Chapter 1 The Foundation: Logic and Proof

1.4 Nested Quantifiers

1. Introduction

- Nested quantifiers
 - occur within the scope of other quantifiers

•
$$\forall x \exists y(x+y=0)$$

- □ Example 1 (page 51)
 - domain for x and y ----all real numbers
 - $\Box \forall x \forall y (x+y=y+x) --- true$
 - $\Box \quad \forall x \exists y \ (x+y=0) - - true$
 - $x \forall y \forall z (x + (y + z) = (x + y) + z) - true$

1. Introduction

□ Example 2 (page 51)

- ∀x ∀y ((x>0) ∧ (y<0)→(xy<0))
 □ domain: all real numbers
 □ English meaning
 □ Value:
 - -true

- 2. The order of Quantifiers
- □ Example 3 (page 52)

•
$$P(x,y) - - - - "x + y = y + x"$$

- domain for all variables: all real numbers
- How about
- 1. $\forall x \forall y P(x,y)$ -----true
- 2. $\forall y \forall x P(x,y)$ -----true
- We have: $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$

- 2. The Order of Quantifiers
- □ Example 4 (page 52)
 - $Q(x,y) \cdots + x + y = 0''$
 - universe of discourse: all real numbers
 - How about
 - $\exists y \forall x Q(x,y) \text{ and } \forall x \exists y Q(x,y)?$
 - **D** Solution:
 - $\exists y \forall x Q(x,y)$ ----There is a real number y such that for every real number x, Q(x,y). ----false
 - \forall x ∃ y Q(x,y)----For every real number x there is a real number y such that Q(x,y). -----true
 - $\exists y \forall x Q(x,y)$ ----- $\forall x \exists y Q(x,y)$ (not equivalent)

2. The order of Quantifiers

□ Summary (see Table 1 on page 34)

Statement	When True?	When False?
$ \forall x \forall y P(x,y) \\ \forall y \forall x P(x,y) $		
$\forall x \exists y P(x,y)$		
$\exists x \forall y P(x,y)$		
$\exists x \exists y P(x,y) \\ \exists y \exists x P(x,y) \end{cases}$		

2. The order of Quantifiers

□ Further,

- If ∃y∀x P(x,y) is true, then ∀ x∃y P(x,y) is true.
- If ∀x∃yP(x,y) is true, then it is not necessary for ∃y∀x P(x,y) to be true.
- Please see Exercise 22and 24 at the end of this chapter (page 107).

2. The order of Quantifiers

□ Example 5 (page 53)

•
$$Q(x, y, z) - - - - "x + y = z"$$

domain: all real numbers

How about

$$- \forall x \forall y \exists z Q(x,y,z)$$

$$- \exists z \forall x \forall y Q(x,y,z)$$

D Solution:

- $\forall x \forall y \exists z Q(x,y,z) \text{ is true.}$
- $\exists z \forall x \forall y Q(x,y,z)$ is false.

3. Translating Mathematical Statements into
Statements Involving Nested Quantifiers
Example 6

- Translate the statement "The sum of two positive integers is always positive" into a logical expression.
- Solution:

■Way1: domain for x and y----all integers $- \forall x \forall y ((x>0) \land (y>0) \rightarrow (x+y>0))$

Way 2: domain for x and y---all positive integers

 $- \forall x \forall y (x+y>0)$

3. Translating Mathematical Statements into
Statements Involving Nested Quantifiers
Example 7

- Translate the statement "Every real number except zero has a multiplicative inverse"
- Solution:

□ Domain for x and y----all real numbers $-\forall x ((x \neq 0) \rightarrow \exists y (xy=1))$ 4. Translating from Nested Quantifiers into English

□ Example 9 (page 55)

• $\forall x (C(x) \lor \exists y (C(y) \land F(x,y)))$

□C(x)----"x has a computer"

■F(x,y)----"x,y are friends"

universe of discourse for both x and y

– all students in the school??? What does the formula mean?

4. Translating from Nested Quantifiers into English

□ Example 10 (page 55)

- $\exists x \forall y \forall z ((F(x,y) \land F(x,z) \land (y \neq z)))$ $\rightarrow \neg F(y,z))$
 - **D**F(a,b)----a and b are friends
 - domain for x, y and z: all students in your school
 - What does this formula mean?

- 5. Translating English Sentences Into Logical Expression
- □ Example 11 (page 56)
 - "If a person is female and is parent, then this person is someone's mother."
 - domain----all people
 - **•** Solution:
 - also can be expressed as "For every person, if person x is a female and person x is a parent, then there exists a person y such that person x is the mother of person x."
 - F(x)----x is female; P(x)----x is a parent
 - M(x,y)-----x is the mother of y, Then, the formula is:
 - 1. $\forall x ((F(x) \land P(x)) \rightarrow \exists y M(x,y))$ or
 - 2. $\forall x \exists y ((F(x) \land P(x)) → M(x,y))$

- 5. Translating English Sentences Into Logical Expression
- □ Example 12 (page 46)
 - "Everyone has exactly one best friend"
 - domain: all people
 - Solution:
 - "For every person x, person x has exactly one best friend"
 - ♦ B(x,y) ----- y is the best friend of x
 - ∃y (B(x,y) ∧ ∀z ((z≠y)→¬B(x,z)))
 - $\forall x(\dots, the above formula, \dots)$

6. Negating Nested Quantifiers

□ Example 14 (page 57)

■ Express the negation of ∀x∃y (xy=1) so that no negation precedes a quantifier.

Solution:

 $\neg \forall x \exists y (xy=1)$ $\equiv \exists x \neg \exists y (xy=1)$ $\equiv \exists x \forall y \neg (xy=1)$ $\equiv \exists x \forall y (xy\neq1)$

Homework

□ page 58~62

26, 28, 30, 40