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Abstract. We consider the binary-LWE problem, which is the learn-
ing with errors problem when the entries of the secret vector are chosen
from {0, 1} or {−1, 0, 1} (and the error vector is sampled from a discrete
Gaussian distribution). Our main result is an algorithm for binary-LWE
that first translates the problem to the inhomogeneous short integer so-
lution (ISIS) problem, and then solves the closest vector problem using
a re-scaling of the lattice. We also discuss modulus switching as an ap-
proach to the problem. Our conclusions are that binary-LWE is easier
than general LWE. We give experimental results that will be of help
when choosing parameters for binary-LWE to achieve certain security
levels.
Keywords: learning with errors, closest vector problem.

1 Introduction

The learning with errors problem is: Given an m × n matrix A and a vector
b ≡ As+e (mod q), where e ∈ Z

m
q is a “short” error vector, to compute s ∈ Z

n
q .

This is a computational problem of major current importance in cryptography.
Recently, Brakerski, Langlois, Peikert, Regev and Stehlé [6] and Micciancio and
Peikert [17] have considered variants of this problem where the secret vectors
are chosen uniformly from the set {0, 1}n or {−1, 0, 1}n, rather than from Z

n
q .

This variant of the problem is called binary-LWE.
It is natural to expect that the binary-LWE problem is easier than the stan-

dard LWE problem, but it is an open question to determine how much easier.
Both papers [6, 17] give reductions that imply that binary-LWE is hard, but those
results require increasing the parameter n to approximately n log2(n). An inter-
esting problem is to determine whether these results are optimal. As an example,
taking n = 256 for standard LWE would lead to a parameter n log2(n) = 2048
for binary LWE, which seems excessive.

The goal of this paper is to develop and analyse some algorithms for the
binary-LWE problem. We first translate the problem to a related problem called
the inhomogeneous short integer solution problem (ISIS). Our main tool is to
rescale the lattice so that the standard methods to solve the closest vector prob-
lem are more effective. We also consider other approaches to the problem, such



as modulus switching. We show that modulus switching is not a helpful tool in
this setting, which may be counter-intuitive. The main contribution of the paper
is to give theoretical and experimental analysis of the algorithm.

Experimental results with the new algorithm do confirm that the parameter
n needs to be increased when using binary-LWE. Returning to the example of
n = 256, our results suggest that a parameter around 400 may be sufficient to
achieve the same security level as standard LWE with parameter 256. This is
much smaller and therefore more practical than using parameter 2048.

Our approaches are all based on lattice attacks. There is another class of algo-
rithms for LWE that are more combinatorial, originating with Blum, Kalai and
Wasserman [5, 1]. However, these algorithms require an extremely large number
of samples from the LWE distribution, which may not be realistic in certain
applications.

The paper is organised as follows. Sections 2 and 3 give precise definitions
for the LWE and binary-LWE problems. Section 4 recalls the current state-of-
the-art for lattice attacks on LWE. Section 5 describes modulus switching and
evaluates its performance. Section 6 contains our algorithm and its analysis,
specifically the description of the rescaling in Section 6.1 and the discussion of
why modulus switching is unhelpful in Section 6.3. Some experimental results,
that confirm our improvement over previous methods, are given in Section 7.

2 Basic definitions

Let σ ∈ R>0. Define ρσ(x) = exp(−x2/(2σ2)) and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x).
The discrete Gaussian distribution Dσ on Z with standard deviation σ is the
distribution that associates to x ∈ Z the probability ρσ(x)/ρσ(Z).

Fix parameters (n,m, q, σ). Typical choices are (n,m, q, σ) = (256, 640, 4093, 32).
Let A be a uniformly chosen m × n matrix with entries in Zq. Let s and e be
integer vectors of lengths n and m respectively whose entries are sampled inde-
pendently from the Gaussian distribution on Z with standard deviation σ (this is
the case of LWE with secrets chosen from the error distribution, which is no loss
of generality [2]). We call s the “secret vector” and e the “error vector”. The LWE
distribution is the distribution on (Zm×n

q ,Zm
q ) induced by pairs (A,b ≡ As+ e

(mod q)) sampled as above. The search-LWE problem is: Given (A,b) chosen
from the LWE distribution, to compute the pair (s, e). The search-LWE problem
is well-defined if there is one pair (s, e) satisfying b ≡ As + e (mod q) that is
significantly more likely (with respect to the distributions on (s, e)) to have be
chosen than any other solution.

The (m,n, q,B)-SIS problem is: Given an n × m integer matrix A′ (where
typically m is much bigger than n) and an integer q to find a vector y ∈ Z

m,
if it exists, such that A′y ≡ 0 (mod q) and y ∈ B. Here B is a set of vectors
that are “short” in some sense (e.g., B = {y ∈ Z

m : ‖y‖ ≤ B} for some bound
B, or B = {−1, 0, 1}m). One can also define an inhomogeneous version of the
SIS problem (ISIS): Given A′ and v find y ∈ B, if it exists, such that A′y ≡ v

(mod q).



The LWE problem can be rephrased as inhomogenous-SIS: Given (A,b ≡
As+ e (mod q)) one can form the ISIS instance

(A|Im)

(

s

e

)

≡ b (mod q)

where Im is the m × m identity matrix. Conversely, ISIS can be translated to
LWE, for details see Lemmas 9 and 10 of Micciancio and Mol [16]. However, it is
notable that the (I)SIS problem has often been considered in the case when the
solution vector y might lie in {0, 1}m or {−1, 0, 1}m and might not be uniquely
determined, whereas for LWE the focus has always been on vectors sampled
from discrete Gaussians and there being a unique most likely solution.

2.1 Size of the error vector

Let Dσ be the discrete Gaussian distribution on Z with standard deviation σ.
Let e be sampled from Dm

σ , which means that e = (e1, . . . , em) is formed by
taking m independent samples from Dσ. We need to know the distribution of
‖e‖. If the entries ei were chosen from a true Gaussian with standard deviation
σ then ‖e‖2 comes from the chi-squared distribution, and so has mean mσ2.
Since our case is rather close, we assume that ‖e‖2 is also close to a chi-squared
distribution, and we further assume that the expected value of ‖e‖ is close to√
mσ. Lyubashevsky (Lemma 4.4(3) of the full version of [14]) shows that

Pr
(

‖e‖ ≤ kσ
√
m
)

≥ 1−
(

ke
1−k2

2

)m

.

This supports our assumption that ‖e‖ ≈ √
mσ. To achieve overwhelming prob-

ability, we may use k ≈ 2. In practice, this bound is quite useful for k ' 1. In any
case, we can easily estimate the expected value of ‖e‖ for any fixed parameters
by sampling.

3 Binary LWE

We now restrict the LWE problem so that the secret vector s is chosen to lie in
a much smaller set.

Fix (n,m, q, σ). To be compatible with Regev’s results (e.g., see Theorem 1.1
of [20]) we will usually take σ = 2

√
n. Let A be a uniformly chosen m × n

matrix with entries in Zq. Let s ∈ Z
n have entries chosen independently and

uniformly from {0, 1}. Let e ∈ Z
m have entries sampled independently from the

discrete Gaussian distribution on Z with standard deviation σ. The binary-LWE
distribution is the distribution on (Zm×n

q ,Zm
q ) induced by pairs (A,b = As+ e

(mod q)) sampled as above. The search-binary-LWE problem is: Given (A,b)
chosen from the binary-LWE distribution, to compute the pair (s, e). One can
also define a decisional assumption, but in this paper we focus on the search
problem.



The binary-LWE problem has been considered by several authors. Brakerski,
Langlois, Peikert, Regev and Stehlé [6] have considered it. For them, binary-
LWE means secret vectors s ∈ {0, 1}n. The main focus of their paper is to prove
hardness results for LWE in the classical setting (i.e., without using quantum
algorithms as in Regev’s original result). They use modulus switching, which is
a tool to transform an LWE instance modulo q to an LWE instance modulo a
different prime q′.

Micciancio and Peikert [17] have binary-LWE meaning s ∈ {−1, 0, 1}n. Their
main result is a hardness result for the case where not only the secrets are small
but even the errors are small. Of course, due to the Arora-Ge attack [3] this
is only possible if one makes the (realistic) assumption that one has access to
a very restricted number of samples from the LWE distribution. Indeed, this
problem is basically ISIS, since the ISIS problem is always stated in terms of a
fixed number of samples.

It is worth noting here that there is a standard reduction [2] from LWE to the
case of LWE where the secret is chosen from the error distribution. But there
is not a general reduction from LWE instances to ones whose error is chosen
from the secret’s distribution (apart from the naive case of n×n LWE instances
(A,b ≡ As + e (mod q)) giving (A′ ≡ A−1 (mod q),b′ ≡ A−1b ≡ A′e + s

(mod q))).

Both papers [6, 17] give reductions that imply that binary-LWE is hard, as-
suming certain other lattice problems are hard. Essentially, the papers relate
(n, q)-binary-LWE to (n/t, q)-LWE (where t = O(log(n)) = O(log(q))). In other
words, we can be confident that binary-LWE is hard as long as we increase the
parameter n by a factor of log(n). For example, taking n = 256 as a reasonably
hard case for standard LWE, we can be confident that binary-LWE is hard for
n = 256 log2(256) = 2048. Our feeling is that these reductions are too conserva-
tive, and that binary-LWE is harder than these results would suggest.

The main goal of our paper is to study the LWE problem where the secret
vector is binary, but the errors are still discrete Gaussians. We focus on the
case s ∈ {−1, 0, 1}n, but our methods are immediately applicable to the case
s ∈ {−B, . . . ,−1, 0, 1, . . . , B} for any B < σ.

It is clear that one can solve the binary-LWE problem in O(2n) operations
(or O(3n) when entries are in {−1, 0, 1}), by trying all choices for s and testing
whether b − As (mod q) is a short vector. There is also a meet-in-the-middle
attack that requires Õ(2n/2) (respectively, Õ(3n/2)) space and time: Compute
and store in a list (sorted according to most significant bits of vector the entries)
all As1 (mod q) where s1 = (s1, . . . , s⌊n/2⌋, 0, 0, . . . , 0) runs over all choices, then
compute all b −As2 (mod q) where s2 = (0, . . . , 0, s⌊n/2⌋+1, . . . , sn) and check
for a near vector in the list. Such attacks can be defeated by taking n ≥ 200 (the
storage requirement is the most serious constraint).



4 Standard lattice attack on LWE

We recall the standard lattice decoding attack on LWE, and its analysis. Let
L = Λq(A

T ) = {v ∈ Z
m : v ≡ As (mod q), s ∈ Z

n}. This is a lattice of rank m.
Typically the rank of A will be n, and so L has volume qm−n. Suppose one can
solve the closest vector problem (CVP) instance (L,b). Then one finds a vector
v ∈ L such that ‖b − v‖ is small. Writing e = b − v and v ≡ As (mod q) for
some s ∈ Z

n (it is easy to solve for s using linear algebra when m ≥ n), then

b ≡ As+ e (mod q).

Hence, if we can solve CVP then we have a chance to solve LWE.
The CVP instance can be solved using the embedding technique [10] (re-

ducing CVP to SVP in a lattice of dimension one larger) or an enumeration
algorithm (there are several such algorithms, but Liu and Nguyen [11] argue
that all variants can be considered as cases of pruned enumeration algorithms).
For our preliminary analysis we use the embedding technique, so we recall this
now. Some discussion of enumeration algorithms will be given in Section 7.3.

Let L ⊆ Z
m be a lattice of rank m with (column) basis matrix B, and

suppose b ∈ Z
m is a target vector. Note that det(B) = vol(L). We wish to

find v = Bu ∈ L such that e = v − b = Bu − b is a short vector. The idea
is to consider the basis matrix, where M ∈ N is chosen appropriately (e.g.,
M ≈ √

mσ),

B′ =

(

B b

0 M

)

. (1)

This is the basis for a lattice L′ of rank d = m + 1 and volume Mvol(L).
Note that

B′
(

u

−1

)

=

(

Bu− b

−M

)

=

(

e

−M

)

.

Hence, the (column) lattice generated by B′ contains a short vector giving a
potential solution to our problem. One therefore applies an SVP algorithm (e.g.,
LLL or BKZ lattice basis reduction).

Lyubashevsky and Micciancio (Theorem 1 of [13]) argue that the best choice
for M above is ‖e‖, which is approximately

√
mσ in our case. However, in our

experiments M = 1 worked fine (and leads to a more powerful attack).

4.1 Unique-SVP

Gama and Nguyen [8] have given a heuristic approach to estimate the capability
of lattice basis reduction algorithms (their heuristic is with respect to random
lattices from a certain distribution). Consider a lattice basis reduction algorithm
that takes as input a basis for a lattice L of dimension d, and outputs a list of
vectors b1, . . . ,bd. Gama and Nguyen define the root Hermite factor of such an
algorithm to be δ ∈ R such that

‖b1‖ ≤ δdvol(L)1/d



for all d and almost all lattices L.
The standard LLL algorithm corresponds to δ = 1.021. The paper [8] argues

that δ = 1.01 is about the limit of practical algorithms (i.e., variants of BKZ
using extreme pruning and large block size). Chen and Nguyen [7] extended this
analysis to algorithms with greater running time. Their heuristic argument is
that a Hermite factor corresponding to δ = 1.006 might be reachable with an
algorithm performing around 2110 operations.

In Section 3.3 of [8], Gama and Nguyen turn their attention to the unique-
SVP problem. Here, one seeks a short vector in a lattice L when one knows that
there is a large gap γ = λ2(L)/λ1(L), where λi(L) denotes the i-th successive
minima of the lattice. The unique-SVP problem arises when solving CVP using
the embedding technique. The standard theoretical result is that if one is using
a lattice reduction algorithm with Hermite factor δ, then the algorithm outputs
the shortest vector if the lattice gap satisfies γ > δ2m. However, Gama and
Nguyen argue that the algorithm will succeed as long as γ > cδm for some small
constant c (their paper gives c = 0.26 and c = 0.45 for different families of
lattices).

4.2 Application to LWE

Consider running the embedding technique on an LWE instance, using the lattice
L′ from equation (1). We have a good chance of getting the right answer if the
error vector e is very short compared with the second shortest vector in the
lattice L′, which we assume to be the shortest vector in the original lattice L.

The Gaussian heuristic suggests that the shortest vector in a lattice L of rank
d will have Euclidean norm about 1√

π
Γ (1 + d/2)1/dvol(L)1/d which is approxi-

mately
√

d
2πevol(L)

1/d. In the lattice L, where d = m, this is
√

m/(2πe)q(m−n)/m.

Note also that our lattices contain known vectors of Euclidean length equal to
q. Hence, our estimate of the Euclidean length of known short vectors is

λ2(L
′) = λ1(L) ≈ min{q,

√

m/(2πe)q(m−n)/m}.

In contrast, the vector e has Euclidean length around
√
mσ on average (see

Section 2.1), and so the vector ( e

M ) has length approximately
√
2mσ when M =√

mσ. In our experiments we take M = 1 and so assume that λ1(L
′) =

√
mσ.

Hence the gap is

γ(m) =
λ2(L

′)

λ1(L′)
=

min{q, 1√
π
Γ (1 + m

2 )
1/mq(m−n)/m}

√
mσ

≈ min{q,
√

m/(2πe)q(m−n)/m}√
mσ

.

(2)
For a successful attack we want this lattice gap to be large, so we will need

σ ≪ q(m−n)/m < q/
√
m.

To determine whether an LWE instance can be solved using the embedding
technique and a lattice reduction algorithm with a given (root) Hermite factor



δ, one can choose a suitable subdimension m and verify that the corresponding
gap satisfies the condition γ(m) > cδm for a suitable value c. Since the constant
c is unknown, we can maximize min{q, q(m−n)/m}/δm for fixed n, q, δ to get
the “optimal” sub-dimension (which maximizes the success probability of the
algorithm) to be

m =
√

n log(q)/ log(δ), (3)

where δ is the Hermite factor of the lattice basis reduction algorithm used.
Furthermore, we may assume c is upper bounded by 1 due to Gama and

Nguyen [8]. Hence, for fixed n, q, σ = 2
√
n, we can easily compute values (m, δ)

satisfying the constraint γ1/m ≥ δ and such that δ is maximal. These values
have lattice dimension m as in equation (3). By doing this we obtained Table 1
(for n ≥ 160 the length of the second shortest vector is taken to be q and this
leads to very large dimensions; enlarging q to around 13000 in the case n = 300
leads to m = 1258 and δ ≈ 1.002). The last row consists of the estimated time

log(TBKZ) =
1.8

log2(δ)
− 110 (4)

for running the BKZ lattice basis reduction algorithm, based on Lindner and
Peikert’s work [12]. Note that we do not know the value of the constant c for
our lattices, only the experimental results by Gama and Nguyen [8]. There is no
known sharp theoretical bound for it. Hence the running time in Table 1 may
not be the optimal embedding attack for the LWE problem with parameter n.

The running times and values for δ in Table 1 are worse than those reported
in some other papers on LWE. This is because we consider rather large values
σ = 2

√
n for the error distribution, instead of very small values like σ = 3. Since

LWE can always be reduced to the case where the secrets are chosen from the
error distribution, the question of the hardness of binary-LWE is most interesting
when the error distribution itself is not very small.

Table 1: Theoretical prediction of (optimal) root Hermite factor δ and running time
T of the standard embedding technique algorithm for LWE instances with q = 4093,
σ = 2

√
n for the given values for n. The lattice dimension d = m + 1 is calculated

using equation (3) and the running time T is estimated from equation (4) using the δ

in high precision.

n 30 40 50 60 70 100 150 200 250 300

d 110 151 194 239 284 425 673 1144 1919 3962
δ ≈ 1.0208 1.0147 1.0111 1.0088 1.0072 1.0046 1.0028 1.0013 1.0006 1.0002

log(T ) ≈ 0 0 3 33 63 161 343 872 2100 7739

4.3 How to solve ISIS

Recall the inhomogeneous-SIS (ISIS) problem: Given (A′,v) to find a short
vector y ∈ Z

m such that v ≡ Ay (mod q). It is standard that ISIS is also



attacked by reducing to CVP: One considers the lattice L′ = Λ⊥
q (A

′) = {y ∈
Z
m : A′y ≡ 0 (mod q)}, finds any vector (not necessarily short) w ∈ Z

m such
that A′w ≡ v (mod q), then solves CVP for (L′,w) to get y close to w and so
returns w− y as the ISIS solution.

We sketch the details of solving LWE (in the case of short secrets) by reducing
to ISIS and then solving by CVP (more details are given in Section 6). Given
(A,b) we define A′ = (A|Im) to get an ISIS instance (A′,b). Choose any vector
w ∈ Z

n+m such that A′w ≡ b (mod q). Then the lattice L′ = Λ⊥
q (A

′) = {y ∈
Z
n+m : A′y ≡ 0 (mod q)} is seen to have rank m′ = n+m and (assuming the

rank of A′ is n) determinant qm = qm
′−n (the determinant condition can be

seen by considering the index of the subgroup qZn+m in the additive group L′).
The condition for success in the algorithm is σ ≪ qm/(n+m). Writing m′ = n+m
this is q(m

′−n)/m′

, which is the same as the LWE condition above.

4.4 Distinguishing attack

One can also study the decisional variant of the LWE problem: Given a pair
(A,b) to decide if it has been sampled uniformly at random from Z

m×n
q × Z

m
q ,

or from the LWE distribution. There is a standard distinguishing algorithm based
on finding short vectors in the lattice {v ∈ Z

m : vA ≡ 0 (mod q)}. The idea is
that if v is such a lattice point and if b ≡ As+e (mod q) then vb ≡ ve (mod q)
may be a small integer. Linder and Peikert [12] have argued that this approach is
generally less effective than the decoding attack on the computational variant of
LWE. We remark that one can define a decisional variant of binary-LWE (where
the LWE distribution is defined by choosing both s and e to be small), but the
above distinguishing attack no longer solves this problem as it only tests that e
is small. Hence, we do not consider the distinguishing attack in this paper.

5 Modulus switching

Modulus switching was first proposed by Brakerski and Vaikuntanathan [4], in
the context of homomorphic encryption. Write the LWE instance (A,b ≡ As+e

(mod q)) as
b = As+ e+ qu

for some u ∈ Z
m. Now suppose q′ is another integer and define A′ = [ q

′

q A] and

b′ = [ q
′

q b], where the operation [ ] applied to a vector or matrix means rounding

each entry to the nearest integer. Write A′ = q′

q A+W and b
′ = q′

q b+w where

W is an m × n matrix with entries in [−1/2, 1/2] and w is a length m vector
with entries in [−1/2, 1/2]. One can now verify that

b′ −A′s = q′

q b+w− ( q
′

q A+W)s

= q′

q (As+ e+ qu−As) +w−Ws

= q′

q e+w−Ws + q′u.



One sees that (A′,b′) is an LWE instance modulo q′, with the same secret vector,
and that the “error vector” has length

‖ q′

q e+w−Ws‖ ≤ q′

q ‖e‖+ ‖w‖+ ‖Ws‖.

Note that the final term ‖Ws‖ has the potential to be small only when s has
small entries, as is the case for binary LWE. The term ‖w‖ is bounded by 1

2

√
m.

The term ‖Ws‖ is easily bounded, but it is more useful to determine its expected
value. Each entry of the vectorWs is a sum of n (or around n/2 in the case where
s ∈ {0, 1}n) rational numbers in the interval [−1/2, 1/2]. Assuming the entries of
W are uniformly distributed then the central limit theorem suggests that each
entry of Ws has absolute value roughly 1

4

√

n/2. Hence, it seems plausible to
think that ‖Ws‖ can be as small as 1

4

√
nm.

Modulus switching was originally proposed to control the growth of the noise
under homomorphic operations. The standard scenario is that if ‖e‖ becomes
too large then, by taking q′ much smaller than q, one can reduce the noise by

the factor q′

q while only adding a relatively small additional noise. However, the
idea is also interesting for cryptanalysis: One can perform a modulus switching
to make the error terms smaller and hence the scheme more easily attacked. We
will consider such an attack in the case of binary LWE in the next section.

We now give a back-of-the-envelope calculation that shows modulus switching
can be a useful way to improve lattice attacks on LWE. Note that modulus

switching reduces the error vector by a factor of q′

q , as long as the other terms
1
2

√
nm introduced into the noise are smaller than q′

q σ. However, note that the

volume of the lattice is also reduced, since it goes from q(m−n)/m to q′(m−n)/m.

Let us write ǫ for the reduction factor q′

q . All other parameters remaining the

same, the lattice gap γ = λ2/λ1 ≈ q(m−n)/m/(σ
√
2πe) changes to

γ′ = (ǫq)(m−n)/m/(ǫσ
√
2πe) = (ǫ1−1/m/ǫ)γ = ǫ−n/m2

γ.

Now, 0 < ǫ < 1 and so this is a positive improvement to the lattice gap (and
hence Hermite factor).

For LWE we usually have errors chosen from a discrete Gaussian with stan-
dard deviation at most 2

√
n, and so ‖e‖ is typically O(

√
mn). As discussed

above, the additional noise introduced by performing modulus reduction (from
the Ws term) will typically be around 1

4

√
nm. Hence, it seems the best we can

hope for is q′/q ≈ 1
8 giving an error vector of norm reduced by a factor of approx-

imately 1
8 +

1
8 = 1

4 . This does give a modest improvement to the performance of
lattice decoding algorithms for LWE.

6 New attacks on binary-LWE

We now consider lattice algorithms to solve binary-LWE: We want to exploit
the fact that s is small. The standard lattice attack on LWE (reducing to CVP)
cannot use this information. However, going via ISIS seems more appropriate.



6.1 Reducing binary-LWE to ISIS and then rescaling

Let (A,b) be the (n,m, q, σ)-LWE instance. We may discard rows to reduce the
value for m. We write m′ = n+m. Write A′ = (A|Im), being an m×m′ matrix,
and consider the ISIS instance

b ≡ A′( s
e
) (mod q).

The next step is to reduce this ISIS instance to CVP in a lattice. So define
the vector w = (0,bT )T . Clearly A′w ≡ b (mod q).

We now construct a basis matrix B for the lattice L′ = {v ∈ Z
m′

: A′v ≡ 0
(mod q)}. This can be done as follows: The columns of the (n+m)× (m+ 2n)
matrix

M =





In
qIn+m

−A





span the space of all vectors v such that A′v ≡ 0 (mod q). Computing the
column Hermite normal form of M gives an m′ ×m′ matrix B whose columns
generate the lattice L′.

One can confirm that det(B) = qm = qm
′−n. As before, we seek a vector

v ∈ Z
m′

such that Bv ≡ 0 (mod q) and v ≈ w. We hope that w− v = ( s
e
) and

so v = ( s∗ ), where ∗ is actually going to be b− e. Our main observation is that
‖s‖ ≪ ‖e‖ and so the CVP algorithm is trying to find an unbalanced solution.
It makes sense to try to rebalance things.

Our proposal is to multiply the first n rows ofB by σ (or some other appropri-
ate scaling factor). This increases the volume of the lattice, without significantly
increasing the norm of the error vector in the CVP instance. As a result, the
Hermite factor of the problem is increased and the range of the lattice attack
for a given security level is increased.

A further trick, when s ∈ {0, 1}n is to rebalance s so that it is symmetric
around zero. In this case we rescale by multiplying the first n rows of B by 2σ
and then subtract (σ, . . . , σ, 0, . . . , 0)T from w. Now the difference w − v is of
the form

(±σ, . . . ,±σ, e1, . . . , em)T

which is more balanced.

6.2 Gap estimate

The determinant has been increased by a factor of σn (or (2σ)n in the {0, 1}
case). So the gap is expected to be larger compared to the original lattice. In the
embedded lattice formed by the standard attack, λ1(L

′) ≈ √
m · σ and λ2(L

′) ≈
q(m−n)/m

√

m
2πe wherem is the subdimension being used. In the embedded lattice

formed by the new attack, λ1(L
′) ≈ √

m+ n·σ and λ2(L
′) ≈ qm/(m+n)σn

√

m+n
2πe

where m is the number of LWE samples being used.



Lemma 1. Let q, n, σ and δ be fixed. Let m′ ≈ m + n be the dimension of the

embedded lattice in the new attack. For a given Hermite factor δ, the optimal

value for m′ is approximately

√

n(log q − log σ)

log δ
. (5)

Proof. The goal is to choosem′ (and hence m) to minimize the function f(m′) =
q(m

′−n)/m′

σn/m′

δ−m′

. It suffices to find a minimum for the function F (x) =
log(f(x)) = ((x − n)/x) log(q) + (n/x) log(σ) − x log(δ). Differentiating gives
n(log(q)− log(σ)) = x2 log(δ) and the result follows.

Given n, q and σ, we use Lemma 1 to obtain Table 2 of optimal subdimensions
m′ and values for δ. Comparing this table with Table 1 one sees that the lattice
dimensions m′ and the Hermite factors δ are all much improved.

Table 2: Theoretical prediction of (optimal) root Hermite factor δ and running time T of
embedding technique for rescaled binary-LWE instances s ∈ {−1, 0, 1}n with q = 4093,
σ = 2

√
n for the given values for n. The lattice dimension d′ (≈ m′) is calculated using

equation (5) and the running time T is estimated using equation (4).

n 30 40 50 60 70 100 150 200 250 300

d′ 78 105 132 160 187 271 414 558 799 1144
δ 1.0296 1.0212 1.0164 1.0132 1.0111 1.0073 1.0045 1.0032 1.0019 1.0011

log(T ) 0 0 0 0 3 63 169 280 545 1031

By fixing a lattice reduction algorithm that has the ability to produce some
fixed δ, we can compare the maximum n that this algorithm can attack, based
on the standard attack or our new attack. Figure 1 indicates that, for instance,
the binary LWE with secret in {−1, 0, 1} and n ≈ 100 provides approximately
the same security as the regular LWE with n ≈ 70.

6.3 Using modulus switching

It is natural to consider applying modulus switching before performing the im-
proved lattice attack. We now explain that this is not a good idea in general.

As discussed in Section 5, the best we can try to do is to have q′/q ≈ 1/8
and the error vector is reduced in size from elements of standard deviation σ to
elements of standard deviation approximately σ/4.

Consider the Hermite factor δ = (σnq(m
′−n)/m′

/(σ
√
2πe))1/m

′

of our im-
proved lattice attack using rescaling. Applying this attack to the lattice after
modulus switching gives Hermite factor

(

(14σ)
n(18q)

(m′−n)/m′

/(14σ
√
2πe)

)1/m′

= δ

(

1

4(m′−n)/m′

)1/m′
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Fig. 1: Theoretical prediction of the largest binary-LWE parameter n that can be solved
using an algorithm with the given root Hermite factor.



which is strictly smaller than δ. Hence, the instance after modulus switching is
harder than the instance before modulus switching.

Intuitively, the problem is this: Modulus switching reduces the size of q and
also the size of the error. But it reduces q by a larger factor than it reduces the
size of the error (due to the additional error arising from the modulus switching
process). When we do the rescaling, we are also rescaling by a smaller factor
relative to q. Hence, the crucial lattice gap property is weakened by modulus
switching.

6.4 Combining the lattice attack with exhaustive search

A natural extension is to first guess k bits of the secret s and then apply the
lattice attack to the remaining problem. Since this reduces n it also reduces the
optimal choice for m, leading to a simpler problem.

For example, attacking an instance with n = 100 one could repeat the attack
225 times, trying all possibilities for the first 25 entries of s, where the lattice
attack is now applied to binary-LWE instances having n = 75, which seems quite
practical compared with the 264 time for n = 100 predicted in Table 1. We do
not consider this further in the paper.

7 Experimental results

Our theoretical analysis (Figure 1) indicates that our new algorithm is superior
to previous methods when solving CVP using the embedding technique. In this
section we give experimental evidence that confirms these theoretical predic-
tions. However, the state-of-the-art for solving CVP is not to use the embedding
technique, but to use enumeration methods with suitable pruning strategies.
Hence, in this section we also report some predictions based on experiments of
using enumeration algorithms to solve binary-LWE using the standard method
and our new method. Please note that the aim of this section is only to give
some evidence for the superiority of our method; it is not our goal to give a
comprehensive survey of enumeration algorithms for CVP.

The binary LWE problem considered in this section has secret vectors s ∈
{−1, 0, 1}n (i.e., it follows Micciancio and Peikert’s definition [17]). This makes
our results more conservative compared to the case where s ∈ {0, 1}n. In the
experiments, we fix parameters q = 4093 and vary n ∈ [30, 80]. We use σ = 2

√
n.

7.1 Embedding

We first consider the embedding technique with M = 1 to solve the CVP prob-
lems (we used fplll [15] on a 2.4G desktop). In Tables 1 and 2, we have deter-
mined the optimal (root) Hermite factor and subdimension that maximize the
success probability. However, when (the Hermite factor of) a lattice reduction
algorithm is fixed (call it δ), the optimal subdimension m is the one that mini-
mizes the running time while satisfying the lattice gap argument: γ(m) > cδm

for some constant c (where γ(m) is defined in equation (2)).



For a successful attack we want the lattice gap γ(m) to be larger than δm

which is to assume c is upper bounded by 1. As long as this condition is satisfied,
we can reduce m in order to minimize the running time.

In the meantime, we want to maintain certain success probability. In the
LWE problem, the norm of the error vector is unknown to the attacker, so we
guess that its value is equal to the average norm of 104 randomly sampled vectors
from the error distribution. We choose a bound for the norm of the error vector
so that the expected success probability is ≥ 1/2. In this way, we can decide an
optimal m. Also in our experiments, we restrict to m ≥ n.

On the other hand, if γ(m) < δm for all m, we set m ≈
√

n log q/ log δ which
maximize γ(m)/δm for given δ. Of course, the reduction algorithm is likely to
fail in such cases.

Table 3: Results of the embedding technique for attacking binary-LWE using the stan-
dard approach and the new lattice rescaling respectively. The subdimension m (number
of LWE samples) is the value used for the experiments, while the value in parenthesis is
the value from equation (3) or equation (5) as appropriate. Column Succ is the success
probability observed from 10 trials.

Parameters Standard embedding attack New attack

n m1 γ
1/d1
1

Succ Time m2 γ
1/d2
2

Succ Time

30 68 (151) 1.013 1.0 0.83s 30 (97) 1.027 1.0 0.32s

40 105 (174) 1.012 1.0 6.70s 40 (105) 1.019 1.0 1.30s

50 195 (195) 1.011 0.5 61.71s 50 (111) 1.015 1.0 3.61s

60 214 (214) 1.009 0.0 90.20s 115 (115) 1.013 1.0 27.83s

70 231 (231) 1.007 0.0 127.82s 117 (117) 1.011 0.5 42.41s

80 247 (247) 1.005 0.0 189.25s 119 (119) 1.009 0.0 56.54s

In Table 3, we use BKZ60 with pruned enumeration [8]. To decide the optimal
subdimension as described above, we assume the Hermite factor δ ' 1.011. This
is verified experimentally in Table 3 and in [8]. Actually, γ of an algorithm
shouldn’t be just a function of the block size in BKZ. For example, using smaller
dimension than the “optimum” may be slightly faster. In the standard attack, the
optimal subdimension is m1 and the lattice dimension is d1 = m1+1. In the new
attack, the re-scaled lattice has dimension d2 = m2+n+1. We record the average

running time for ten instances. The columns γ
1/d1

1 and γ
1/d2

2 are computed by
assuming the error vectors are the shortest vectors in the embedded lattice and
the λ2 is computed by the Gaussian heuristic.

7.2 Modulus switching

In the second experiment, we consider using modulus switching for the new
algorithm and conclude that the performance is worse. In Section 5, the best
way for modulus switching is to use q′ such that q′/q ≈ 1/8. In Table 4, we
record the running time and success probability of the new attack based on



modulus switching. Note that we use q′ = 512. Comparing to Table 3, we do not
find the correct error vector for LWE with n ≥ 70 by using (the best possible)
modulus switching.

Table 4: New LWE attack with modulus switching. The subdimension m (number of
LWE samples) is the value used for the experiments, while the value in parenthesis is
the value from equation (3) or equation (5) as appropriate. Column Succ is the success
probability observed from 10 trials

n m2 Time γ
1/d2
2

Succ

30 90 3.76s 1.023 1.0

40 96 6.29s 1.018 1.0

50 101 10.58s 1.014 1.0

60 104 17.17s 1.011 0.4

70 105 29.11s 1.010 0.0

80 106 43.88s 1.009 0.0

7.3 Enumeration

When solving CVP for practical parameters the best method [12, 11] is to use
BKZ pre-processing of the lattice followed by pruned enumeration (where the
time spent on each is balanced). Hence, we consider these algorithms now. Note
that one can expect a similar speedup from our lattice rescaling for the binary-
LWE problem, since the determinant of the lattice is increased, which creates
an easier CVP instance.

We give predictions of the running time for larger parameters based on [11].
Instead of using the embedding technique, we will preprocess the CVP basis by
BKZ-β for large block size β and then solve the CVP by pruned enumeration.
In Table 5, we consider LWE parameters n = 128, q = 4093.

Table 5: Predictions of the running time for solving binary-LWE with (n, q, σ) =
(128, 4093, 22.6) using BKZ lattice reduction followed by pruned enumeration. Note
d1 and d2 are the lattice dimensions for the preprocessing.

Standard attack New attack

δ1 d1 log(TRed) log(#E) log(T ) δ2 d2 log(TRed) log(#E) log(T )

1.008 366 42.94 197.96 175 1.009 273 29.35 57.22 34
1.007 391 59.13 152.99 130 1.0085 280 34.27 48.07 35
1.0065 405 76.82 129.54 107 1.008 289 42.61 39.19 43
1.006 422 93.04 105.71 94 1.007 309 58.74 23.09 59

To estimate the BKZ and enumeration time, we use the method described by
Chen and Nguyen [7]. Write δ(β) for the Hermite factor achieved by BKZ with



blocks of size β. Given a target δ(β) and dimension m, Chen and Nguyen [7]
described an algorithm to simulate the BKZ time. It is noted that a small number
of calls to the enumeration routine (for the block reduction within the BKZ-β)
is often sufficient to achieve the targeted δ.

We need also to estimate the enumeration time (either for the local basis
within BKZ or the full enumeration later), which depends on the number of
nodes visited in the enumeration. We assume some heuristics.

First, Schnorr’s Geometric Series Assumption (GSA) indicates that the ratios
between consecutive vector norms ‖b∗i ‖/‖b∗i+1‖ of a reduced basis are close to a
constant c. Hence the Hermite factor is about δm where δ ≈ √

c.
Second, assuming the Gaussian heuristic, the number of nodes in the enumer-

ation tree is dominated by cm
2/82O(m) in the full enumeration and cm

2/82O(m)

2m/2

in the extreme enumeration. We use the method given by Gama, Nguyen and
Regev [9] to estimate the enumeration time. In the LWE case, we can use a much
smaller enumeration radius since the error is much smaller than the minimum
in the Gaussian heuristic.

8 Conclusions

We have given a lattice rescaling approach to binary-LWE, and we have given
theoretical and experimental results that confirm its superiority to the standard
approach. These results are most interesting when the standard deviation of the
error distribution is large.

Figure 2 plots the running time of our attack (using the embedding technique)
on binary LWE and standard LWE. This graph should only be interpreted as a
very rough approximation to the truth, but it allows us to compare the relative
security. The papers [6, 17] have shown that to match the hardness of standard
LWE for parameter n one can use binary-LWE with parameter n log(n). Figure 2
suggests that this is overkill and that even n log(log(n)) may be more than
sufficient. However, it seems to be not sufficient to take parameter cn where c is
a constant.
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