our previous investigations (Fortelius et al., 2002, 2003; Eronen,
2006), the previously unified middle Miocene localities are here
divided between the early middle Miocene (NMU6) and the late
middle Miocene (NMU7) time units. In order to show the context of
the middle Miocene pattern, the late early Miocene (NMU5) and the
early late Miocene (NMU8) are also included in our analysis (Table 1).

In the NOW database, each locality has a maximum and a
minimum age estimate, in most cases based on the boundaries of
either a magnetochron or NMU. The NMU calibration follows the
calibration of MN units, based on Steininger et al. (1996) in the NOW
database but on Steininger (1999) in this paper. Localities were
grouped into four time intervals as late early Miocene (NMU5), early
middleMiocene (NMU6), late middleMiocene (NMU7), and early late
Miocene (NMU8). Localities that could not be assigned to a single
NMU were excluded from the analysis. We also exclude the recently
reviewed Qaidam-tuosu fauna (Wang et al., 2007) because its
endemic bovids such as Olonbulukia, Qurliqnoria, Tossunnoria, and
Tsaidamotherium have no known dentition to be scored in the
hyposodonty analysis. Faunas from the Wuzhong-ganhegou and
Zhongning-ganhegou localities share Qurliqnoria cheni, Hipparion,
and Tetralophodon with Qaidam-tuoso fauna, and are correlated with
nifies magnetostratigraphic age, + signifies radioisotopic age, all other ages are based

Deng (2006). Data fromWu et al., 1998, Shao et al.,1989, Qiu et al.,1986, Qiu and Qiu,1995,



Fig. 2. Mammal hypsodonty maps for Chinese Miocene localities. A, NMU5 (17–15 Ma); B, NMU6 (15–13.5 Ma); C, NMU7 (13.5–11.1 Ma); D, NMU8 (11.1–9.7 Ma).
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NMU8 according to recent work in Qaidam (Wang et al., 2007).
Locality Xin'an is considered NMU7, because the more advanced suid
Miochoerus replaces Kubanochoerus (Chen, 1997).

4. Results and discussion

In the late early Miocene and early middle Miocene (NMU5-6, 17–
13.5 Ma) the whole study area was relatively humid (showing low
hypsodonty values; Fig. 2A,B; Table 1). The far west of China shows a
similar range of values as seen in the east, and there is no clear
evidence of a latitudinal gradient.

A change is seen between NMU6 and NMU7. As indicated by
Fig. 2C, although there is some variability among mid-latitude
localities, multiple localities indicate more arid conditions in the
mid-latitudes during late middle Miocene (NMU7, 13.5–11.1 Ma),
while more humid conditions prevailed in the northern and southern
areas. There are only two localities in the north showing more humid
conditions (Fig. 2C, see also Appendix), but both can be considered
relatively solid. The classic locality of Tunggur-moergen has 19 species
and very lowmean tooth crown height value, while Siziwanqi-damiao
includes the primate genus Pliopithecus, indicating relatively closed
conditions. All other occurrences of Pliopithecus in our dataset are in
NMU6 localities with mean hypsodonty b1.4: Hezheng-laogou,
Junggar-Tieersihabahe, Tongxin-maerzuizigou, and Tongxin (general
locality). Taken together this evidence robustly supports the inter-
pretation that relatively humid conditions persisted and most likely
dominated, in northern China during NMU7. The observed mid-
latitude drying was further strengthened in the early late Miocene,
although southern China is unsampled in this interval (NMU8, 11.1–
9.7 Ma; Fig. 2D). Statistically, the patterns of NMU5 and NMU6 do not
differ from each other (Kruskall–Wallis test, P=0.92) and the
difference between NMU7 and NMU8 is at most marginally significant
(P=0.09). However, the difference between NMU6 and NMU7,
corresponding to the postulated appearance of a relatively dry belt
in the mid-latitudes, is significant (Pb0.002), while the, difference
between the early middle Miocene (NMU5+NMU6) and the late
Middle Miocene (NMU7+NMU8) is highly significant (Pb0.0001).

The generally humid and uniform situation during the late early
Miocene and early middle Miocene suggested by the hypsodonty
proxy conforms to the global pattern (Flower and Kennett, 1994;
Fortelius et al., 2002; Böhme, 2003; Bruch et al., 2004; Kaandorp et al.,
2005) associated with the climatic phase known as the “Mid-Miocene
Climatic Optimum” (Flower and Kennett, 1994; Zachos et al., 2001).
The homogenous environment in Eurasia allowed increased dispersal
of species, e.g. Anchitherium (originally from North America), Listrio-
don (originally from the Indian Subcontinent), Platybelodon and
Gomphotherium (originally from Africa), which are well documented
across the continent. The humid-favoring primate Pliopithecus (of
African origin) was widely distributed in the study area (Junggar,
Hezheng and Tongxin) as well as across Europe (Eronen and Rook,
2004).

In the latemiddleMiocene (13.5Ma, ref. Steininger (1999)), thedrier
areas extended from western China to the eastern coast, while humid
areas became restricted to the southern and northern parts. The
hypsodont genus Hispanotherium ranged east to Fangxian (Hubei), a
humid area today. Pliopithecus disappeared frommid-latitude areas and
pliopithecids were only recorded in the north (Zhang and Harrison,
2008) (there is no good evidence available from the south). During the
early late Miocene, mid-latitude aridity intensified. Mid-latitude drying
from the late middle Miocene onwards appears concordant with global
cooling following the “Middle Miocene Transition” around 15–13 Ma
ago (Flower and Kennett, 1994; Zachos et al., 2001; Shevenell et al.,
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2004). The reasons for middle Miocene cooling are still debated, the
most prominenthypotheses being basedon changes in atmospheric CO2

or on continental configurations (e.g. Zachos et al., 2001; DeConto and
Pollard, 2003; Barker and Thomas, 2004; Pagani et al., 2005; Kürschner
et al., 2008).

The pattern of an arid belt in the middle latitudes discussed above
closely resembles what is known from the plant record for the
Oligocene according to Sun and Wang (2005), but differs from their
Miocene pattern, which shows an arid northwest and a humid north-
east. The higher temporal resolution offered by the mammal record
reveals that the earlier Miocene environments did not yet have such a
“monsoonal” distribution. We have previously shown that the west–
east gradient pattern did not develop until the later late Miocene
(Fortelius et al., 2002; Eronen, 2006). Our results suggest that the
Miocene west–east gradient pattern of the pollen data, reflecting a
fully developed monsoonal climate, is strongly driven by localities
representing the latest Miocene.

According to our previous hypsodonty analysis (e.g. Fortelius et al.,
2002; Eronen, 2006), northern China became more humid from
approximately the time of onset of red clay deposition at 7–8 Ma (Sun
et al., 1998; Ding et al., 1999; Kaakinen, 2005; Passey et al., 2008). Our
interpretation that this change was due to onset or intensification of
summer rains is in agreement with multiple lines of evidence,
pointing to the start of the proper summer monsoon in East Asia
around this time (An et al., 2001; Ding et al., 2001). The present study
of the early and middle Miocene adds details to this scenario,
suggesting that the predominant wind pattern of the Miocene was
the planetary (Oligocene-like) one, with dry summers and a
distinctive dry belt in the middle latitudes. The seasonality and
regional differentiationwere weakened during the warm phase of the
climatic optimum, but regained strengthwith the global cooling in the
later middle Miocene and persisted until the beginning of strong
summer monsoon in the later late Miocene, when the present
monsoonal pattern with a southeast–northwest humidity gradient
and humid summers was established. The environmental part of this
scenario is robust under multiple climatic interpretations. The
particular climatic hypothesis offered here is testable in principle,
requiring only that the summer–winter polarity of the wet–dry
seasonality can be established from the sedimentary record by
independent means.
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