Chapter 2
 Basic Structures: Sets, Functions, Sequences and Sum

2.3 Functions

1．Introduction

－What is function？
－Definition 1 （page 133）
－Let A and B be sets．A function from A to B is an assignment of exactly one element of B to each element of A ．
－We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A ．
－If f is a function from A to B ，we write $f: A \rightarrow B$ ．
－Example（page 133）
－Assignment of Grades in a Discrete Mathematics Class

1．Introduction

－Domain（定义域），codomain（共域）and range（值域）
－Definition 2 （page 134）
－If f is a function from A to B ，we say that A is the domain of f and B is the codomain of f
－If $f(a)=b$ ，we say that b is the image（像）of a and a is a pre－image（原像）of b．
－The range of f is the set of all images of elements of A ．Also，if f is a function from A to B ，we say f maps A to B ．

1．Introduction

－Example 3 （page 135）
－Let $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ assign the square of an integer to this integer，i．e．，$f(x)=x 2$ ．
－What is the domain，codomain and range of function f ？
－Solution：See book
－Definition 3 （page 135）
－Let f_{1} and f_{2} be functions from A to R ．Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to R defined by
1．$\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$
2．$\left(f_{1} f_{2}\right)(x)=f\left(x_{1}\right) f\left(x_{2}\right)$

1．Introduction

－Example 6 （page 135）
－Let f_{1} and f_{2} be functions from R to R such that $f_{1}(x)=x^{2}$ and $f_{1}(x)=x-x^{2}$ ．
－What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$ ？
－Solution：See blackboard．

1．Introduction

－Definition 4 （page 136）
－Let f be a function from the set A to the set B and let S be a subset of A ．The image of S is the subset of B that consists of the images of the elements of S ．
－The notation：$f(S)=\{f(s) \mid s \in S\}$
－Example 7 （page 136）
－$A=\{a, b, c, d, e\}$
－$B=\{1,2,3,4\}$
－$f(a)=2, f(b)=1, f(c)=4, f(e)=1$
－$S=\{b, c, d\}$
－What is $f(S)$ ？
－Solution：See book．

2．One－to－one and Onto functions

－One－to－one function（or injective，单射）
－Definition 5 （page 136）
－A function f is said to be one－to－one，if and only if $f(x)=f(y)$ implies that $x=y$ for all x and y in the domain of f ．
－A function is said to be an injection if it is one－to－ one．
－Examples（pages 136－137）
－Example 8
－Determine whether the function from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ to $\{1,2,3,4,5\}$ with $f(a)=4, f(b)=5, f(c)=1$ ，and $f(d)=3$ is one to one．
\square Solution：Function f is one－to－one．

2．One－to－one and Onto functions
－One－to－one function（or injective，单射）
－Examples（pages 136－137）
口Example 9
－Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one－to－one．
aSolution：No
－However，if the domain is $\mathrm{Z}+$ ，then f is one－ to－one．

2．One－to－one and Onto functions
－One－to－one function（or injective，单射）
－Examples（pages 136－137）
口Example 10
－Determine whether the function $f(x)=x+1$ is one to one． aSolution：Yes．

2．One－to－one and Onto functions
a Some conditions that guarantee that a function is one to one（page 137）
－Definition 6 （strictly increasing or descreasing function）
aA function f whose domain and codomain are subset of the set of real numbers is called strictly increasing if $f(x)<f(y)$ whenever $x<y$ and x and y are in the domain of f ． ostrictly descreasing？

2．One－to－one and Onto functions
a Some conditions that guarantee that a function is one to one（page 137）
－Definition 6 （strictly increasing or descreasing function）
alf a function is either strictly increasing or strictly decreasing，it must be one to one．

2．One－to－one and Onto functions
－Onto（or surjective function，满射）
－Definition 7 （page 137）
－A function from A to B is called onto，or surjective，if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$ ． ofunction f is called a surjection if it is onto．

2．One－to－one and Onto functions

－Examples（page 138）
－Example 11
a Let f be the function from $\{a, b, c, d\}$ to $\{1,2,3\}$ defined by $f(a)=3, f(b)=2, f(c)=1$ ， and $f(d)=3$ ．Is f an onto function？
－Solution：Yes．
－How about the answer if the codomain is $\{1,2,3,4\}$ ？

2．One－to－one and Onto functions
－Examples（page 138）
－Example 12
als the function $f(x)=x 2$ from the set of integers to the set of integers onto？
םSolution：No．
－Example 13
als the function $f(x)=x+1$ from the set of integers to the set of integers onto？
aSolution：Yes．

2．One－to－one and Onto functions

－One－to－one correspondence（or bijection，一一对应，双射）
－Definition 9 （page 138）
－The function f is one－to－one correspondence or a bijection if it is both one－to－one and onto．
－Example 14 （page 138）
\square Let f be the function from $\{a, b, c, d\}$ to $\{1,2,3,4\}$ with $f(a)=4, f(b)=2, f(c)=1$ ，and $f(d)=3$ ．Is f a bijective？
－Solution：Yes．

2．One－to－one and Onto functions

－Identity function（恒等函数）
－Let A be a set．The identity function on A
－$i_{A}: A \rightarrow A$ where $i_{A}(x)=x$
－where $x \in A$ ．

4．Inverse functions and compositions of functions

－Introduction
－Consider a one－to－one correspondence from the set A to the set B．
－Since f is an onto function，every element of B is the image of some element in A．
－Because f is also one－to－one，every element of B is the image of a unique element of A ．
－Therefore，we can define a new function from B to A that reverse the correspondence given by f ．

4．Inverse functions and compositions of functions
－Definition 9 （inverse function，page 140）
－Let f be a one－to－one correspondence from the set A to the set B ．The inverse function of f is the function that assigns to an element b belonging to B the unique element a such that $f(a)=b$ ．
－The inverse function of f is denoted by f^{-1} ．
－Hence $f^{-1}(b)=a$ when $f(a)=b$
－Please note：
－if f is not a one－to－one correspondence，we cannot define an inverse function of f ．
－（why？？？？？？？？？？？，please see page 140．）

4．Inverse functions and compositions of functions

－Examples（page 140）
－Example 16
－Let f be a function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$ ，and $f(c)=1$ ．Is f invertible，and if it is，what is its inverse？
－Solution：Yes．
－Let f be the function from the set of integers to the set of integers such that $f(x)=x+1$ ．Is f invertible， and if it is，what is its inverse？
－Solution：Yes．
$-f^{-1}(y)=y^{-1}$

4．Inverse functions and compositions of functions

－Examples（page 140）
－Example 18
－Let f be the function from R to R with $f(x)=x^{2}$ ．Is f invertible？
－Solution：Since $f(1)=f(-1)=1, f$ is not one to one． Hence，f is not invertible．
－如果 f 限定如下：f is the function from the set of all nonnegative real numbers to the set of all nonnegative real numbers，那么：$f^{-1}(y)=\operatorname{sqrt}(y)$

4．Inverse functions and compositions of functions
－Definition 10 （composition of two functions，函数复合）
－Let g be a function from the set A to the set B and let f be a function from the set B to the set C ．The composition of the function f and g ，denoted by $f \circ g$ ，is defined by

$$
(f \circ g)(a)=f(g(a))
$$

－Please note：
－For the direct explanation，please see page 141 （Figure 7）．

4．Inverse functions and compositions of functions
－Examples
－Let g be the function from the set $\{a, b, c\}$ to itself such that $g(a)=b, g(b)=c$ ，and $g(c)=a$ ．
－Let f be the function from the set $\{a, b, c\}$ to the set $\{1,2,3\}$ such that $f(a)=3, f(b)=2$ ，and $f(c)=1$ ．
－What is the composition of f and g ，and what is the composition of g and f ？
－Solution：See balckboard．

4．Inverse functions and compositions of functions
－Examples
－Let f and g be the function from the set of integers to the set of integers defined by
$f(x)=2 x+3$ and $g(x)=3 x+2$ ．
\square What is the composition of f and g ？
－What is the composition of g and f ？
－Solution：See blackboard．

4．Inverse functions and compositions of functions
－Remark：
－Note that even if $f \circ g$ and $g \circ f$ are defined for functions f and g in Example 20，$f \circ g$ and $g \circ f$ are not equal．
－In other words，the commutative law does not hold for the composition of functions

4．Inverse functions and compositions of functions
－The composition of a function and its inverse function（page 11）41
－If $f: A \rightarrow B$ and f is a one－to－one correspoendence， then（i）$f-1 \circ f=i_{A}$ and $f \circ f-1=i_{B}$
（ii）$(\mathrm{f}-1)-1=\mathrm{f}$
－Why？
－Please explain（page 104）．

5．The graph of functions
－Definition 11 （page 142）
－Le f be the function from the set A to the set B． The graph of the function f is the set of ordered pairs
$\{(a, b) \mid a \in A$ and $f(a)=b\}$ ．
－Examples（page 142）
－Example 22
－Display the graph of the function $f(n)=2 n+1$ from the set of integers to the set of integers．
－Solution：Please see book．

5．The graph of functions
－Example 23
－Display the graph of the function $f(x)=x 2$ from the set of integers to the set of integers．
－Solution：Please see book．

6．Some important functions
－Definition12（floor function and ceiling function）
－The floor function assigns to the real numbers x the largest integer that is less than or equal to x ． The value of the floor function at x is denoted by $\llcorner\mathbf{~} \quad$ 」．
－The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x ．The value of the ceiling function at x is denoted by $\ulcorner\mathbf{x}\urcorner$ ．

6．Some important functions

－Example 24 （page 143）
－These are some values of the floor and ceiling functions．

$$
\begin{array}{lll}
\llcorner 0.5\lrcorner=? & \ulcorner 0.5\urcorner=? & \llcorner-0.5\lrcorner=? \\
\llcorner 3.1\lrcorner=? & \ulcorner 3.1\urcorner=? & \llcorner 7\lrcorner=?
\end{array} \quad\ulcorner 7\urcorner=?
$$

－Useful properties of the floor and ceiling function （page 143）
1．（1a）$\llcorner\mathrm{x}\lrcorner=\mathrm{n}$ if and only if $\mathrm{n} \leqslant \mathrm{x}<\mathrm{n}+1$
2．（1b）$\ulcorner\mathrm{x}\urcorner=\mathrm{n}$ if and only if $\mathrm{n}-1<\mathrm{x} \leqslant \mathrm{n}+1$
3．（1c）$\llcorner x\lrcorner=n$ if and only if $x-1<n \leqslant x$
4．（1d）$\ulcorner x\urcorner=n$ if and only if $x \leqslant n<x+1$
5．and

6．Some important functions
－Example 27 （page 145）
－Prove that if x is a real number，then
$\llcorner 2 x\lrcorner=\llcorner x\lrcorner+\llcorner x+0.5\lrcorner$
－Solution：See book．
－Example 28 （page 145）
－Prove or disprove that $\Gamma \mathrm{x}+\mathrm{y}\urcorner=\Gamma \times \mathrm{x}+\stackrel{\Gamma}{ } \mathrm{y}_{\urcorner}$ for all real numbers x and y ．
－Solution：This statement is false． Counterexample：$x=0.5$ and $y=0.5$

6．Some important functions

－The factorial function
－f：$N \rightarrow Z^{+}$
－$f(n)=n$ ！
－i．e．，$f(n)=1 \times 2 \times \ldots \times(n-1) \times n($ and $f(0)=0!=1)$

Homework

－Page 146～149
－10，12，16，18，20，26，30，31，32，38， 40， 66

