Compact Ring-LWE based Cryptoprocessor

Sujoy Sinha Roy', Frederik Vercauteren', Nele Mentens',
Donald Donglong Chen? and Ingrid Verbauwhede!

'ESAT/SCD-COSIC and iMinds, KU Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
Email: {firstname.lastname}@Qesat.kuleuven.be
2Department of Electronic Engineering,

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR
Email: donald.chen@my.cityu.edu.hk

Abstract. In this paper we propose an efficient and compact processor for a ring-LWE
based encryption scheme. We present three optimizations of the Number Theoretic Trans-
form (NTT) used for polynomial multiplication: we avoid pre-processing in the negative
wrapped convolution by merging it with the main algorithm, we reduce the fixed compu-
tation cost of the twiddle factors and propose an advanced memory access scheme. These
optimization techniques reduce both the cycle and memory requirements. Finally, we also
propose an optimization of the ring-LWE encryption system that reduces the number of
NTT operations from five to four resulting in 20% speed-up. We use these computational
optimizations along with several architectural optimizations to implement an instruction-
set ring-LWE based cryptoprocessor. For dimension 512, corresponding to a high security
level, our processor performs encryption/decryption operations in 53/21us on a Virtex 6
FPGA and only requires 1879 LUTs, 1142 FFs and 3 BRAMs. Our processor is therefore
three times smaller than the current state of the art hardware implementations, whilst
running somewhat faster.

Keywords. Lattice-based cryptography, ring-LWE, Polynomial multiplication, Number
Theoretic Transform, Hardware implementation

1 Introduction

Lattice-based cryptography is considered a prime candidate for quantum-secure public key cryp-
tography due to its wide applicability [20] and its security proofs that are based on worst-case
hardness of well known lattice problems. The learning with errors (LWE) problem [19] and its
ring variant known as ring-LWE [11] have been used as a solid foundation for several crypto-
graphic schemes. The significant progress in theoretical lattice-based cryptography [13,14, 18]
has recently been followed by practical implementations [1,5,7,16,17,21].

The ring-LWE based cryptosystems operate in a polynomial ring R, = Z4[x|/(f(x)), where
one typically chooses f(z) = 2™ 4+ 1 with n a power of two, and ¢ a prime with ¢ = 1 mod 2n.
An implementation thus requires the basic operations in such a ring R,, with multiplication
taking up the bulk of the resources both in area and time. An efficient polynomial multiplier
architecture therefore is a pre-requisite for the deployment of ring-LWE based cryptography in
real world systems.

The most important hardware implementations of polynomial multipliers for rings R, are [1,
7,16,17]. In [7], a fully parallel butterfly structure is used for the polynomial multiplier resulting
in a huge area consumption. For instance, even for medium security, their ring-LWE cryptopro-
cessor does not fit on the largest FPGA of the Virtex 6 family. In [16], a sequential polynomial
multiplier architecture is designed to use the FPGA resources in an efficient way. The multiplier

uses a dedicated ROM to store all the twiddle factors which are required during the NTT com-
putation. In [17] the authors integrated the polynomial multiplier [16] in a complete ring-LWE
based encryption system and propose several system level optimizations such as a better message
encoding scheme and compression technique for the ciphertext. The work [1] tries to reduce the
area of the polynomial multiplier by computing the twiddle factors whenever required, but as
we will show, could be improved substantially by re-arranging the loops inside the NTT com-
putation. Furthermore, the paper does not include an implementation of a complete ring-LWE
cryptoprocessor.

Our contributions: In this paper we present a complete ring-LWE based encryption processor
that uses the Number Theoretic Transform (NTT) algorithm for polynomial multiplication. The
architecture is designed to have small area and memory requirement, but is also optimized to
keep the number of cycles small. In particular, we make the following contributions:

1. During the NTT computation, the intermediate coefficients are multiplied by the twiddle
factors that are computed using repeated multiplications. In [16] a pre-computed table (ROM)
is used to avoid this fixed computation cost. The more compact implementation in [1] does
not use ROM and computes the twiddle factors by performing repeated multiplications. In
this paper we reduce the number of multiplications by re-arranging the nested loops in the
NTT computation.

2. The implementations [1, 16] use negative wrapped convolution to reduce the number of evalu-
ations in both the forward and backward NTT computations. However, the use of the negative
wrapped convolution has a pre- and post-computation overhead. In this paper we basically
avoid the pre-computation which reduces the cost of the forward NTT.

3. The intermediate coefficients are stored in memory (RAM) during the NTT computation.
Access to the RAM is a bottleneck for speeding-up the NTT computation. In the imple-
mentations [1,16], FPGA-RAM slices are placed in parallel to avoid this bottleneck. In this
paper we propose an efficient memory access scheme which reduces the number of RAM ac-
cesses, optimizes the number of block RAMs and still achieves maximum utilization of the
computational blocks present in the polynomial multiplier.

4. The proposed optimization techniques are applied to design a compact architecture for the
NTT computation suitable for resource constrained platforms. We also implement pipelines in
the architecture targeting high-speed applications. The pipeline technique derives an optimal
pipeline depth for the architecture to achieve the fastest computation time.

5. Finally, we optimize one of the most popular ring-LWE encryption schemes by reducing the
number of NTT computations from five to four, thereby achieving a nearly 20% reduction in
the computation cost.

The above optimizations result in a very compact architecture that uses three times less
resources than the current state of the art implementation [17] and even achieves somewhat
faster computation time.

The remainder of the paper is organized as follows: In Section 2 we provide a brief mathe-
matical background on ring-LWE and the NTT. Section 3 contains our optimization techniques
of the NTT and Section 4 presents the actual architecture of our optimized NTT algorithm. A
pipelined architecture is given in Section 5. In Section 6, we propose an optimization of an exist-
ing ring-LWE encryption scheme and propose an efficient architecture for the complete ring-LWE
encryption system. Finally, Section 7 reports on the experimental results of this implementation.

2 Background

In this section we present a brief mathematical overview of the ring-LWE problem, the encryption
scheme we will be optimizing and the NTT.

2.1 The LWE and ring-LWE Problem

The learning with errors (LWE) problem is a machine learning problem that is equivalent to
worst-case lattice problems as shown by Regev [19] in 2005. Since then, the LWE problem has
become popular as a basis for developing quantum secure lattice-based cryptosystems.

The LWE problem is parametrized by a dimension n > 1, an integer modulus ¢ > 2 and
an error distribution, typically a discrete Gaussian distribution with deviation ¢ and mean 0, X
over the integers. The probability of sampling an integer z € Z in the Gaussian distribution X,

is given by p,(2)/ps(Z) where p,(z) = exp (’Z2) and p,(Z) = Ejioo po(2). Note that some

202
authors use the parameter s = V270 to define the Gaussian distribution or even denote the
parameter s by o to add to the confusion.

For a uniformly chosen s € Z, the LWE distribution As x over Zy x Z, consists of tuples
(a,t) where a is chosen uniformly from Zj and t = (a,s) + e mod g € Z,; and e is sampled from
the error distribution &X'. The search version of the LWE problem asks to find s given a polynomial
number of pairs (a,t) sampled from the LWE distribution A, x. In the decision version of the
LWE problem, the solver needs to distinguish with non-negligible advantage between a polynomial
number of samples drawn from A, x and the same number of samples drawn from Zg x Z,. For
hardness proofs of the search and decision LWE problems, interested readers are referred to [10].

The initial LWE encryption system in [19] is based on matrix operations which are quite
inefficient and result in large key sizes. To achieve computational efficiency and to reduce the key
size, an algebraic variant of the LWE called ring-LWE [11] uses special structured ideal lattices.
Such lattices correspond to ideals in rings Z[x]/(f), where f is an irreducible polynomial of degree
n. For efficiency reasons, the ring is often taken as R, = Zq[x]|/(f) with f(z) = 2™ + 1, where
n is a power of two and the prime ¢ is taken as ¢ = 1 mod 2n. The ring-LWE distribution on
R, x R, consists of tuples (a,t) with a € R, chosen uniformly random and t = as+e € Ry, where
s € Ry is a fixed secret element and e has small coefficients sampled from the discrete Gaussian
above. The resulting distribution on R, will also be denoted X,.

The ring-LWE based encryption scheme that we will use was introduced in the full version
of [11] and uses a global polynomial a € R,. Key generation, encryption and decryption are as
follows:

1. KeyGen(a) : Choose two polynomials ri,ry € R,y from X, and compute p =1y —a-rs € Ry.
The public key is (a,p) and the private key is ro. The polynomial r; is simply noise and is
no longer required after key generation.

2. Enc(a,p,m) : The message m is first encoded to m € R,. Three polynomials e, ea, e3 € R,
are sampled from X,. The ciphertext then consists of two polynomials ¢; = a - e; + e and
c2=p-e1+es+meR,.

3. Dec(c1,c2,r2) : Compute m’ = ¢; - r2 + ¢2 € Ry and recover the original message m from m/
using a decoder.

One of the simplest encoding functions maps a binary message m to the polynomial m € R, such
that its i-th coefficient is (¢ — 1)/2 iff the i-th bit of m is 1 and 0 otherwise. The corresponding
decoding function then simply reduces the coefficients m/ of m’ in the interval (—q/2,q/2] and
decodes to 1 when |m}| > ¢/4 and 0 otherwise.

The parameters that we use in our implementation follow the security analyzes of [10,22,
9]. Since we mainly focus on a high security level implementation, we focus on one parameter
set namely: dimension n = 512, deviation ¢ = 3.2 (to obtain a minimum s = 8) and prime
q=2%043.2'04 1. The prime ¢ was chosen such that ¢ = 1 mod 2n with the consideration that
it is smaller than the maximum ¢ following the analysis in [9] and also large enough such that no
decryption errors occur. We limit the Gaussian sampler in our implementation to 6o, meaning
that our samples are bounded to [—60, 60]. Although one can normally sample the secret 72 € R,
also from the distribution X, we restrict ro to have binary coeflicients.

Algorithm 1: Iterative NTT

Input: Polynomial a(z) € Z4[x] of degree N — 1 and N-th primitive root wy € Z4 of unity
Output: Polynomial A(x) € Z4[x] = NTT(a)
1 begin
A «— BitReverse(a);
for m =2 to n by m = 2m do
N/m |
N

)

2

3

4 Wy — W

5 w— 1;

6 for j =0 to m/2—1do

7 for k=0 ton—1 by m do
8 t—w-Alk+j+m/2];
9 u «— Alk + 7] ;

10 Alk +j] —u+t;

11 Alk+j+m/2) —u—t;
12 end

13 W — W Wy

14 end

15 end

16 end

2.2 The Number Theoretic Transform

There are many efficient algorithms in the literature to perform polynomial multiplication and a
survey of fast multiplication algorithms can be found in [2]. In this section we review the Number
Theoretic Transform (NTT) which corresponds to a Fast Fourier Transform (FTT) where the
roots of unity are taken from a finite ring instead of the complex numbers.

The FFT and NTT: Recall that the N-point FFT (with NV = 2¥) is an efficient method to eval-
uate a polynomial a(r) = Z;V;Ol ajz? € Z[x] in the N-th roots of unity wi for i =0,...,N —1
where wy denotes a primitive N-th root of unity. More precisely, on input the coeflicients
[ag,...,an—1] and wy, the FFT computes FFT([aj],wn) = [a(wl),a(wh),..,alwh)] in
O(Nlog N) time. Due to the orthogonality relations between the N-th roots of unity, we can
compute the inverse FFT simply as %FFT(-, w]f,l).

The NTT replaces the complex roots of unity by roots of unity in a finite ring Z,. Since we
require elements of order N, ¢ is chosen to be a prime with ¢ = 1 mod N. Note furthermore that
the NTT immediately leads to a fast multiplication algorithm in the ring S, = Z,[z]/(z — 1):
indeed, given two polynomials a,b € S, we can easily compute their (reduced) product ¢ =a-b €

Sq by computing
¢c=NTT,} (NTT,(a)* NTT, (b)), (1)

where * denotes point-wise multiplication.

The NTT computation is usually described recursive, but in practice we use an in-place
iterative version taken from [3] that is given in Algorithm 1. For the inverse NTT, an additional
scaling of the resulting coefficients by N~! is performed. The factors w used in line 8 are called
the twiddle factors.

Multiplication in R,: Recall that we will use R, = Z,[x|/{f) with f = 2" + 1 and n = 2",
Since f(x)|z*" — 1 we could use the 2n-point NTT to compute the multiplication in R, at the
expense of three 2n-point NTT computations and a reduction by trivially embedding the ring
R, into Sy, i.e. expanding the coefficient vector of a polynomial a € R, by adding n extra zero
coefficients. However, we can do much better by exploiting the special relation between the roots
of 2™ + 1 and 22" — 1 using a technique known as the negative wrapped convolution.

Indeed, using the same evaluation-interpolation strategy used above for the ordinary NTT,
we conclude that we can efficiently multiply two polynomials a,b € R, if we can quickly evaluate

them in the roots of f. These roots are simply wgffl for j =0,...,n—1 (since the even exponents
give the roots of z — 1) and as such can be written as wa, - wj,. These evaluations can thus be
computed efficiently using a classical n-point NTT (instead of a 2n-point NTT) on the scaled
polynomials a’(x) = a(way, -) and b (z) = a(way, -). The point-wise multiplication gives the
evaluations of ¢(z) = a(z)b(x) mod f(x) in the roots of f, and the classical inverse n-point
NTT thus results in the coefficients of the scaled polynomial ¢/(z) = ¢(way, -). To recover the
coefficients ¢; of ¢(x), we therefore simply have to compute ¢; = ¢} - w,,’. Note that the scaling
operation by n~! can be combined with the multiplications of ¢, by ws,".

3 Optimization in the NTT Computation

In this section we optimize the NTT and compare with the recent hardware implementations of
polynomial multipliers [1,16,17]. First, the fixed cost involved in computing the powers of w,,
is reduced, then the pre-computation overhead in the forward negative-wrapped convolution is
optimized, and finally an efficient memory access scheme is proposed that reduces the number of
memory accesses during the NTT and also minimizes the number of block RAMs in the hardware
architecture.

3.1 Optimizing the Fixed Computation Cost

In line 13 of Algorithm 1 the computation of the twiddle factor w «— w - wy, is performed in
the j-loop. This computation can be considered as a fixed cost. However in [1,16] the j-loop
and the k-loop are interchanged, such that w is updated in the innermost loop which is much
more frequent than in Algorithm 1. To avoid the computation of the twiddle factors, in [16] all
the twiddle factors are kept in a pre-computed look-up table (ROM) and are accessed whenever
required. As the twiddle factors are not computed on-the-fly, the order of the two innermost loops
does not result in an additional cost. However in [1] a more compact polynomial multiplier archi-
tecture is designed without using any look-up table and the twiddle factors are simply computed
on-the-fly during the NTT computation. Hence in this implementation, the interchanged loops
cause substantial additional computational overhead. In this paper our target is to design a very
compact polynomial multiplier. Hence we do not use any look-up table for the twiddle factors
and follow Algorithm 1 to avoid the extra computation of [1].

3.2 Optimizing the Forward NTT Computation Cost

Here we revisit the forward negative-wrapped convolution technique used in [1,16,17]. Recall
that the negative-wrapped convolution corresponds to a classical n-point NTT on the scaled
polynomials o’ (2) = a(way, -) and V() = (w2, - x). Instead of first pre-computing these scaled
polynomials and then performing a classical NTT, it suffices to note that we can integrate the
scaling and the NTT computation. Indeed, it suffices to change the initialization of the twiddle
factors in line 5 of Algorithm 1: instead of initializing w to 1, we can simply set w = wa,,. The
rest of the algorithm remains exactly the same, and no pre-computation is necessary. Note that
this optimization only applies to the NTT itself and not to the inverse NTT.

3.3 Optimizing the Memory Access Scheme

The NTT computation requires memory to store the input and intermediate coefficients. When
the number of coefficients is large, RAM is most suitable for hardware implementation [1, 16, 17].
In the innermost loop (lines 8-to-11) of Algorithm 1, two coefficients A[k + j] and A[k + j+m/2]
are first read from memory and then arithmetic operations (one multiplication, one addition
and one subtraction) are performed. The new A[k + j| and A[k 4+ j + m/2] are then written

back in memory. During one iteration of the innermost loop, the arithmetic circuits are thus
used only once, while the memory is read or written twice. This leads to idle cycles in the
arithmetic circuits. The polynomial multiplier in [16] uses two parallel memory blocks to provide
a continuous flow of coefficients to the arithmetic circuits. However this approach could result
in under-utilization of the RAM blocks if the coefficient size is much smaller than the word size
(for example in the ring-LWE cryptosystem [11]). In literature there are many papers on efficient
memory management schemes using segmentation and efficient address generation (see [12]) for
the classical FFT algorithm. Another well known approach is the constant geometry FFT (or
NTT) which always maintains a constant index difference between the processed coefficients [15].
However the constant geometry algorithm is not inplace and hence not suitable for resource
constrained platforms. In this paper we propose a memory access scheme which is designed to
minimize the number of block RAM slices and to achieve maximum utilization of computational
circuits present in the NTT architecture.

Since the two coefficients A[k + j] and A[k + j + m/2] are processed together in Algorithm 1,
we keep the two coefficients as a pair in one memory location. Let us analyze two consecutive
iterations of the m-loop (line 3 in Algorithm 1) for m = my and m = mo where mg = 2m;. In
the mq-loop, for some j; and k; (maintaining the loop bounds in Algorithm 1) the coefficients
(Alk1 + j1], A[k1 + g1 + m1/2]) are processed as a pair. Then k increments to k1 + my and the
processed coefficient pair is (A[k1 + m1 + j1], A[k1 + m1 + j1 + m1/2]). Now from Algorithm
1 we see that the coefficient A[k; 4 j1| will again be processed in the ma-loop with coefficient
Alk1+j1+ma/2]. Since mg = 2my, the coefficient A[ky +j1+m2/2] is the coefficient A[k1+j1+m1]
which is updated in the mj-loop for k = ki + m;. Hence during the mi-loop if we swap the
updated coefficients for k = k; and k = ki + m; and store (Alk1 + j1], Alk1 + j1 + m1]) and
(Alk1 4+ j1 +m1/2], A[k1 + j1 + 3m1/2]) as the coefficient pairs in memory, then the coefficients
in a pair have a difference of mo/2 in their index and thus are ready for the ms-loop. The
operations during the two consecutive iterations k = k1 and k = k1 + my during m = m; are
shown in Algorithm 2 in lines 8-15. During the operations w1, t1, us and to are used as temporary
storage registers.

A complete description of the efficient memory access scheme is given in Algorithm 2. In this
algorithm for all values of m < n, two coefficient pairs are processed in the innermost loop and
a swap of the updated coefficients is performed before writing back to memory. For m = n, no
swap operation of the updated coefficients is required as this is the final iteration of the m-loop.
The coeflicient pairs generated by Algorithm 2 can be re-arranged easily for another (say inverse)
NTT operation by performing address-wise bit-reverse-swap operation. Appendix A describes the
memory access scheme using an example.

4 The NTT Processor Organization

In this section we present an architecture for performing the forward and backward NTT using
the proposed optimization techniques. Our NTT processor (Figure 1) consists of three main
components: the arithmetic unit, the memory block and the control-address unit.

The Memory Block is implemented as a simple dual port RAM. To accommodate two co-
efficients, the word size is 2[logq| where ¢ is the prime modulus. In FPGAs, a RAM can be
implemented as a distributed or as a block RAM. When the amount of data is large, block RAM
is the ideal choice. In Virtex 6 FPGAs, a block RAM has word size 36 bits. For our parameter
set, the prime modulus ¢ is slightly larger than 18 bits, and the extra bits are accommodated in
a narrow distributed RAM instead of using another block RAM.

The Arithmetic Unit (NTT-ALU) is designed to support Algorithm 2 along with other
operations such as polynomial addition, point-wise multiplication and rearrangement of the co-

Algorithm 2: Iterative NTT : Memory Efficient Version

Input: Polynomial a(x) € Zq[x] of degree n — 1 and n-th primitive root w, € Z4 of unity
Output: Polynomial A(x) € Z4[x] = NTT(a)
1 begin

2 A «— BitReverse(a); /* Coefficients are stored in the memory as proper pairs */
3 for m =2 to n/2 by m = 2m do
4 Wy, < m-th primitiveroot(1) ;
5 w «— squareroot(w,,) or 1 /* Depending on forward or backward NTT */ ;
6 for j =0 to m/2 — 1 do
7 for k =0 ton/2—1 by m do
8 (t1,u1) <« (Alk+ j +m/2], Alk + j]) /* From MEMORY [k+j] */ ;
9 (t2,u2) — (Alk + + ml, ATk + j +m/2]) /* MEMORY[k-+j+m/2] */ ;
10 t1 —w-t1;
11 to «— w-t2;
12 (Alk+ 35+ m/2], Alk + j]) < (u1 — t1,ur + t1) ;
13 (Alk +m +j +m/2], A[k + m + j]) «— (u2 — t2,u2 +t2) ;
14 MEMORY [k + j] < (A[k + j + m], Alk + j]) ;
15 MEMORY [k +j +m/2] — (Alk + j + 3m/2], Alk + j +m/2]) ;
16 end
17 W— W Wy
18 end
19 end
20 m <« n ;
21 k—0;
22 w « squareroot(wy,,) or 1 /* Depending on forward or backward NTT */ ;
23 for j =0 to m/2 — 1 do
24 (t1,u1) < (A[j +m/2], Alj]) /* From MEMORYTj] */ ;
25 t1 «—w-t1;
26 (A[j +m/2), Al]) — (1 — ty,u1 + 1) ;
27 MEMORY[j] — (A[j +m/2], Alj])
28 W — W Wy
29 end
30 end

Small
ROM ROMdata

Output Coefficients
s

DOUT

MULdata

ooutf high
Ha|Hz[Hs
pourftow
RAM LafL2
DIN
l—

DIN_I

NTT-ALU

Loadl

Load2

T Control Signals

Input Coefficients
]

write enable

read address Control-Address Unit
write address

Fig. 1. Hardware Architecture for NTT

efficients. This NTT-ALU is interfaced with the memory block and the control-address unit. The
central part of the NTT-ALU consists of a modular multiplier and addition/subtraction circuits.

Now we describe how the different components of the NTT-ALU are used during the butterfly
steps (excluding the last loop for m = n). First, the memory location (k + j) is fetched and then

the fetched data (¢1,u1) is stored in the input register pair (Hi, L;). The same also happens
for the memory location (k + j + m/2) in the next cycle. The multiplier computes w - H; and
the result is added to or subtracted from L; using the adder and subtracter circuits to compute
(u1 + wty) and (u; — wty) respectively. In the next cycle the register pair (Ry, R4) is updated
with (uq — wtq, u1 +wty). Another clock transition shifts the contents of (Ry, R4) to (Rz2, Rs). In
this cycle the pair (Ry, Ry) is updated with (us — wta, ug + wts) as the computation involving
(ug2,t2) from the location (k + j + m/2) lags by one cycle. Now the memory location (k + j)
is updated with the register pair (R4, Rs) containing (us + wta, u1 + wty). Finally, in the next
cycle the memory location (k + j + m/2) is updated with (ug — wta, u; — wty) using the register
pair (Ra, R3). The execution of the last m-loop is similar to the intermediate loops, without
any data swap between the output registers. The register pair (Rq, R5) is used for updating the
memory locations. In Figure 1, the additional registers (Hs, Hs and Ls) and multiplexers are
used for supporting operations such as addition, point-wise multiplication and rearrangement of
polynomials. The Small-ROM block contains the fixed values wy,, way,, their inverses and n=".
This ROM has depth of order log(n)

The Control-and-Address Unit consists of three counters for m, j and k£ in Algorithm 2 and
comparators to check the terminal conditions during the execution of any loop. The read address
is computed from m, j and k£ and then delayed using registers to generate the write address.
The control-and-address unit also generates the write enable signal for the RAM and the control
signals for the NTT-ALU.

5 Pipelining the NTT Processor

The maximum frequency of the NTT-ALU is determined by the critical path (red dashed line in
Figure 1) that passes through the modular multiplier and the adder (or subtracter) circuits . To

g HL:2
8
]
5 Hi —|
8 L2
e Multiplier
2 1
=3 Small
3 ROM ROMdata =t
o i :
wzl,. : |
u H
DOUT hlz l : !
HL1 LT i
poupnan [ot MuLdata | |}
I|T|xT !
HL1 Lam HL2 0 '
RAM DOUTY low « v: 1
- | |
DIN -- = L g1 |
[<—H1 3
DIN_High ‘
_ + !
Pipeline | |
Register| |
f—L1 '
:
i
-R i
g : NTT-ALU |
3 I
S Load1 |
: . |
8 Load2 1
g i Control Signals !
g i
= write enable
read address Control-Address Unit
write address

Fig. 2. Pipelined Hardware Architecture for NTT

increase the operating frequency of the processor, we implement efficient pipelines based on the
following two observations.

Observation 1: During the execution of any m-loop in Algorithm 2, the computations (mul-
tiplication, addition and subtraction) involving a coefficient pair have no data dependency on
other coefficient pairs. Such a data-flow structure is suitable for pipeline processing as different
computations can be pipelined without inserting bubbles in the datapath.

Assume the modular multiplier has d,, pipeline stages and that the output is latched in a

buffer. In the (d,, + 1)th cycle after the initiation of w - ¢1, the buffer is updated w - t;. Now
we need to compute uy + w - t1 and u; — w - t; using the adder and subtracter circuits. Hence
we delay the data u; by d,, cycles so that it appears as an input to the adder and subtracter
circuits in the (d,, + 1)th cycle. This delay operation is performed with the help of a shift register
L1,...,Lg, +1 as shown in Figure 2.
Observation 2: Every increment of j in Algorithm 2 requires a new w (line 17). If the multiplier
has d,, pipeline stages, then the register-w in Figure 1 is updated with the new value of w in the
(dm + 2)th cycle. Since this new w is used by the next butterfly operations, the data dependency
results in an interruption in the chain of butterfly operations for d,, + 1 cycles. In any m-loop,
the total number of such interruption cycles is (m/2 — 1) - (dp, + 1).

To reduce the number of interruption cycles, we use a small look-up table to store a few twiddle
factors. Let the look-up table (red dashed rectangle in Figure 2) have [registers containing the
twiddle factors (w,...ww'~1). This look-up table is used to provide the twiddle factors during
the butterfly operations for say j = j' to 7 = j/ +1 — 1. The next time j increments, new
twiddle factors are required for the butterfly operations. We multiply the look-up table with w!,
to compute the next [twiddle factors (ww!,,...ww?=1) . The multiplications are independent
of each other and hence can be processed in a pipeline. The butterfly operations are resumed
after ww! is loaded in the look-up table. Thus using a small-look-up table of size I we reduce the

m

number of interruption cycles to (g7 — 1) - (dy,, 4+ 1). In our architecture we use [= 4; larger value

of [will reduce the number of interruption cycles, but will cost additional registers.

Optimal Pipeline Strategy for Speed : During the execution of any m-loop in Algorithm 2,
the number of butterfly operations is n/2. In the pipelined NTT-ALU, the cycle requirement
for the n/2 butterfly operations is slightly larger than n/2 due to an initial overhead. The state
machine jumps to the w calculation state §; — 1 times resulting in (g; — 1) - (d,, + 1) interruption
cycles. Hence the total number of cycles spent in executing any m-loop can be approximated as
shown below:

L

2])'(dm+1)

Cycles,, ~ g + (
Let us assume the delay of the critical path with no pipeline stages is D¢omp. When the critical
path is split in balanced-delay stages using pipelines, the resulting delay (D;) can be approximated
as | d[::jr"gl’; 3 where d,,, and d, are the number of pipeline stages in the modular multiplier and the
modular adder (subtracter) respectively. Since the delay of the modular adder is small compared
to the modular multiplier, we have d, < d,,. Now the computation time for the m-loop is

approximated as

Dcomb n m

T~ ——— | = —
vyl t (g

— 1) (dm +1)] zDsg+Cm.

Here C,, is constant (assuming d, < d,,) for a fixed value of m. From the above equation we find
that the minimum computation time can be achieved when Dy is minimum. Hence we pipeline
the datapath to achieve minimum Dg. The DSP based coefficient multiplier is optimally pipelined
using the Xilinx IPCore tool, while the modular reduction block is suitably pipelined by placing
registers between the cascaded adder and subtracter circuits.

Control-Address Unit

I

I
I

|
I

|
I

I
|

I
I

I
I

|
I
| |
I
| MS .-

I (7]
! \ S
I b=
| > NTT-ALU ! 3
I : > O
! =
| MO 1 =]
| ; gl
| .
‘ Memory File Load1 !
| ! £
| Input Buffers| : g
| — [Decode 2 &
| K Discrete Decoder b
| RNG . Gaussian ! 3
| ——>{ Sampler | s

I o
I | =
I Sampler | [=
I

I

Input Coefficients Message Bit

Fig. 3. Ring-LWE Cryptoprocessor

6 The ring-LWE Encryption Scheme

The ring-LWE encryption scheme in [17] optimizes computation cost by keeping the fixed poly-
nomials in the NTT domain. The message encryption and decryption operations require three
and two NTT computations respectively. In this paper we reduce the number of NTT operations
for decryption from two to one. The proposed ring-LWE encryption scheme is described below:

1. KeyGen(a) : Choose a polynomial 1 € R, from A, choose another polynomial ry with
binary coefficients and then compute p = —a-ry € R,. The NTT is performed on the three
polynomials a, p and ry to generate a, p and 75. The public key is (@, p) and the private key
is 7:2.

2. Enc(a,p,m): The message m is first encoded to m € R,. Three polynomials eq, e, e3 € R,
are sampled from X,. The ciphertext is then computed as:

~1 — NTT(el); €~2 — NTT(@Q)
(C~1, C~2) — (ZL * €~1 + €~2; ﬁ * €~1 + NTT(eg + ﬁl))

3. Dec(c1,¢2,72) : Compute m’ as m' = INTT(é * 72 + &) € Ry and recover the original
message m from m’ using a decoder.

The scheme requires both encryption and decryption to use a common primitive root of unity.

6.1 Hardware Architecture for the Ring-LWE Encryption Scheme

Figure 3 shows a hardware architecture for the ring-LWE encryption system. The basic building
blocks used in the architecture are: the memory file, the arithmetic unit, the discrete Gaussian
sampler and the control-address generation unit. The arithmetic unit is the NTT-ALU that we
described in the previous section. Here we briefly describe the memory file and the discrete
Gaussian sampler.

The Memory File is designed to support the maximum memory requirement that occurs during
the encryption of the message. Six memory blocks My to M5 are available in the memory file

10

and are used to store @, p, €1, ea, e and m respectively. The memory blocks have width 2[log ¢]
bits and depth n/2. All six memory blocks share a common read and a write address and have
a common data-input line, while their data-output lines are selected through a multiplexer. Any
of the memory blocks in the memory file can be chosen for read and write operation. Due to
the common addressing of the memory blocks, the memory file supports one read and one write
operation in every cycle.
The Discrete Gaussian Sampler is based on the compact Knuth-Yao sampler [8] architecture
proposed in [21]. Though the sampler is very compact it is also quite slow due to sequential
scanning of the probability bits. We improve the cycle requirement of the sampler using a look-
up table that maps eight random bits into a sample value or an intermediate distance in the 8th
column of the probability matrix [21]. A successful look-up operation returns a sample and the
sign of the sample is determined by the 9th random bit. In case the look-up operation fails, the
Knuth-Yao random walk [21] is performed with the initial distance obtained from the look-up
operation. Recall that for our parameter set, we use standard deviation o = 3.2 (or s = 8.02)
and sample upto a tail-bound of 6o.
The Cycle Count for the encryption and decryption operations can be minimized in the
following way. During the encryption operation, first the three error polynomials eq, es and eg
are generated by invoking the discrete Gaussian sampler 3n times. Next the encoded message m
is added to e3 and then three consecutive forward NTT operations are performed on e;, e5 and
(es+m). Finally the ciphertext ¢1, ¢ is obtained using two point-wise multiplications followed by
two polynomial additions and two rearrangement operations. The decryption operation requires
one point-wise multiplication, one polynomial addition and finally one inverse NTT operation.
For (n,0) = (512, 3.2), the sampling operation during the encryption uses the look-up table
on average 1500 times requiring 1500 cycles. An additional 173 cycles are spent on average for
the remaining 36 sampling operations using bit-scanning. The polynomial addition and point-
wise multiplication operations require n cycles each with a small overhead. The consecutive
processing of I forward or inverse NTTs can share a fixed computation cost fc and requires in total
Jfe+ 1 x §log(n) cycles. For inverse NTT, the fixed cost fcin, is larger than the fixed cost fcfwa
of forward NTT due to the final scaling operation by wa, /N (Section 2.2). The rearrangement
of polynomial coefficients after an NTT operation requires less than n cycles. From the above
cycle counts for each primitive operations, we see that the encryption and decryption operations
require total fcpuq + Snlog(n) + 10n and feiny + 2 log(n) 4 2n cycles respectively along with
additional overhead. Our hardware architecture for n = 512 has the fixed computation costs
ferwa = 1143 and fejny = 1959 cycles.

7 Experimental Results

We have implemented the proposed ring-LWE cryptosystem on the Xilinx Virtex 6 FPGA for
dimension 512, corresponding to a high security level. The area and performance results for the
overall architecture are obtained from the Xilinx ISE12.2 tool after place and route analysis and
are shown in Table 1. In the table we also compare our results with other reported hardware
implementations of the ring-LWE encryption scheme. Our implementation is both fast and small
due to its computational optimization and resource efficient design style. The discrete Gaussian
sampler consumes only 93 LUTSs and has a delay of 2.73ns. Such a small delay makes the sampler
suitable for integration in the pipelined ring-LWE processor. We use nine parallel true random
bit generators [6,4] to generate the random bits for the sampler. The set of true random bit
generators consume 378 LUTs and 9 FFs.

The first hardware implementation of the ring-LWE encryption scheme in [7] uses a heavily
parallel architecture to minimize the number of clock cycles for the NTT computation. Due to
the many parallel computational blocks, the architecture is very large (0.29 million LUTs and
0.14 million FFs for n = 256) and does not even fit on the largest FPGA of the Virtex 6 family.

11

Implementation Parameters Device |[LUTs| FFs| Freq |DSP|BRAMs Cycles/Time
(n,q,s) (MHz) (18K) | Encryption | Decryption
Our (512,1051649,8.02) [LX75T]| 1879 [1142] 250 1 3 13287/53.1 pus|[5320/21.3 pus
Poppelmann[17]] (512,12289,12.18) [LX75T| 5595 [4760] 251 1 14 13769/54.8 11s[8883/35.4 pus

Table 1. Performance of the ring-LWE Cryptoprocessors on Virtex 6 FPGAs

Performance results such as cycle count and frequency are not reported in their paper. The
architecture uses a Gaussian distributed array (indexed by an LFSR) for sampling of the error
coeflicients up to a tail-bound of 2s.

The implementation in [17] is small and fast due to its resource-efficient design style. A high
operating frequency is achieved using pipelines in the architecture. However the paper does not
provide details of the actual pipeline strategy. The architecture uses a ROM that keeps all the
twiddle factors required during the NTT operation. This approach reduces the fixed computation
cost (fc) but consumes block RAM slices in FPGAs. Additionally, the parallel RAM blocks in
the NT'T processor result in a larger memory requirement compared to our design. The discrete
Gaussian sampler uses the inversion sampling method and thus requires many random bits to
output a sample value. To supply many random bits, an AES core is used and hence the overall
area and delay are larger compared to our sampler architecture.

Although our architecture does not use a dedicated ROM for storing the twiddle factors, it still
achieves smaller cycle count and faster computation time compared to [17]. The encryption scheme
in [17] computes one forward and two inverse NTTs; while our encryption scheme computes only
forward NTTs and hence does not require the 4n cycles for the scaling operation. Additionally
our negative convolution method is free from the precomputation that takes n cycles in [17].
Hence we save 5n cycles in total during the NTT operations in an encryption operation. Since
the fixed computation cost fcgyq is smaller than 5n, we gain in cycle count for the encryption
operation. The decryption operation in our case is trivially faster than [17] as only one NTT
is performed. We also reduce the area and memory requirement significantly compared to [7,
17]. This reduction is achieved by our resource-efficient design decisions such as 1) absence of a
dedicated ROM for the twiddle factors, 2) an efficient RAM access and storage scheme, 3) use
of one modular multiplier, 4) use of a smaller and faster (low-delay) discrete Gaussian sampler,
and finally 5) the resource sharing between different computations.

8 Conclusion

This paper proposed several optimizations for implementing a ring-LWE based encryption system.
The first set of optimizations improved the NTT by reducing the computation cost of the twiddle
factors, avoiding the pre-computation during the forward NTT, and deriving an efficient memory
access scheme that increases the utilization of the arithmetic components and the memory blocks.
A further optimization reduced the number of NTTs required in the encryption scheme from five
to four. The proposed optimizations are implemented in an efficient cryptoprocessor for the ring-
LWE encryption system that not only is three times smaller in area and memory than any other
reported implementations, but also even faster. These features make the architecture suitable for
resource constrained platforms. Furthermore, the paper investigated architectural acceleration
to meet the high speed requirement for real-time applications and proposes an optimal pipeline
strategy that results in a very fast computation time whilst using minimum area and memory.
Although the paper focuses on implementation of the ring-LWE based encryption system, we
finally remark that the proposed optimization techniques for the NTT computation are applicable
for other lattice based cryptosystems where similar polynomial multiplications are performed.

12

Acknowledgment

This work was supported in part by the Research Council KU Leuven: TENSE (GOA/11/007), by
iMinds, by the Flemish Government, FWO G.0550.12N, by the Hercules Foundation AKUL/11/19
and by the Erasmus Mundus Scholarship. We are thankful to Bohan Yang and Vladimir Rozic
for useful technical discussions related to memory and random number generation.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Aysu, C. Patterson, and P. Schaumont. Low-cost and Area-efficient FPGA Implementations of
Lattice-based Cryptography. In HOST, pages 81-86. IEEE, 2013.

D. Bernstein. Fast Multiplication and its Applications. Algorithmic Number Theory, 44:325-384,
2008.

T. Cormen, C. Leiserson, and R. Rivest. Introduction — To Algorithms.
http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/toc.htm.

M. Dichtl and J. D. Golic. High-Speed True Random Number Generation with Logic Gates Only. In
Cryptographic Hardware and Embedded Systems - CHES 2007, volume 4727 of LNCS, pages 45-62.
Springer Berlin, 2007.

T. Frederiksen. A Practical Implementation of Regev’s LWE-based Cryptosystem. In
http://daimi.au.dk/ jot2re/lwe/resources/, 2010.

J. D. Golic. New Methods for Digital Generation and Postprocessing of Random Data. [FEE
Transactions on Computers, 55(10):1217-1229, 2006.

N. Gottert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On the Design of Hardware Building
Blocks for Modern Lattice-Based Encryption Schemes. In Cryptographic Hardware and Embedded
Systems CHES 2012, volume 7428 of LNCS, pages 512-529. Springer Berlin, 2012.

D. E. Knuth and A. C. Yao. The Complexity of Non-Uniform Random Number Generation. Algo-
rithms and Complezity, pages 357-428, 1976.

T. Lepoint and M. Naehrig. A comparison of the homomorphic encryption schemes FV and YASHE.
TACR Cryptology ePrint Archive, 2014:62, 2014.

R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-based Encryption. CT-RSA
2011, pages 319-339, 2011.

V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with Errors over Rings.
In Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 1-23. Springer Berlin Heidelberg, 2010.

Y. Ma and L. Wanhammar. A Hardware Efficient Control of Memory Addressing for High-
performance FFT Processors. Signal Processing, IEEE Transactions on, 48(3):917-921, Mar 2000.
D. Micciancio. Lattices in Cryptography and Cryptanalysis. 2002.

P. Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In Cryptography and Lat-
tices, International Conference (CaLC 2001), volume 2146 of LNCS, pages 146-180. Springer-Verlag,
Berlin, 2001.

J. Pollard. The Fast Fourier Transform in a Finite Field. Mathematics of Computation, 25:365374,
1971.

T. Péppelmann and T. Giineysu. Towards Efficient Arithmetic for Lattice-Based Cryptography on
Reconfigurable Hardware. In A. Hevia and G. Neven, editors, Progress in Cryptology LATINCRYPT
2012, volume 7533 of LNCS, pages 139-158. Springer Berlin, 2012.

T. Péppelmann and T. Giineysu. Towards Practical Lattice-Based Public-Key Encryption on Recon-
figurable Hardware. In Selected Areas in Cryptography SAC 2013, LNCS. Springer-Verlag, Burnaby,
Canada, 2013, Preprint.

O. Regev. Quantum Computation and Lattice Problems. SIAM J. Comput., 33(3):738-760, Mar.
2004.

O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In Proceed-
ings of the thirty-seventh annual ACM symposium on Theory of computing, STOC ’05, pages 84-93,
New York, NY, USA, 2005. ACM.

O. Regev. Lattice-Based Cryptography. In C. Dwork, editor, Advances in Cryptology - CRYPTO
2006, volume 4117 of LNCS, pages 131-141. Springer Berlin, 2006.

13

Memory Index Memory Index

|
|
|
|
|
|
|
1 |
| o E
| Oy IrD |
| =z % ‘
! RdQL—> —3 WiQ1 g,
S S
! Iteration E =
I RdQ2 2 wtQ2 3!
| @ o |
| x x
| Read_Memory_Index_Queue Write_Memory_Index_Que“

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 4. Instruction Execution Hardware

21. S. S. Roy, F. Vercauteren, and I. Verbauwhede. High precision discrete gaussian sampling on fpgas.
proceedings of SAC, 2013.

22. J. van de Pol and N. P. Smart. Estimating key sizes for high dimensional lattice-based systems. In
M. Stam, editor, IMA Int. Conf., volume 8308 of Lecture Notes in Computer Science, pages 290-303.
Springer, 2013.

Appendix A

Table 2 shows the memory contents during the execution of Algorithm 2 for n = 16. The column-
heading represents (m, j, k) during the iterations. The end loop in line 19 of Algorithm 2 for
m = 16 performs no swap and is shown in the table using * symbol.

Address| Initial [(2,0,0)] (2,0,6) [(4,0,0)] (4,0,4) | (4,1,4) | (8,3,0) [(16,7,0)%
0 Aqr Ao |Aza Ag| Az Aog |As Ao| Ay Ao | Ag Ao | As Ao | As Ao
1 Az As |Az Aq| As Ay As A1 | Ag A1 | Ag Ay
2 As Ay A Ay |As Az| As Az | As A2 |A1o A2| A1o Ao
3 Ar Ag A7 As A7 Az |A As| A As
4 Ag Ag Ao As Az Ag | A1o Ag |A1a As| Arx As
5 A1 Ao A1 Ao A1z Ag |A1z As| Aiz As
6 A1z Aro Arg Aro A1a Aro|A1a Aro|Ara As| Ara As
7 Ais Awa Ais Ass Ais A11|Ars Az7| Ais Ar

Table 2. Memory content during the steps in a 16-point NTT

Appendix B

Our ring-LWE cryptoprocessor has one instruction-register, one iteration-register, one read-
memory-index-queue and one write-memory-index-queue (Figure 4). The read and write memory-
index-queues are loaded with the memory indexes. Since our ring-LWE cryptoprocessor has six
memory blocks MO0 to M5, the indexes are in the range 0 to 5. The instruction is stored in the
Instruction register and the number (I) of consecutive NTT operations is kept in the Iteration
register. The following instructions are supported by the processor.

1. LOAD : A memory block indexed by WtQO is loaded with n coefficients. Since two coefficients
are processed in a cycle, the instruction takes n/2 + e cycles.

14

. ENCODE-LOAD : A memory block indexed by WtQO0 is loaded with an encoded message.
The input message bits are first encoded using the encoder and then loaded in the memory
block as proper coefficient-pairs. This instruction requires n + € cycles.

. GAUSSIAN-LOAD : A memory block indexed by WtQO0 is loaded with n samples. The cycle
count for this operation depends on the standard deviation and n.

. FNTT/INTT : Is used to perform inplace forward or inverse NTT. The number of consecutive
NTTs is stored in the iteration-register and the indexes of the memory blocks are kept in the
read-memory-index-queue

. ADD/CMULT : Two memory blocks indexed by RIQ0 and RdQ1 are added or coefficient-
wise multiplied. The result is stored in the memory block indexed by WtQO0. These two
instructions require n + € cycles.

. REARRANGE : Performs rearrangement of coefficient pairs in a memory block indexed by
RdQO. This instruction requires less than n cycles.

. READ : The contents of a memory block indexed by RdQO0 are read. This instruction requires
n/2+ € cycles.

15

