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Abstract. Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto’92) as protection
to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount
of computational work to every request. The original applications included prevention of spam and
protection against denial of service attacks. More recently, PoWs have been used to prevent double
spending in the Bitcoin digital currency system.

In this work, we put forward an alternative concept for PoWs — so-called proofs of space (PoS), where
a service requestor must dedicate a significant amount of disk space as opposed to computation. We
construct secure PoS schemes in the random oracle model, using graphs with high ” pebbling complexity”
and Merkle hash-trees.

1 Introduction

Proofs of Work (PoW). Dwork and Naor [DN93] suggested "proofs of work” (PoW) to address the
problem of junk emails (aka. Spam). The basic idea is to require that an email be accompanied with some
value related to that email that is moderately hard to compute but which can be verified very efficiently.
Such a proof could for example be a value o such that the hash value H(Email, o) starts with ¢ zeros. If we
model the hash function H as a random oracle [BR93], then the sender must compute an expected 2¢ hashes
until she finds such an o.! A useful property of this PoW is that there’s no speedup when one has to find
many proofs, i.e., finding s proofs requires s2¢ evaluations. The value ¢ should be chosen such that it is not
much of a burden for a party sending out a few emails per day (say, it takes 10 seconds to compute), but
is expensive for a Spammer trying to send millions of messages. Verification on the other hand is extremely
efficient, the receiver will accept o as a PoW for Email, if the hash H(Email, o) starts with ¢ zeros.

Proofs of Space (PoS). A proof of work is simply a means of showing that one invested a non-trivial
amount of computational work related to some statement. This general principle also works with resources
other than computation like real money in micropayment systems [MRO02] or human attention in CAPTCHAs
[vABHLO3]. In this paper we put forward the concept of proofs of space (PoS), where only parties who dedicate
a significant amount of disk space can efficiently generate proofs.

Our approach borrows ideas from [ABW03,DGN03,DNWO05|, who suggest to construct PoW using func-
tions whose computation requires accessing memory many times.? The above-mentioned PoW can be seen
as some kind of PoS, but they lack several properties we expect from a PoS, most importantly, the verifier
needs to use the same amount of memory as the prover. This is not a problem in the original application of
PoWs as here the space just needs to be larger than the cache of a potential malicious prover. When used a
PoS, where the main resource dedicated is space, this is not an option, as here we want the verifier to use a
tiny fraction of the space dedicated by the prover.

! The hashed Email should also contain the receiver of the email, and maybe also a timestamp, so that the sender
has to search for a fresh o for each receiver, and also when resending the email at a later time point.

2 This is motivated by the fact that the memories typically do not differ much in terms of the access time, which
is in contrast with the computing speeds of CPU’s that differ significantly. Hence, it is argued that this type of
a proof of work would be more fair in the sense that having extremely fast CPUs does not help much, because
the running time is to a large extend determined by the number of cache misses (which require ”slow” memory
accesses).



Nowadays users often have lots of free disk space (a standard laptop comes with a 500 GB hard disk). In
such a case, running a PoS comes basically for free, except for a linear (in the dedicated storage) cost during
an initialization phase for the prover.

A simple PoS can be constructed by simply storing the outputs of a random function in a sorted list.
Unfortunately, this simple PoS achieves very weak security due to time-memory trade-offs as we will explain
in Appendix A.

Formalizing PoS. In this paper we only consider interactive PoS between a single prover P and a verifier
V. We will discuss non-interactive multi-prover PoS, and the potential application of such a scheme to the
Bitcoin digital currency system, in Appendix B.

As an illustrative application for an (interactive, single prover) PoS, consider an organization that offers
a free email service, like gmail from Google (we will outline another example related to online polls in
Section C.) To prevent that someone registers a huge number of fake-addresses for spamming, Google might
require users to dedicate some nontrivial amount of disk space, say 100GB, for every address registered.
Occasionally, Google will run a PoS to make sure the user really dedicates this space.

The most trivial solution would be for the verifier V (here, Google) to generate a random (and thus
incompressible) 100GB file 7 and send it to the prover P during an initialization phase. Later, V can ask
P to send back some bits of F at random positions, making sure V stores (at least a large fraction of) F.
A slightly better solution is to have V generate F using a pseudorandom function, in which case V doesn’t
have to store the entire F, but just a short PRF key. Unfortunately, with this solution, V still has to send a
huge 100GB file to P, which makes this approach pretty much useless in practice.

We want a PoS where the computation, storage requirement and communication complexity of the verifier
V during initialization and execution of the PoS is very small, in particular, at most polylogarithmic in the
storage requirement N of the prover P and polynomial in some security parameter .

In order to achieve small communication complexity, we must let the prover P generate a large file F
locally during an initialization phase, which takes some time I. Note that I must be at least linear in IV, our
constructions will basically® achieve this lower bound. Later, P and V can run executions of the PoS which
will be very cheap for V, and also for P, assuming the later has stored F.

Unfortunately, unlike in the trivial solution (where P sends F to V), now there is no way we can force
a potentially cheating prover P to store F in-between the initialization and the execution of the PoS: P can
delete F after initialization, and instead only store the (short) communication with V during the initialization
phase. Later, before an execution of the PoS, P reconstructs F (in time I), runs the PoS, and deletes F once
it is done.

We will thus consider a security definition where one requires that a cheating prover P can only make V
accept with non-negligible probability if he either uses Ny bits of storage in-between executions of the PoS
or if P invests T time for every execution. Here Ng < N and T' < I are parameters, and ideally we want
them to be not much smaller than N and I, respectively. Our actual security definition in Section 2 is more
fine-grained, and besides the storage Ny that P uses in-between initialization and execution, we also consider
a bound N; on the total storage used by P during execution (including Ny, so Ny > Np).

Outline and Our Contribution. In this paper we introduce the concept of a PoS, which we formally
define in Section 2. In Section 3 we discuss and motivate the model in which we prove our constructions
secure. In Section 4 we explain how to reduce the security of a simple PoS (with an inefficient verifier)
to a graph pebbling game. In Section 5 we show how to use hash-trees to make the verifier in the PoS
from Section 4 efficient. In Section 6 we define our final construction. In Section 7 we state our results on
constructing graphs with high pebbling complexity, and in Section 8 we state our main Theorem 3 on the
security and efficiency of our PoS from Section 6 if instantiated with the graphs from Section 7.

3 One of our constructions will achieve the optimal I = ©(N) bound, our second constructions achieves I =
O(N loglog N).



In Section 7 we consider two different (infinite families of) graphs with different (and incomparable)
pebbling complexities. These graphs then also give PoS schemes with different parameters. Informally, one
of our constructions requires a successful malicious prover to either dedicate ©(N) storage (i.e., almost as
much as the N stored by the honest prover) or otherwise to use ©@(N) time with every execution of the PoS.
For our other construction we prove a somewhat weaker {2(N/log N) bound on the storage required by a
malicious prover, but here a successful prover is forced to use at least {2(N/log N) storage during execution,
no matter how much time he is wiling to spend during execution.

More Related Work Dwork and Naor [DN93] pioneered the concept of proofs of work as easy-to-
check proofs of computational efforts. More concretely, they proposed to use the CPU running time that is
required to carry out the proof as a measure of computational effort. In [ABW03] Abadi, Burrows, Manasse
and Wobber observed that CPU speeds may differ significantly between different devices and proposed as an
alternative measure the number of times the memory is accessed (i.e., the number of cache misses) in order
to compute the proof. This approach was formalized and further improved in [DGN03,DNW05,WJHF04].

Originally put forward to counteract spamming, PoWs have a vast number of different applications such
as metering web-site access [FFM)], countering denial-of-service attacks [JB99,Bac97] and many more [JJ99].
An important application for PoWs are digital currencies, like the recent Bitcoin system [Nak09], or earlier
schemes like the Micromint system of Rivest and Shamir [RS96]. The concept of using bounded resources
such as computing power or storage to counteract the so-called “Sybil Attack”, i.e., misuse of services by
fake identities, has already mentioned in the work of Douceur [Dou02].

A large body of work investigates the concept of proofs of storage or proofs of retrievability
(cf. [GIM02,BJO09,ABC*07,JKO7,DPML" 03] and many more). These are proof systems where a verifier
sends a file F to a prover, and later the prover can convince the verifier that it really stores the file. As
discussed above, proving that one stores a (random) file certainly shows that one dedicates space, but these
proof systems are not good PoS because the verifier has to send at least |F| bits to the verifier.

2 PoS Definition

We denote with (outy,outp) < (V(iny), P(inp))(in) the execution of an interactive protocol between two
parties P and V on shared input in, local inputs* inp and iny, and with local outputs outy and outp,
respectively.

A proof of space (PoS) is given by a pair of interactive random access machines,” a prover P and a verifier
V. These parties can run two kinds of protocols, a PoS initialization and a PoS execution, as defined below.
The protocols are done with respect to some statement id, given as common input (e.g., an email address in
the example from the previous section). The identifier id is only required to make sure that P cannot reuse
the same space to execute PoS for different statements.

Initialization is an interactive protocol with shared inputs an identifier id, storage bound N € N and
potentially some other parameters, which we denote with prm = (id, N,...). The output is

(®,S) + (V,P)(prm) where @ is short and S is of size N

V can output the special symbol @ = 1, which means that it aborts (this will be only the case if V
catches P cheating).

4 We use the expression ”local input Joutput” instead the usual ”private input/output”, because in our protocols no
values will actually be secret. The reason to distinguish between the parties’ inputs is only due to the fact that P’s
input will be very large, whereas we want V to use only small storage.

5 In a PoS, we want the prover P to run in time much less than its storage size. For this reason, we must model
our parties as random access machines (and not, say Turing machines), where accessing a storage location takes
constant time.



Execution is an interactive protocol during which P and V have access to the values stored during the
initialization phase. The prover P has no output, the verifier V either accepts or rejects.

({accept, reject}, 0) < (V(2), P(S5))(prm)
As for any proof system, we require completeness and security.

Completeness: We will always require perfect completeness, i.e., for any honest prover P:
Prfout = accept : (D, S) < (V,P)(prm) , (out,®) «+ (V(D),P(S))(prm)] =1
Security: An (Ny, Ny, T)-prover P is a prover where
No: The output S of P after initialization has size at most Ny. ~
Ny, T: The running time of P during execution is at most T". Moreover, P uses at most N7 storage during
execution. Note that we put no time or memory bound on P during initialization, Ny only denotes
the size of the final output. .
A PoS (P,V) is (Ng, Ny, T)-secure if every (Ng, Ny, T)-adversary P will fail in making V accept except
with some exponentially small probability® in a statistical security parameter ~.”

Prlout = accept : (P,S) + (V, |5>(prm)7 (out, 0) «+ (V(®), ﬁ’(S)>(prm)] <9279 (1)

Efficiency: We require the verifier V to be efficient, by which (here and below) we mean at most polylog-
arithmic in N and polynomial in some security parameter . P must be efficient during execution, but
can run in time poly(N) during initialization.

It is instructive to observe what level of security trivially cannot be achieved by a PoS. Below we use small
letters n, t, c to denote values that are small, i.e., polylogarithmic in NV and polynomial in a security parameter
~. If the honest prover P is an (N,n,t) prover, where n,t denote the storage and time requirements of P
during execution, then no PoS can be

1. (N, n,t)-secure, as the honest prover ”breaks” the scheme by definition.

2. (¢,I 4+t + ¢, I+ t)-secure, where c is the number of bits send by V to P during initialization. To see
this, consider a malicious prover P that runs the initialization like the honest P, but then only stores
the messages send by V during initialization instead of the entire large S. Later, during execution, P
can simply emulate the initialization process (in time I) to get back S, and run the normal execution
protocol (in time t).

3 The Model

We analyze the security and efficiency of our PoS in the random oracle (RO) model [BR93], making an
additional assumption on the behavior of adversaries, which we define and motivate below.

Recall that in the RO model, we assume that all parties (including adversaries) have access to the same
random function H : {0,1}* — {0,1}%. In practice, one must instantiate H with a real hash function like
SHA3. Although security proofs in the RO model are just a heuristic argument for real-world security,
and there exist artificial schemes where this heuristic fails [CGH98,GK03,MRHO04], the model has proven
surprisingly robust in practice.

Throughout, we fix the output length of our random oracle H : {0,1}* — {0,1}¥ to some L € N, which
should be chosen large enough, so it is infeasible to find collisions. As finding a collision requires roughly 25/2
queries, setting L = 512 and assuming that the total number of oracle queries during the entire experiment
is upper bounded by, say 27/, would be a conservative choice.

5 Below we only consider the case where the PoS is executed only once. This is without loss of generality for PoS
where V is stateless (apart from @) and holds no secret values. The protocols in this paper are of this form.

7 Our construction is based on a hash-function #, which we require to be collision resistant. As assuming collision
resistance for a fixed function is not meaningful [Rog06], we must either assume that the probability of eq.(1) is
over some distribution of identities id (which can then be used as a hash key), or, if we model H as a random
oracle, over the choice of the random oracle.

8 As explained in the Introduction, P’s running time I during initialization must be at least linear in the size N of
the storage. Our construction basically match this I = 2(N) lower bound as mentioned in Footnote 3.



3.1 Modeling the Malicious Prover

In this paper, we want to make statements about adversaries (malicious provers) P with access to a random
oracle H : {0,1}* — {0, 1}¥ and bounded by three parameters Ny, N1, T. They run in two phases:

1. In a first (initialization) phase, P makes queries? A = (a1,...,aq) to H (adaptively, i.e., a; can be a
function of #(a1),...,H(a;_1)). At the end of this phase, P stores a file S of size Ny L bits, and moreover
is committed to a subset of the queries B C A of size N.

2. In a second phase, P(S) is asked to output H(b) for some random b € B. P(S) is allowed a total number
T of oracle queries in this phase, and can use up to Ny L bits of storage (including the NoL bits for S).

As H is a random oracle, one cannot compress its uniformly random outputs. In particular, as S is of size
NoL, it cannot encode more than Ny outputs of H. We will make the simplifying assumption that we can
explicitly state which outputs these are by letting Sy C {0,1}%,|Sy| < Ny denote the set of all possible
outputs H(a),a € A that P(S) can write down during the second phase without explicitly querying H on
input @ in the 2nd phase.'? Similarly, the storage bound N; L during execution implies that # cannot store
more than N7 outputs of H at any particular time point, and we assume that this set of < N; inputs is well
defined at any time-point. The above assumption will allow us to bound the advantage of a malicious prover
in terms of a pebbling game.

3.2 Storage and Time Complexity.

Time Complexity. Throughout, we will equate the running time of honest and adversarial parties by the
number of oracle queries they make. We also take into account that hashing long messages is more expensive
by ”charging” k queries for a single query on an input of bit-length L(k — 1) + 1 to Lk. Just counting oracle
queries is justified by the fact that almost all computation done by honest parties consists of invocations of
the random-oracle, thus we do not ignore any computation here. Moreover, ignoring any computation done
by adversaries only makes the security proof stronger.

Storage Complexity. Unless mentioned otherwise, the storage of honest and adversarial parties is mea-
sured by the number of outputs y = #H(x) stored. The honest prover P will only store such values by
construction, for malicious provers P this number is well defined under the assumption from Section 3.1.

4 PoS from Graphs with High Pebbling Complexity

The first ingredient of our proof uses graph pebbling. We consider a directed, acyclic graph G = (V, E). The
graph has |V| = N vertices, which we label with [N] = {1,..., N}. With every vertex v € V we associate
a value w(v) € {0,1}%, and for a subset V' = {vy,...,v,} € V we define w(V') = (w(vy),...,w(v,)). Let
w(v) = {v': (v',v) € E} denote v’s predecessors (in some arbitrary, but fixed order). The value w(v) of v is
computed by applying the RO to the index v and the values of its predecessors

w(v) = H(v, w(w(v))) - (2)

 The number ¢ of queries in this phase is unbounded, except for the huge exponential 2¢/3 bound on the total
number of oracle queries made during the entire experiment by all parties mentioned above.

10 et us stress that we do not claim that such an Sy exists for every P, one can easily come up with a prover where
this is not the case (as we will show below). All we need is that for every (No, N1,T') prover P, there exists another
prover P’ with (almost) the same parameters and advantage, that obeys our assumption.

An adversary with No = N1 = T = 1 not obeying our assumption is, e.g., a P that makes queries 0 and 1 and
stores S = H(0) ® H(1) in the first phase. In the second phase, IS(S) picks a random b < {0, 1}, makes the query
b, and can write down H(b), H(1 — b) = S & H(b). Thus, P(S) can write 2 > Ny = 1 values H(0) or H(1) without

quering them in the 2nd phase.



Note that if v is a source, i.e., 7(v) = @, then w(v) is simply H(v). Our PoS will be an extension of the simple
basic PoS (Po, Vo)[G, 4] from Figure 1, where A is an efficiently samplable distribution that outputs a subset
of the vertices V of G = (V, E). Note that this PoS does not yet satisfy the efficiency requirement from
Section 2. In our model as discussed in Section 3.1, the only way a malicious prover ISO(S) can determine

Parameters prm = (id, N,G = (V, E), A), where G is a graph on |V| = N vertices and A is an efficiently samplable
distribution over V*# (we postpone specifying 8 as well as the function of id to Section 6).
Initialization (S, 0) + (Po, Vo)(prm) where S = w(V).
Execution (accept/reject, ) < (V(0), P(S))(prm)
1. Vo(0) samples C < A and sends C to Po.
2. Po(S) answers with A = w(C) C S.
3. Vo(0) outputs accept if A =w(C) and reject otherwise.

Fig. 1. The basic PoS (Po, Vo)[G, A] (with inefficient verifier Vo).

w(v) is if w(v) € Sy is in the encoded set of size < Ny, or otherwise by explicitly making the oracle query
H(v, w(r(v))) during execution. Note that if w(i) ¢ Sy for some i € 7(v), Po(S) will have to make even
more queries recursively to learn w(v).

In order to prove (Ny, N1, T)-security of the PoS (Py, V)[G, 4] in our idealized model, it suffices to upper
bound the advantage of player 1 in the following pebbling game on G = (V, E)

1. Player 1 puts up to Nj initial pebbles on the vertices of V.
2. Player 2 samples a subset C < A, |C| = « of challenge vertices.
3. Player 1 applies a sequence of up to T" steps according to the following rules:
(i) it can place a pebble on a vertex v if (1) all its predecessors u € m(v) are pebbled and (2) there are
currently less than N7 vertices pebbled.
(ii) it can remove a pebble from any vertex.
4. Player 1 wins if it places pebbles on all vertices of C.

In the pebbling game above, step 1 corresponds to a malicious prover Po choosing the set Sy. Step 3
corresponds to Po computing values according to the rules in eq.(2), while obeying the N; total storage
bound. Putting a pebble corresponds to invoking y = H(z) and storing the value y. Removing a pebble
corresponds to deleting some previously computed y.

5 Hash Trees

The PoS described in the previous section does not yet meet our Definition from Section 2 as V( is not
efficient. In this section we describe how to make the verifier efficient, using hash-trees.

Using Hash Trees for Committing. A hash-tree allows a party P to compute a commitment ¢ € {0, 1}*
to N data items x1,...,2x € {0,1}F using N — 1 invocations of a hash function H : {0,1}* — {0,1}L.
Later, P can prove to a party holding ¢ what the value of any x; is, by sending only Llog N bits.

For example, for N = 8, P commits to x1,...,xy by hashing the x;’s in a tree like structure as

¢ =H(H( H(x1,22), H(xs,24) ), H( H(z5,26), H(T7,78) ) )

We will denote with 7 (z1,...,2x) the 2N — 1 values of all the nodes (including the N leaves z; and the
root ¢) of the hash-tree, e.g., for N = 8, where we define z,, = H (x4, xp)

H
T (5617 cee ,xs) = {561, .., T8, T12, T34, T56, T78, L1234, L5678, P = 3312345678}



The prover P, in order to later efficiently open any x;, will store all 2N — 1 values T = T *(x1,...,2y), but
only send the single root element ¢ to a verifier V.

Later P can ”open” any value z; to V by sending z; and the log IV values, which correspond to the siblings
of the nodes that lie on the path from z; to ¢, e.g., to open x3 P sends z3 and

open(T,3) = (x12, T4, T5678)

and the prover checks if
?
vrfy(, 3, z3, (212, T4, T5678)) = (H($127H($3,$4)),$56789) = ¢)

As indicated above, we denote with open(7,4) C 7 the log N values P must send to V in order to open z;,
and denote with vrfy(¢,, x;,0) — {accept, reject} the above verification procedure. This scheme is correct,
i.e., for ¢, T computed as above and any i € [N], vrfy(¢, i, xz;,open(T,i)) = accept.

The security property provided by a hash-tree states that it is hard to open any committed value in
more than one possible way. This ”binding” property can be reduced to the collision resistance of H: from
any ¢,1, (z,0), (¢',0'),x # x’ where vrfy(¢,i,x,0) = vrfy(¢,i,2’,0") = accept, one can efficiently extract a
collision z # 2/, H(z) = H(2') for H.

5.1 Using hash trees to make the verifier efficient

We add an initialization phase to the graph based PoS from Figure 1, where the prover P(prm) commits to
1 =w(vy),...,oxy = w(vy) by computing a hash tree 7 = 7" (z1,...,2y) and sending its root ¢ to V.

In the execution phase, the verifier must then answer a challenge ¢ not only with the value z. = w(c),
but also open ¢ by sending (z.,open(T,¢)) which P can do without any queries to H as it stored T.

If a cheating prover Is(prm) sends a correctly computed ¢ during the initialization phase, then during
execution Is(prm, S) can only make V(prm, ¢) accept by either answering each challenge ¢ with the correct
value w(c), or by breaking the binding property of the hash-tree (and thus the collision resistance of the
underlying hash-function).

We are left with the challenge to deal with a prover who might cheat and send a wrongly computed & # ¢
during initialization. Some simple solutions are

— Have V compute ¢ herself. This is not an option as we want V’s complexity to be only polylogarithmic
in N.

— Let P prove, using a proof system like computationally sound (CS) proofs [Mic00] or universal argu-
ments [BGO8|, that ¢ was computed correctly. Although this proof systems do have polylogarithmic
complexity for the verifier, and thus formally would meet our efficiency requirement, they rely on the
PCP theorem and thus are not really practical.

5.2 Dealing with wrong commitments

Unless P breaks the collision resistance of 7, no matter what commitment & the prover P sends to V, he can
later only open it to some fixed N values which we will denote 1, ...,Zxy."' We say that Z; is consistent if

1%7; = H(’i,(iil,...,(iid) where 7T(Z) = {’il,...,id} (3)

Note that if all #; are consistent, then & = ¢. We add a second initialization phase to the PoS, where V will
check the consistency of « random z;’s. This can be done by having P open #; and z; for all j € n(i).

If P passes this check, we can be sure that with high probability a large fraction of the Z;’s is consistent.
More concretely, if the number of challenge vertices is a = et for some ¢ > 0, then P will fail the check with
probability 1 — 2=€®) if more than an e-fraction of the #;’s are inconsistent.

1 Potentially, P cannot open some values at all, but wlog. we assume that it can open every value in exactly one way.



A cheating P might still pass this phase with high probability with an & where only 1 — & fraction of the
¥; are consistent for some sufficiently small € > 0. As the inconsistent Z; are not outputs of H, P can chose
their value arbitrarily, e.g., all being 0. Now P does not have to store this eV inconsistent values 7; while
still knowing them.

In our idealized model as discussed in Section 3.1, one can show that this is already all the advantage
P gets. We can model an eN fraction of inconsistent Z;’s by slightly augmenting the pebbling game from
Section 4. Let the pebbles from the original game be white pebbles. We now additionally allow player 1 to
put eN red pebbles (apart from the Ny white pebbles) on V' during step 1. These red pebbles correspond to
inconsistent values. The remaining game remains the same, except that player 1 is never allowed to remove
red pebbles.

We observe that being allowed to initially put an additional eV red pebbles is no more useful than getting
an additional e N white pebbles (as white pebbles are strictly more useful because, unlike red pebbles, they
later can be removed.)

Translated back to our PoS, in order prove (Ng, N1, T)-security of our PoS allowing up to e N inconsistent
values, it suffices to prove (Ng —eN, N7 —eN, T')-security of the PoS, assuming that the initial commitment
is computed honestly, and there are no inconsistent values (and thus no red pebbles in the corresponding
game).

6 PoS Construction

Below we formally define our PoS (P, V). The common input to P,V are the parameters
prm = (id, 2N, ~, G, A)

which contain the identifier id € {0,1}*, a storage bound 2N € N (i.e., 2N L bits),'? a statistical security
parameter 7, the description of a graph G(V, E) on |[V| = N vertices and an efficiently samplable distribution
A which outputs some ”challenge” set C C V of size o = a(vy, N).

Below H denotes a hash function, that depends on id: given a hash function H'(.) (which we will model as
a random oracle in the security proof), throughout we let #(.) denote H’(id,.). The reason for this is simply
so we can assume that the random oracles H'(id,.) and H’(id’, .) used in PoS with different identifiers id # id’
are independent, and thus anything stored for the PoS with identifier id is useless to answer challenges in a
PoS with different identifier id’.

Initialization (9, S) < (V,P)(prm)
1. P sends V a commitment ¢ to w(V)
— P computes the values x; = w(i) for all i € V as in eq.(2).
— P’s output is a hash-tree

S =T"(x1,...,2Nn)

which requires |S| = (2N — 1)L bits) as described in Section 5.
— P sends the root ¢ € S to V.
2. P proves consistency of ¢ for a« = a(y, N) random values
— V picks a set of challenges C' + A, |C| = « and sends C to P.
— For all ¢ € C, P opens the value corresponding to ¢ and all its predecessors to V by sending, for
allce C

{(xi?open(‘s’vi)) RS {C,?T(C)}}
— V verifies that P sends all the required openings, and they are consistent, i.e., for all ¢ € C' the
opened values Z. and Z;,%1 € w(c) = (i1, ...,4q) must satisfy
jc = ’H(C,jil,...,jid),

12 We set the bound to 2N, so if we let N denote the number of vertices in the underlying graph, we must store
2N — 1 values of the hash-tree.



and the verification of the opened commitments passes. If either check fails, V outputs & = L
and aborts. Otherwise, V outputs @ = ¢, and the initialization phase is over.

Execution (accept/reject, () < (V(®),P(S))(prm)
P proves it stores the committed values by opening a random ( = ©(v) subset of them
— V picks a challenge set C C V of size |C| = 8 at random, and sends C' to P.
— P answers with {0, = (x,open(S,¢)) : ce€ C}.
— V checks for every ¢ € C if vrfy(®,c,0.) < accept. V outputs accept if this is the case and reject
otherwise.

7 Pebbling game

We counsider the following pebbling game for a directed acyclic graph G = (V, E) and a distribution A over
V.

1. Player 1 puts initial pebbles on some subset U C V of vertices.

2. Player 2 samples a “challenge vertex” ¢ € V according to A.

3. Player 1 applies a sequence of steps according to the following rules:
(i) it can place a pebble on a vertex v if all its predecessors u € 7(v) are pebbled.
(ii) it can remove a pebble from any vertex.

4. Player 1 wins if it places a pebble on c.

Let Sy = |U| be the number of initial pebbles, S; be the total number of used pebbles (or equivalently, the
maximum number of pebbles that are present in the graph at any time instance, including initialization),
and let T be the number of pebbling steps given in 3i). The definition implies that S; > Sy and T' > S; — Sp.
Note, with Sy = |V| pebbles player 1 can always achieve time 7' = 0: it can just place initial pebbles on V.

Definition 1. Consider functions f = f(N,Sp) and g = g(N, So, S1). A family of graphs {Gn = (Vn, EN)||VN| =
N € N} is said to have pebbling complexity Q2(f,g) if there exist constants ¢1,ce,d > 0 and distributions
An over Vi such that for any player that wins on (Gn,An) with probability 1 it holds that

Pr[S1 > e1f(N,So) AT > cag(N,Sp,51)] =6 (4)

Let G(N,d) be the set of directed acyclic graphs G = (V, E) with |V| = N vertices and the maximum
in-degree at most d.

Theorem 1. There exists an explicit family of graphs Gn € G(N,2) with pebbling complezity

Q(N/log N,0) (5)

Theorem 2. There exists a family of graphs Gn € G(N, O(loglog N)) with pebbling complexity
(0, [So < 7N] - max{N, N?/51}) (6)

for some constant T € (0,1). It can be constructed by a randomized algorithm with a polynomial expected
running time that produces the desired graph with probability at least 1 — 2~ @ (N/log N)

For Theorem 1 we use the construction of Paul, Tarjan and Celoni [PTC77] which relies on superconcentrator
graphs. The proof of Theorem 2 will be based on superconcentrators, random bipartite expander graphs and
on the graphs of Erdos, Graham and Szemerédi [EGST75].



Remark 1 As shown in [HPV77], any graph G € G(N,O(1)) can be entirely pebbled using S; = O(N/log N)
pebbles (without any initial pebbles). This implies that expression N/log N in Theorem 1 cannot be improved
upon. Note, this still leaves the possibility of a graph that can be pebbled using O(N/log N) pebbles only
with a large time T (e.g. superpolynomial in N). Examples of such graph for a non-interactive version of the
pebble game can be found in [LT82]. Results in [LT82], however, do not immediately imply a similar bound
for our interactive game.

8 Security of the PoS

Combining the results and definitions from the previous sections, we can now state our main theorem.

Theorem 3. In the model from Section 3.1, for constants c¢; > 0, the PoS from Section 6 instantiated with
the graphs from Theorem 1 is a

(c1(N/log N),ca(N/log N), 00) -secure PoS . (7)
Instantiated with the graphs from Theorem 2 it is a
(c3N, 00, c4N)-secure PoS . (8)

Efficiency, measured as outlined in Section 3.2, is summarized in the table below where v is the statistical
security parameter

communication | computation P|  computation V
PoS eq.(7) Initialization O(vlog” N) 4N O(ylog® N)
PoS eq.(7) Execution O(vylog N) 0 O(vylog N)
PoS eq.(8) Initialization|O(1og N loglog N)|O(N loglog N)|O(vlog N loglog N)
PoS eq.(8) Execution O(vylog N) 0 O(vylog N)

Eq. (8) means that a successful cheating prover must either store a file of size £2(N) (in L bit blocks) after
initialization, or make (2(N) invocations to the RO. Eq. (7) gives a weaker 2(N/log N) bound, but forces
a potential adversary not storing that much after initialization, to use at least £2(N/log N) storage during
the execution phase, no matter how much time he is willing to invest. This PoS could be interesting in
contexts where one wants to be sure that one talks with a prover who has access to significant memory
during execution.

Below we explain how security and efficiency claims in the theorem were derived. We start by analyzing
the basic (inefficient verifier) PoS (Pg, Vo)[G, 4] from Figure 1 if instantiated with the graphs from Theorem 1
and 2.

Proposition 1. For some constants ¢; > 0, if Gn has pebbling complexity 2(f(N),0) according to Defini-
tion 1, then the basic PoS (Po,Vo)[Gn, An] as illustrated in Figure 1, where the distribution An samples
O(7) (for a statistical security parameter ) vertices according to the distribution A\ from Def. 1, is

(So, c1f(N), 00)-secure (for any Sy < c1f(N)) (9)
If G has pebbling complexity (0, g(N, Sy, S1)), then for any Sy, Sy the PoS (Po,Vo)[Gn, An] is
(So, S1,c29(N, Sp, S1))-secure. (10)
Above, secure means secure in the model from Section 3.1.

Proof. We start explaining the security as claimed in eq.(9). Gy having pebbling complexity (f(V),0) means,
that any player 1 who is allowed to put at most ¢; f(N) (for some constant ¢; > 0) pebbles on the graph
simultaneously must fail in pebbling a challenge vertex ¢ <~ Ay with probability at least § for some constant
d > 0 (even with no bound on the number of pebbling steps). If we now pick ©(y) challenge vertices C' + Ay
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independently, then with probability 1 — (1 —§)Y =1 — 2-9(" we will hit a vertex that cannot be pebbled
with ¢; f(IN) pebbles. As discussed in Section 4, this means the scheme is (0, ¢; f(IV), 0o)-secure. Observing
that (0,51, 00)-security implies (Sp, S1, 00)-security for any Sy < S proves eq.(9).

We will now show eq.(10). Gy having pebbling complexity (0, g(N, So, S1)) means that any player 1 who
is allowed to put Sy pebbles on the graph initially, and then use at most S7 pebbles simultaneously making
at most cag(N, Sp, S1) pebbling steps, must fail in pebbling a challenge vertex ¢ « Ay with probability at
least § > 0. As above, if we pick ©(y) challenges C' < Ay independently, then with probability 1—(1—4§)7 =
1 — 2790 we will hit a vertex that cannot be pebbled with cog(N, Sy, S1) steps. As discussed in Section 4,
this means the scheme (S, S1, c29(So, S1, N))-secure. O

Instantiating the above proposition with the graphs G from Theorem 1 and 2, we can conclude that the
simple (inefficient verifier) PoS (Po, Vo)[Gn, An] is

(c1N/log N,caN/log N,oo) and  (So, Si,c3 - [So < 7N] - max{N, N?/S;}) (11)

secure, respectively (for constants ¢; > 0, 0 < 7 < 1 and [Sp < 7N] =1 if Sy < 7N and 0 otherwise). If we
set So = |TNN| = ¢4 N, the right side of eq.(11) becomes

(c4N, S1,c5 - max{N, N2/Sl})

and further setting S; = oo
(cyN,00,c3N)

As explained in Section 5.2, we can make the verifier Vg efficient during initialization, by giving up on

eN in the storage bound. We can choose & ourselves, but must check ©(vy/e) values for consistency during

initialization (for a statistical security parameter 7). For our first PoS, we set ¢ = 212; ~ and get with

¢s = ¢1/2 using co > 1
(¢1-N/logN —e-N,co-N/logN —¢e - N,0)

=cs5N/log N >c5 N/ log N

security as claimed in eq.(7). For the second PoS, we set ¢ = §+ which gives with cg = c4/2

(caN —eN,00 —eN,c3N)
——

ZCGN

security, as claimed in eq.(8). Also, note that the PoS described above are PoS as defined in Section 6 if
instantiated with the graphs from Theorem 1 and 2, respectively.

Efficiency of the PoS eq.(7). We will now analyze the efficiency of our PoS, measuring time and storage
complexity as outlined in Section 3.2. We start with the (¢1N/log N, caN/log N, oco)-secure construction
from eq.(7). In the first phase of the initialization, P needs roughly 4N = ©(N) computation: using that the
underlying graph has max in-degree 2, computing w(V') according to eq.(2) requires N hashes on inputs of
length at most 2L +log N < 3L, and P makes an additional N —1 hashes on inputs of length 2L to compute
the hash-tree. The communication and V’s computation in the first phase of initialization is ©(1) (as V just
receives the root ¢ € {0,1}%).

During the 2nd phase of the initialization, V will challenge P on « (to be determined) vertices to make
sure that with probability 1 — 2790 at most an ¢ = ©(1/log N) fraction of the Z; are inconsistent. As
discussed above, for this we have to set « = @(ylog N). Because this PoS is based on a graph with degree 2
(cf. Theorem 1), to check consistency of a &; one just has to open 3 values. Opening the values requires to send
log N values (and the verifier to compute that many hashes). This adds up to an O(ylog? N) communication
complexity during initialization, V’s computation is of the same order.

During execution, P opens ¢ on ©(v) positions, which requires ©(vylog N) communication (in L bit
blocks), and ©(vlog N) computation by V.

11



Efficiency of the PoS eq.(8). Analyzing the efficiency of the second PoS is analogous to the first. The main
difference is that now the underlying graph has larger degree O(loglog N) (cf. Thm. 2), and we only need
to set £ = O(1).

9 Proof of Theorem 1

Paul, Tarjan and Celoni [PTC77] presented a family of graphs G;) for i = 8,9,10,... with m; sources, m;
sinks and n; nodes where m; = 2¢ and n; = 9(i2i). The following claim is a special case of their Lemma 2.

Lemma 1. For any initial configuration of no more than cm; pebbled vertices (with ¢ = 1/256) there exists
a sink whose pebbling requires a time instance at which at least cm; pebbles are on the graph.

We can show the following.

Corollary 1. For a subset U C V let Xy be the set of sinks whose pebbling requires at least %cmi pebbles
starting with U as the initial set of pebbles. If |U| < Sem; then | Xy| > Sem,.

Proof. Assume that [U| < %cm; and |Xy| < iem; for some U C V. Consider the following pebbling
algorithm. First, place initial pebbles at vertices in U U Xy;. To pebble remaining sinks v ¢ Xy, go through
them in some order and do the following;:

1. Remove all pebbles except those in U.
2. By definition of Xy, vertex v can be pebbled using fewer than %cmi pebbles. Run a modification of the
corresponding algorithm where pebbles from U are never removed.

This algorithm pebbles all sinks in some order, starts with |U| 4+ |Xy| < ¢m; initial pebbles, and uses fewer
than |U| + %cmi < cm,; pebbles at each time instance. By Lemma 1, this is a contradiction.
O
We can now prove Theorem 1. Consider N > ni, and let i be the largest integer such that n; < N.
Let Gy be the graph obtained from G(; by adding N — n; “dummy” vertices. It can be checked that
m; = O(N/log N).

Let V' be the set of outputs of Gy excluding dummy vertices, with |‘~/| = my;. We define A\ to be the
uniform probability distribution over vertices ¢ € V.

Let us show that S; > fem; = O(N/log N) with probability at least § = Fc. Assume that [U] = Sy <
1em;, otherwise the claim is trivial. By Corollary 1 we have |Xy| > %c|‘~/| Using the definition of set Xy,
we get

Pr(S; > Lem;] > Prlc € Xu] = |Xu|/|V]| > 3e=0

N

10 Proof of Theorem 2

For a graph G = (V, E) and a subset X C V we denote

— G[X] to be the subgraph of G induced by X;

— G\ X = G[V — X] to be the graph obtained by removing vertices in X;

— II¢(X) to be the set of ancestors of nodes in X, i.e. the set of vertices v € V from which set X is
reachable in G.

Some of the graphs considered in this section will implicitly come with the sets of inputs and outputs, which
will be denoted as V* C V and V~ C V respectively. In such cases subgraph G[X] will have inputs VT N X
and outputs V~ N X (and similarly for G\ X). We also denote II/;(X) = IIc(X)NV* to be the set of input
vertices from which set X is reachable in G. If X = {v} then we write the sets as I (v) and II/;(v).

We generally use the following convention: a subscript without parentheses denotes the number of nodes
of a directed acyclic graph (e.g. Gn), while a subscript in parentheses denotes the number of inputs and
outputs (e.g. C(,,) in Definition 2 below).
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10.1 Building blocks

Our construction will rely on three building blocks. The first one is a bipartite random graph Rflm) €

G(2m,d) with |[V*| = m inputs and |V ~| = m outputs generated as follows: for each output vertex v €
V'~ select vertices uq,...,uqg € VT uniformly at random and add edges (u1,v), ..., (ug,v) to R‘(im). Note,
we allow repetitions among ug,...,uq. Graph R?m) is known to be a good expander graph with a high

probability [Vad12]; we refer to Section 10.3 for a definition of expanders.
Our next building block is superconcentrator graphs.

Definition 2. A directed acyclic graph C,,y = (V, E) with inputs V* and outputs V— of size [Vt = |V~ | =
m 4s called a superconcentrator if for every k € [m] and every pair of subsets A C V', B C V™~ there exist
k wvertex disjoint paths in C,,) from A to B.

A family of superconcentrators C\,, is called linear if it has ©(m) nodes and edges and its maximum in-
degree is bounded by a constant. The existence of such superconcentrators was first shown by Valiant [Val76];
they used (270 + o(1))m edges. The constant was successively improved in a long series of works. To our
knowledge, the current best known construction is due to Schoning [Sch06]; it uses (28 4 o(1))m edges, and
relies on a probabilistic argument. There are also explicit constructions of linear superconcentrators, e.g. by
Alon and Capalbo [AC03] with (44 + o(1))m edges.

Our third tool is graphs of Erdés, Graham and Szemerédi [EGS75] with dense long paths.

Theorem 4 ([EGS75]). There exists a family of directed acyclic graphs Dy = ([t], Et) with t vertices and
O(tlogt) edges (of the form (i,j) with i < j) that satisfy the following for some constant n € (0,1) and a
sufficiently large t:

— For any subset X C [t] of size at most nt graph Dy \ X contains a path of length at least nt.

Note that the construction in [EGS75] is randomized. In this paper we use this graph for ¢ = O(log N),
therefore the property above can be checked explicitly in time polynomial in N. This gives a Las Vegas
algorithm for constructing graphs D; with a polynomial expected running time'3.

We can also show the following.

Proposition 2. Family D, in Theorem 4 can be chosen so that the mazimum in-degree is ©(logt).

Proof. Consider graph D; = (V, E) from Theorem 4, with V = [t] and |E| < ctlogt. For a node v € V let
T, be the subgraph of D, containing node v, its predecessors 7(v) and all edges from 7(v) to v. Note, D; is
an edge-disjoint union of graphs T, over v € V.

Let d* be the smallest even integer satisfying 2¢° > ¢. Transform tree T, to a tree T! as follows: if
d, = |m(v)| < d* then T,, = T}, otherwise make T a tree with the root v and the leaves 7(v) such that the
degree of all non-leaf nodes belongs to [d*/2,d*]. Nodes of T, will be called “old” and other nodes of T, will
be called “new”; the new nodes are unique to 7). Let D; be the union of graphs T, over v € V.

Let n, be the number of new nodes in 7. If d, < d* then n, = 0, otherwise

)y o= =
— d*/2 d. d*(1—2/d*) logt+ o(logt)
The total number of new nodes is
n = Z ny <« Z dy, = a|E| < actlogt = (2¢+ o(1))t
veV veV

13 More precisely, the construction in [EGST75] uses graphs with certain properties (see their first lemma, conditions
(1)-(iii)). They show that certain random graphs satisfy (i)-(iii) with probability ©(1). Properties (i)-(iii) can be
checked in time 22 which is polynomial in N. We can thus first compute graphs satisfying (i)-(iii) with a Las
Vegas algorithm, and then use them to build D;.
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Therefore, graph Dj has ©(t) nodes and maximum in-degree d* = O(logt).

Let us show that for any subset X’ C V'’ with |X’| < nt graph D, contains a path of length at least
nt that does not intersect X’; this will imply the main claim of the proposition. Define set X C V via
X = {¢(v) | v € X} where mapping ¢ : V' — V is the identity for old nodes, and maps new nodes in T,
to v. Clearly, | X| < nt. By Theorem 4, graph D; contains a path P of length at least n¢. This path can be
naturally mapped to path P’ in D; (P’ passes through the vertices of P and possibly through some new
nodes). It can be seen that P’ does not intersect X’ and the length of P’ is the same or larger than the
length of P.

O

10.2 Construction of G

We are now ready to present our construction for Theorem 2. For integers m,t,d > 0 define graph G’(im) 4 as

follows:

— Add 2mt nodes Vo UVi U...UV; where |Vo| = mt and |V;| = ... = |V;| = m. Denote V=V, U...UV,
(this will be the set of challenges). ~

— Add a copy of superconcentrator C(,,;) from Vj to V, i.e. identify the inputs of C,,;) with nodes in Vj
(using an arbitrary permutation) and the outputs of C,,;) with nodes in V (again, using an arbitrary
permutation).

— For each edge (4, ) of graph D, add a copy of graph Rglm) from V; to V;.

It can be seen that G‘(im’t) € G(2mt,dlogt) (we assume that graph D; has been chosen as in Proposition 2).

Graph Gy = (V, E) for a sufficiently large N will be defined as G‘(im’t) for certain values m,t,d (plus
“dummy” vertices to make the number of nodes in G to equal N). We set t = [pulog N| and m = | N/(2t)]
where p > 0 is a certain constant. The family of graphs Gy is now completely defined (except for the value
of constants p, d). Note that Gy € G(N, O(loglog N)) since d is constant.

Remark 2 There are certain similarities between our construction and the construction of Dwork, Naor and
Wee [DNWO05]. They connect bipartite expander graphs consecutively, i.e. instead of graph D, they use a
chain graph with ¢ nodes. Set Vg in their construction has size m, and instead of C,,;) an extra graph is
added from Vj to V4 (which is either a stack of superconcentrators or a graph from [PTC77]). Dwork et al.
give an intuitive argument that removing at most 7m nodes from each layer Vi,...,V; (for some constant
7 < 1) always leaves a graph which is “well-connected”: informally speaking, many nodes of V; are still
connected to many nodes of V;. However, this does not hold if more than m = ©(N log N) nodes are allowed
to be removed: by placing initial pebbles on, say, the middle layer V; /o player 1 can completely disconnect
Vi from V;.

In contrast, in our construction removing any 7' N nodes still leaves a graph which is “well-connected”.
Our argument is as follows. If 7/ is sufficiently small then there can be at most nt layers with more than
7m initial pebbles (for some constant 7 < 1). By the property of Dy, there exists a sufficiently long path P
in D; that avoids those layers. We can thus use the argument above for the subgraph corresponding to P.
We split P into three parts of equal size, and show that many nodes in the first part are connected to many
nodes in the third part.

Remark 8 As an alternative, we could have omitted superconcentrator C'™) in the construction above. As
will become clear from the next two sections, the resulting family of graphs would have a pebbling complexity

2(0,[So < TN] - N) (12)

for some constant 7 € (0,1) (with probability at least 1 — 2=@W/198N) " for appropriate values of d, ).
However, we currently do not have any bounds on the number of pebbles S; for such graphs; the purpose of
adding C(,,,¢) was to get such bounds.

Graphs without C,,,) could be used if the amount of additional storage in the execution stage does not
matter for a particular application.
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10.3 Robust expanders
In order to analyze the construction above, we define the notion of a robust expander.

Definition 3. Consider graph G = (V, E) with inputs VT and outputs V™~ , values a,b,c > 0 and an interval
K = [kminu kmax]'

(a) G is called a (K, c)-expander if for every set of outputs X C V= of size | X| € K there holds |II;(X)| >
ol X].

(b) G is called a robust (a,b, K, c)-expander if for every set of non-output vertices A C V — V'~ of size
|A] < a there exists a set of outputs B C V'~ of size |B| < b such that graph G\ (AU B) is a (K, ¢)-expander.

By (k,c)-expanders and robust (a,b, k, c)-expanders we will mean expanders with the interval K = [1, k].
Intuitively, robust expansion means that the expansion property of the graph is fault-tolerant: it survives
(for a large subgraph) when a constant fraction of nodes is removed.

Tt is known [Vad12] that for a sufficiently large d graph R?m) is an expander (for appropriate parameters)

with a high probability. We show that it is also a robust expander; a proof is given in Section 10.5. #

Theorem 5. There exist constants «, k,7y € (0,1) and integer d > 0 with vd > 1 such that graph R?m) s a

robust (am, %am, k%, yd)-expander with probability at least 1 — 2-6(m),

From now on we fix values «, k, v, d from Theorem 5. We can now specify value p used in the construction
of Gn: we require that

> _ 3
nlog(vd)

Consider graph Gy = (V, E) that was obtained from graph G‘(im " Let G be the subgraph of G induced

by the set V =ViU...UV, of size |‘~/| = mt. From now on we assume that graph R?m) used in the

,J (13)

construction of G is a robust (am, %am, k%, vd)-expander; by Theorem 5 this holds with probability at

least 1 —2-0(m) — 1 _ 9—6(N/log N)

Theorem 6. For any subset U C V of size |U| < $na-mt there exist at least $1(1—a)-mt —O(m) vertices
v eV —U satisfying He\u (v)| = 20k - mt — O(m).

Proof. Let Q C [t] be the set of indices ¢ satisfying [V; N U| > am. We have
gnamt > U 2 |Q[-5am = |Q| <t

By the property of Theorem 4 graph D; contains directed path P of length at least nt that does not intersect
Q. Thus, for each node i of P we have |[V; NU| < fam.
For each node i of P we define set U; with V;NU C U; C V; and |U;| < am using the following recursion:

— If 7 is the first node of P then set U; =V, NU.

— Consider edge (i,7) of P for which set U; has been defined. Denote R;; = G[V; U Vj]; it is a copy of
R?m). By the robust expansion property there exists subset B; C V; with |B;| < %am such that graph
Ri; \ (U; U By) is a (k" , vd)-expander.

We define U; = (V; NU) U By, then |U;| < |V; NU| + |Bj| < sam + am = am.

14 Note that the robust expansion property has been formulated in [DNWO05, Section 4]. Namely, they say that “in any
good enough expander if up to some constant (related to the expansion) fraction of nodes are deleted, then one can
still find a smaller expander (of linear size) in the surviving graph”. To support this claim, they cite [AC88,Upf92].
However, we were unable to find such statement in these references.

We believe that inferring the robust expansion property of Rflm) just from the ordinary expansion is indeed
possible, but with a worse bound on the probability and with worse constants compared to what we have in
Theorem 5 and its proof.
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Note that graph R;; \ (U; UUj) is also a (7, yd)-expander: it is obtained from R;; \ (U; U B;) by removing
a subset of outputs, and such operation preserves the expansion property.

Let I C [t] be the first [ $7¢] nodes of P and J C [t] be the last [$+nt] nodes. Consider vertex v, € V; — U
for index j, € J. We will show |[ITc\p(vo)| > 77/@7 mt — O(m). This will imply the theorem since the
number of such vertices is at least |J| - (m — am) > int- (1 —a)m — O(m).

For nodes ¢ of path P denote

Xi =Ha\v(ve) N (Vi —Uy) (14)

For a node ¢ < j, of P let £(¢) be the distance from i to j, along P (with 4(j,) = 0). We use induction on
£(i) to show that

|Xi| = min{(yd)"©, x5 ] - vd} (15)

For £(i) = 0 the claim is trivial (since X;, = {v.}). Suppose it holds for j, and consider edge (i,j) of path

P. Note that £(i) = £(j) + 1. By construction, graph R;; \ (U; U Uj) is a (k'3 ,vd)-expander. Furthermore,
Hgij\(UiuUj)(Xj) C X;. Together with the induction hypothesis this implies the claim of the induction step:

Xl 2 1T, o0y (X))
2 7d-min{ X, 1))
> yd- min{(yd)'D, (k%] - vd, [#2]}
= min{(7d)"O+, [n2] - yd}

We have proved eq. (15) for all nodes i of P. Now consider node i € I. We have ((i) > int and also
t=|plogN| > plogm > m log m. Therefore,
('yd)e(i) > (yd)%”'mlogm =m

and so the minimum in (15) is achieved by the second expression k% | - vd = kym — O(1). (Note, we must
have kv < 1, otherwise we would get | X;| > m - a contradiction). We obtain the desired claim:

[He\w(ve)l = Yieq 1Xil > (30t — O(1)) - (sym — O(1)) = gnry - mt — O(m)

10.4 Proof of Theorem 2: a wrap-up

Using Theorem 6 and a result from [LT82], we can now show that graphs G n have a pebbling complexity
2(0,[So < TN]-max{N, N?/5;}) where 7 = Ina-miny % € (0,1). We define Ay as the uniform probability
distribution over vertices ¢ € V.

Assume that the set initial pebbles U C V chosen by player 1 has size |U| = Sy < 7N, otherwise the
claim is trivial. Fix a constant p € (0, £nx7). We say that a sample ¢ < Ay is good if [IIc\p(c)| > p - mt.
Theorem 6 implies that ¢ is good with probability at least ¢ for some constant § > 0.

Let us assume that ¢ is good. To pebble ¢, one must pebble at least p - mt nodes of \7; this requires

time T' = 2(N). Next, we use the following standard result about superconcentrators; it is a special case of
Lemma 2.3.1 in [LT82].

Lemma 2. In order to pebble 251 + 1 outputs of superconcentrator Cpy, starting and finishing with a
configuration of at most S1 pebbles, at least mt — 251 different inputs of the graph have to be pebbled and
unpebbled.

By applying this lemma |p-mt/(251+1)] times we conclude that pebbling ¢ with at most S; pebbles requires
time T' = 2(N?/S;). The theorem is proved.
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Q@ K 5 1) d
012 1/8 1/4 0.676 >190
0.19 1/16 1/8 0.757 >67
022 1/32 1/16 0.800 > 43
024 1/64 1/32 0.827 >34
Table 1. Feasible parameters satisfying (16). We always use 8 = %a — ¢ for a sufficiently small € > 0.

10.5 Proof of Theorem 5 (robust expansion of R{, )

In this section we denote graph Rfm) as G = (V, E) (with inputs V* and outputs V7). For a set of output

nodes X C V= let m(X) = II;(X) = U,cx m(v) be the set of predecessors of nodes in X.
We will use the following fact about the binomial distribution (see [AG89)).

Theorem 7. Suppose that X1,..., Xy are independent {0, 1}-valued variables with p = p(X; = 1) € (0,1).
Ifp< % <1 then

def

Fo(M;N,p) = Pr[ S X, > M ] <exp(—N-H(Y p))

where " |
H(a,p) = aln]; +(1—a)ln 1
Let us fix values a, 8, k,7,0 € (0,1) and integer d > 0 satisfying
B<ia (16a)
a<d—r (16Db)
qg<p where ¢ =exp(—d-H(0 —v,a)) (16¢)
H(B,q) —In< >0 (16d)
K<§ where 0=1-0 (16e)
sd>1 (16f)
—In(de) +d-[0In6+6Ind] + (6d—1)-Inl >0 (16g)

Examples of feasible parameters are given in Table 1. We will show that Theorem 5 holds for any values
satisfying (16). 15
Throughout this section we denote

Emax = K (17a)
min = [min{(3o — B)m, Tkmax}] (17b)
K= [kminv kmax] (17C)

We also introduce the following definition.
Definition 4. For a set of inputs A C V1 define set of outputs B4 via
Ba={veV™||r(v)NAl = (6 —~)d} (18)
Graph G is a backward (a, b)-expander if |Ba| < b for any set A C VT of size |A| < a.
Theorem 5 will follow from the following three facts.

15 We conjecture that the constants could be improved if instead of Rl(im) we used a random bipartite graph (with

multi-edges allowed) in which degrees of nodes in both V' in V'~ equal d (i.e. a union of d random permutation
graphs). Expansion properties of such graphs were analyzed in [Bas81].
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Lemma 3. Suppose that G is a backward (am, Bm)-expander and also a (K, dd)-expander.
(a) It is a robust (am, fm, K,~yd)-expander.
(b) It is a robust (am, Bm + kmin, kmax, Yd)-ezpander.

Lemma 4. There exists constant ¢; > 0 such that

Pr[ G is not a backward (am, fm)-expander | < 274™

Lemma 5. There exists constant co > 0 such that

Pr[ G is not a (K,dd)-expander | < 2 - 27 2Fmin

As a corollary, we obtain that G is a robust (am, Sm + kmin, £, vd)-expander with probability at least
1 —27cm 2.2 ¢kmin Therefore, it is also a robust (am, %a, k%, yd)-expander with this probability, since
%a > Bm + kmin- By observing that ¢y = ©(m) and cokmin = ©(m) we get Theorem 5.
The remainder of this section is devoted to the proof of Lemmas 3-5.

Proof of Lemma 3(a) Given set A C V' of size |A| < am, we construct set B via B = Ba; the backward
expansion property implies that | B| < fm. Let us show that graph G\ (AUB) is a (K, yd)-expander. Consider
set X C V~—Bwith |X| = k € K. We can partition 7(X) into disjoint sets Y = 7(X)NA and Z = m(X)—A.
For each v € X denote Y,, = w(v) N A, then |Y,| < (§ — ¥)d (since v ¢ B4). The desired inequality can now
be derived as follows:

2| =Y uZ| - Y| = |x(X)| = | |J Yol > 6kd = Y Vo] > dkd — |X|- (6 — y)d = vkd
veX veX

Proof of Lemma 3(b) Consider set A C VT of size |A| < am. By Lemma 3(a) there exists set B C V™
of size B < m such that graph G\ (AU B) is a (K, ~vd)-expander. We will denote this graph as G, and its
inputs and outputs as V* =Vt — A and V— = V=~ — B respectively. For a set X ¢ X~ let #(X) C V* be
the set of predecessors of X in G.

We will show that there exists set B C V™~ of size |B| < kmin — 1 such that graph G \ Bisa (kmax, vd)-
expander; this will imply the claim of the lemma. In fact, it suffices to show that it is a (kmin—1, vd)-expander,
since we already know that G \ Bisa ([kmin, kmax], yd)-expander for any Bcv-.

We construct set B using the following greedy algorithm:

— set B :=0;
— while there exists subset X C V'~ — B such that |X| < kmin — 1 and |#(X)| < yd|X|, update B := BUX.

By construction, upon termination we get set B such that graph G \B is & (kmin —1, ¢)-expander. To prove the
lemma, it thus suffices to show that \E| < kmin — 1. Suppose that this is not the case. Let B’ C B be the first
subset during the execution of the algorithm whose size exceeds ki, — 1, then kyi, < |B’ | < 2kmin < Kmax-
We have |B’| € K, so the (K,~d)-expansion property of G implies that |#(B’)| > ~d|B’|. However, by
inspecting the algorithm above we conclude that |#(B)| < vd|B’| - a contradiction.

Proof of Lemma 4 Denote o’ = |am|/m < a. Clearly, it suffices to prove the backward expansion
property only for sets of inputs A C V¥ of size |A| = |am]| = o’/m. Let us fix such set A. For an output
vertex v € V'~ denote ¢’ = Pr{v € By]. It is the probability that |7(v) N A| > (6 — v)d. Each node u € w(v)
falls in A with probability o/ = |A|/m, therefore

¢ =F.((6 —v)d;d,a’) < F~((6 = v)d;d,a) < exp(—d- H(6 —v,a)) = ¢

(We used the fact that § — v > a by (16b).) From the inequalities above and from (16¢) we get ¢’ < ¢ < 5,
therefore
Pr[|Ba| = pm] = F.(Bm;m,q') < F.(Bm;m, q) < exp (—m - H(S,q))
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We now use a union bound:

Pr[G is not a backward (am, fm)-expander| < Z Pr{|B| > Bm)]
ACV+:|Al=a'm

< () exw e (5.0 < (220) ™ exp (- H(5.0)
= exp (=m0 (H(5,q) = 1n £))

Combined with condition (16d), this implies the claim.

Proof of Lemma 5 We follow the argument from [Vad12], only with different constants. Consider integer
k € K = [kmin,x"7], and let py be the probability that there exists set X C V7~ of size exactly k with
|7(X)| < dd- k. We prove below that p, < 27 for some constant ¢ > 0. This will imply Lemma 5 since then

=) 00
Pr[ G is not a (K, dd)-expander | < Z 27k < 9= Chmin } "9~ — 9. 9= Chmin
k=EKumin =0

Recall that we denoted § = 1 — 4. Let us also denote A = %. Note, condition k < Ii% implies that A < k.
Consider a fixed set X C V'~ of size k. Let us estimate the probability that |7(X)| < Fkd. Set 7w(X)
contains a union of kd independent random variables Ji,...,Jrq where each J; is a node in V* chosen
uniformly at random. We can imagine these nodes Ji, ..., Jiq being chosen in sequence. Call J; a repeat if

Ji € {J1,...,Ji—1}. Then the probability that .J; is a repeat, even conditioned on J,...,J; — 1, is at most
i=l < kd _

m — m
Let Ji, ..., Jga be independent random variables that take values “repeat” and “no repeat”, with Pr[J; =
repeat] = A. Then

Pr[ |n(X)| < 8kd ] < Pr| there are at least |dkd + 1] repeats among Ji, ..., Jrq ]
< Pr| there are at least |dkd + 1| repeats among Ji, . .., Jia ]
= F.(|0kd+ 1];kd,\) < F.(5kd;kd,\) < exp (—kd- H(5,\))

The number of subsets X C V~ of size k is (T]Z) < (%)k = (@)k. Therefore,

<Y, Pr|n(X)| < dkd]
XCV—:|X|=k

< (%)  exp (<kd - H(5, )
:eXP<—k-[—ln%—kd-glng_f_d.(;]n%})
:eXP<—k-[a+(5d—1)-ln§+5d.1nﬁ]) (19)

where in ¢ we collected terms that do not depend on A:
o=—In(de)+d-[61né+ §1nd]
Note that 6d — 1 > 0 by (16f). Plugging inequalities In > In 1 and In 15 > 0 into (19) gives
pr<exp(—k-[oc+(0d—1)-Ini])

The coefficient after k in the last expression is a positive constant according to (16g). The claim p; < 27¢F
for a constant ¢ > 0 is proved.
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10.6 Superconcentrators are robust expanders

For completeness, in this section we show that superconcentrators are also robust expanders (for appropriate
parameters). This suggests that in the construction of G one could replace bipartite random graph R?m)
with superconcentrator C,,); the argument of Theorem 6 would still apply. More precisely, we have two
options:

— When adding a copy of C,,) for edge (i,7) € Dy, create unique copies of internal nodes of C,,) (i.e. those
nodes that are neither inputs nor outputs; there are ©(m) such nodes). Graph G|, ;) would then have
O(mtlogt) nodes instead of ©(mt) nodes. We could thus obtain a family of graphs G with a constant
average degree and pebbling complexity

2(0,[S0 < Ty - (mriey)2/51) (20)

for some constant 7 > 0.

— Share internal nodes of superconcentrators for edges (i, j) that are going to the same node j € [t]. Graph
G (m,+) would then have ©(mt) nodes. This would give a family of graphs Gn € G(N,O(loglog N)) with
the same pebbling complexity as in Theorem 2.

We omit formal derivations of these claims (thus leaving them as conjectures); instead, we only prove the
following result.

Theorem 8. Suppose that values m, o, k, ¢ satisfy c(am~+k) < (1—a)m. Then superconcentrator G = (V, E)
with |VT| = m inputs and |V ~| = m outputs is a robust (am, am, k, c)-ezpander.

We will need the following well-known property of a superconcentrator.

Lemma 6 ([PTC77]). fACV —V~, BC V™ are subsets with |A| < |B| then |II}, ,(B)| >m — |A|.

\A
Proof. If |U§\A(B)| < m — |A] then |V — Ug\A(B)| > |A] + 1, so there must exist |A| + 1 vertex-disjoint
paths between V* — IT g\ 4(B) and B. At least one of them does not intersect A, and thus its source node
belongs to IT g\ 4(B) - a contradiction.

O

We now proceed with the proof of Theorem 8. Consider subset A C V —V~ with |A] < am. We construct
set B C V'~ using the following greedy algorithm:

— set B := (;

— while there exists subset X C V™~ — B such that |X| < k and |11/, ,(X)| < c|X|, update B := BU X.

\A

By construction, upon termination we get set B such that graph G \ (A — B) is a (k, ¢)-expander. To prove
the theorem, it thus suffices to show that |B| < am. Suppose that |B| > am. Let B’ C B be the first subset
during the execution of the algorithm whose size exceeds am, then am < |B’| < am+k. We have |B’| > | 4],
so by Lemma 6 \Hér\A(B’)| > m — |A] > (1 — a)m. By inspecting the algorithm above we conclude that

|Hg\A(B’)| < ¢|B’|. We obtained that c(am + k) > ¢|B’| > (1 — a)m - a contradiction.
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A Time-Memory Tradeoffs: Why Constructing a PoS is Non-Trivial

In this Section we will explain why the probably most simple and intuitive construction of a PoS, where
the prover simply stores a table of outputs of a random function, only achieves very weak security due to
time-memory tradeoffs for inverting random functions [Hel80]. Consider the following simple PoS (P, V):

Initialization: P computes and stores a list L of tuples (#(¢),¢) for i € [N] = {1,..., N}, sorted by the
first item.
Execution: During execution
— V picks a random value i «— [N] and sends the challenge ¢ = H (i) to P(L).
— On input ¢, P(L) checks if some tuple (¢, j) is in L (which can be done in log(N) time as L is sorted),
and sends back j in this case.
— V accepts if j = 1.

Intuitively, in order to make the verifier accept with constant probability, a cheating prover P must either
store a large fraction of the outputs H(i) (and thus use Ny = ©(N) storage), or search for the i satisfying
H(i) = ¢ by brute force (and thus use T'= O(N) time). One thus might be tempted to conjecture that this
is indeed an (¢1N, 00, coN)-secure PoS for some constants ¢, co > 0.

Unfortunately, this is not the case due to existing time-memory trade-offs for inverting random functions.
Hellman [Hel80] showed that one can invert any function X — Y with input domain of size |X| = N
with constant probability in time @(N?/3) using ©(N?/3) storage. This means that this PoS is not even
(e1N?/3, 00, caN?/3)-secure'® for some c¢1,co > 0. Moreover, the O(N?/3) storage required to break the

16 Recall that setting N7 = oo just means we put no bound no the storage used during execution, but of course Nj is
upper bounded by the running time during execution plus the initial storage, so we could replace co with c3 N 2/3
(for some c3 > 0) here without affecting the statement.
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function in ©(N?/3) time can be initialized in time linear in N with small hidden constants, thus this attack
is very much practical.

B Bitcoin

A recent exciting application of PoW is Bitcoin, a decentralized digital currency first described in October
2008 [Nak09] which has become widely popular by now. An important problem any digital currency system
has to address is double spending, that is, the possibility of a cheating party spending the same digital coins
in two or more transactions. Not having a central authority, Bitcoin relies on the computing power of its
user-base to avoid double spending. A transaction takes something between 10 to 60 minutes to be confirmed,
and a cheating party trying to double spend would have to invest more (or at least a comparable amount of)
computational work in this timespan as the contributed computational power of all honest parties combined.

PoS could be an interesting alternative (or enhancement) to PoS in decentralized payment systems like
Bitcoin. The current solution using PoW in Bitcoin requires the honest user-base to constantly waste a
huge amount of computational power. Even if only CPU time of processors that would otherwise be idle
was contributed, this still requires energy [Gay13]. For this reason Bitcoin has even been called by some an
“environmental disaster” [And13].

Unlike PoW, PoS have the advantage that contributing comes basically for free (assuming parties have
some free disk-space anyway), there is just some computational cost for initializing the dedicated disk space.
It is not immediately clear how to adapt our single-prover interactive PoS to the non-interactive setting with
multiple provers, as it would be necessary for the Bitcoin setting. We leave this as an open problem for future
work.

C Online-Polls.

As another illustrative example for an (interactive, single-prover) PoS, consider on-line polling systems, like
the one that is used by Wikipedia to reach consensus amongst the editors of an article. Currently, such
systems do not offer sufficient protection against malicious users creating many fake identities in order to
vote multiple times. A natural remedy to this problem is to link voting with a proof of work. This however is
problematic, since honest users would typically not be willing to devote significant amount of their processor
times to such a vote, whereas a party having a strong interest in obstructing the vote might well do so.

To give an numerical example, if the PoW requires 5 min to compute, then a dishonest player can cast
almost 2000 “fake” votes in a week. If one uses PoS instead, then the situation (while still not perfect) is
much better, as to achieve a similar result an adversary would need to buy a significant amount of storage.
For example, if we require a user to dedicate 100 GB of disk-space in order to participate in votes, then in
order to be able to cast 2000 votes, an adversary would need to invest in 200 TB of disk space, which may
be prohibitive for a typical internet vandal.
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