
Practical Forward-Secure Range and Sort Queries
with Update-Oblivious Linked Lists

Abstract. We present RASP, a new protocol for privacy-preserving range search
and sort queries on encrypted data in the face of an untrusted data store. RASP
has several advantages over existing work. First, RASP strengthens privacy by
ensuring forward security: after a query for range [a,b] any new record added
to the data store is indistinguishable from random, even if the new record falls
within range [a,b]. Surprisingly, we are able to accomplish this using only tra-
ditional hash and block cipher operations, abstaining from expensive asymmet-
ric cryptography and bilinear pairings. Consequently, RASP is highly practical,
even for large database sizes. Additionally, we require only cloud storage and
not a computational cloud like related works, which can reduce monetary costs
significantly. The main idea of RASP is to build upon a new update-oblivious
bucket-based data structure. We allow for data to be added to buckets without
leaking into which bucket it has been added. As long as a bucket is not explicitly
queried, the data store does not learn anything about bucket contents. Further-
more, no information is leaked about data additions following a query. Besides
formally proving RASP’s privacy, we also present a practical evaluation of RASP
on Amazon Dynamo, demonstrating its real world applicability.

1 Introduction

Outsourcing data to cloud stores has become a popular strategy for businesses, as cloud
properties like scalability and flexibility allow for significant costs savings. However,
cloud infrastructures cannot always be completely trusted, due to, for example, hacker
and insider attacks [12, 25]. While encryption of outsourced data protects against many
privacy threats in cloud scenarios, it renders subsequent operations on data (i.e., data
analysis) extremely difficult. Although fully homomorphic encryption (FHE) offers an
elegant solution to perform operations and data analysis on encrypted data, today’s
techniques are still impractical and their use can negate any cloud cost advantages.

In this paper, we address the problem of performing privacy-preserving range search
and sort queries on encrypted outsourced data with a particular focus on practicality.
We envision a scenario, where a set of users upload a large number of encrypted data
records to an untrusted cloud store. From time to time, a surveyor wants to perform
data analysis operations. Specifically, the surveyor queries for all the records in a cer-
tain range of values (“categories”). Alternatively, the surveyor may query for the top m
sorted records, i.e., the m smallest records following some order.

Although the individual data records are encrypted, an untrusted cloud could still
infer information about them by observing multiple range and sort operations. For ex-
ample, the cloud could learn access patterns and correlate them. Consequently, also the
analysis operations (“queries”) need to be privacy protected. The crucial challenge here

is practicality, i.e., high efficiency in terms of bandwidth, user/surveyor/cloud compu-
tations, and memory requirements. Besides FHE, another approach that could apply
here is performing range or sort queries on top of an Oblivious RAM [11]. With n the
total number of outsourced records in the cloud, recent research has lowered ORAM
worst-case communication complexity down to poly-logarithmic in n [20, 24]. Still, for
large n (such as n = 230 records or more), this overhead becomes overly expensive.
Along the same lines, searchable encryption techniques [7, 10, 21] would either require
computational and communication complexities linear in n or non-trivial extensions to
perform updates to stored data in a privacy-preserving fashion. Other techniques such as
Order Preserving Encryption (OPE) [5] are highly efficient, but provide weak privacy.
Finally, recent work on range search [6, 16, 19] offers insufficient “selective” privacy
and, being based on bilinear pairings, becomes impractical for, e.g., embedded devices
or smartphones and large n as targeted in this paper.

Our contributions. We present RASP (“Range And Sort Privacy”), an original scheme
for privacy-preserving range and sort queries on encrypted data. At the core of RASP,
we introduce a new privacy-preserving bucket data structure LL similar to bucket sort.
Each individual bucket in LL can grow dynamically in size, and we will use the buck-
ets to represent the categories that (encrypted) records can belong to. As with standard
bucket sort, we assume that the number D of possible different buckets for records re-
mains small compared to n (D�n). We call our data type LL, which is of independent
interest, update-oblivious, as it hides into which bucket a new record is added. RASP
uses LL for range search, where it hides bucket contents until the surveyor explicitly
queries for them. RASP also naturally extends to support m-sort queries. While RASP
targets practicality and offers weaker privacy properties than, e.g., ORAM, it provides
stronger, forward-secure privacy compared to related work on range search [6, 16, 19].
Moreover, RASP only relies on efficient computations such as hash computations and
symmetric encryption, in contrast to expensive pairing-based related work. The techni-
cal highlights of this paper are:

– LL, a dynamic data structure that provably hides any information about a newly
added data record until this data record is explicitly read. (Section 3)

– RASP, a protocol employing LL for range search and sort queries on encrypted
data in the cloud. Compared to related work on range search, RASP offers stronger,
forward-secure privacy. We formally prove that the cloud cannot learn any infor-
mation about added records until the surveyor queries them. Details about queries
are hidden, and only the overlap between queries is leaked. RASP is efficient and
scales well. The user’s and surveyor’s, computational and communication complex-
ities are constant in the total number of records. In contrast to related work, RASP
seamlessly integrates into cheap storage-only, no-computation cloud services such
as Amazon S3 or Dynamo and allows for multiple different users that do not trust
each other. (Section 4)

– An implementation and evaluation of LL and RASP in Amazon’s DynamoDB cloud.
The source code is available for download [3].

2 Problem Statement
General scenario: To motivate our work, we use an example scenario throughout this
paper. Assume a set of users U that continuously upload data records to a cloud store.
Each record comprises: (1.) a category I of some domain D with an order relation, e.g.,
D={1,...,D}⊂N and “≤”, and (2.) some payload dataM . For the sake of range search
and sort queries in this paper, M is not particularly interesting, and we focus only on
indices I . After some time, users have uploaded a total of n records to the cloud, where
n can become very large, while D is comparatively small, e.g., n=230 and D=1024.
Periodically, a surveyor queries the uploaded records for those records whose indices
match a certain range in D. The set of records that match this range has sizem. Alterna-
tively, the surveyor wants to retrieve the firstm records according to their sorted indices.

Possible Applications: One can imagine various real world application scenarios that
fall within the general setup above. For example, imagine a set of banks (“users”) that
upload financial transactions, i.e., the amount of each transaction together with details
such as sender, receiver, and date. At times, to detect fraudulent behavior and money
laundering, the police queries for all transactions within some suspicious range or them
highest transactions of a certain time period. Alternatively, imagine a set of physicians
that upload patient records, comprising the patient’s personal information and, say, the
patient’s blood pressure. Once in a while, for further analysis, a health insurance wants
to retrieve details about all patients with blood pressure in a critical range or the top m
patients with high blood pressure. In both application scenarios, the stored data is sen-
sitive, and the underlying cloud store should not learn details about either stored data or
queries performed. This implies encrypting uploaded data by the users and “oblivious
queries” by the surveyor.

2.1 Range and Sort Queries
We now formalize privacy-preservingm-Range andm-Sort schemes. We start by intro-
ducing the functionality that each scheme should support. The main idea is that users
respectively encrypt and upload their records to the store, while the surveyor performs
range search and sort operations.

Definition 1 (m-Range Search and m-Sort Scheme Π). Let I,0≤ I≤D−1, denote
a category within domain D and M a plaintext (“payload”). A m-Range and m-Sort
search scheme Π comprises the following algorithms.

– KeyGen(s): This algorithm uses security parameter s to generate secret key SK
and a set of user keys {Seedi}1≤i≤|U|.

– Encrypt(I,M,Seedi): encrypts M at category I using user key Seedi. The algo-
rithm’s output is ciphertext C.

– Decrypt(C,SK,i): decrypts ciphertext C, such that Decrypt(Encrypt(I,M,Seedi),
SK)=M , where SK and Seedi were generated from KeyGen(s).

– PrepareRangeQuery(a,b,SK): uses secret key SK and a pair a,b∈N with a≤ b to
generate a range query token T R.

– RangeQuery(T R,{C1,...,Cn}): using range search token T R=PrepareRangeQuery
(a,b,SK) and a set of ciphertexts Ci, a response SR = {Ci|Ci = Encrypt(Ii,Mi,
Seedj)∀j,1≤j≤|U| and Ii∈ [a,b]} is computed.

– PrepareSortQuery(m,SK): with secret key SK and length m,1≤m≤n, outputs a
sort query token T S .

– SortQuery(T S ,{C1,...,Cn}): using sort query token T S and ciphertexts Ci, out-
puts a sequence SS =< C ′1, C

′
2, ... , C

′
m > as response. Here, ciphertext C ′i =

Encrypt(Ii,Mi,Seedi) denotes the ciphertext on the ith position according to the
order of the underlying indices I . More formally: (1.) for C ′1: there is no Cj,1≤j≤n
such that Ij<I1, (2.) for any pair C ′i,C

′
i+1: either Ii=Ii+1, or Ii<Ii+1 and there

are a total i ciphertexts Cj,1≤j≤i with Ij<Ii+1, (3.) for any pair C ′i,C
′
j :C

′
i 6=C ′j .

2.2 Privacy

We will now present RASP’s notion of privacy. Informally, our goal is to leak as little
information as possible about the outsourced data records and the queries to the cloud.
While the IND-CPA encryption of records already provides a viable first step, the chal-
lenge is to restrict leakage of query access patterns. For example, the cloud should
not learn any additional information about records that are not part of a query result
– besides that these records are obviously not in the queried range or among the top
m records. Typically, ORAM based solutions would offer strong protection. However,
focusing on efficiency, we dismiss ORAM, because even recent research resulting in
poly-logarithmic worst-case communication complexity [20, 24] quickly become ex-
pensive with large n such as n=230.

RASP focuses on a slightly weaker notion of privacy than ORAM: forward-secure
privacy. Intuitively, the cloud (now called adversary A) should not learn any details
about a new record R that is added to the store, i.e., A should not learn anything about
R’s category I (and payload M). Only when the surveyor executes a range search or
sort query will A learn whether R matches this query or not. Our goal is that any two
records R,R′ that do not match a query will remain computationally indistinguishable
for A. We now formalize our privacy goal. Targeting a standard simulation-based pri-
vacy definition, the idea is that, given a well specified privacy-leakage, a polynomial-
time simulator can generate a transcript of RASP which is computationally indistin-
guishable from the output of the actual protocol. If this is true, then A cannot learn any
information beyond the defined leakage.
In summary, forward-secure privacy allows A to only learn: (1.) the operation pattern,
i.e., which operation (range or sort) is performed, (2.) the data access pattern, i.e., which
records are accessed during an operation, and (3.) the enumeration pattern, i.e., which
records are returned. We focus on key-value “(k,v)” based cloud stores/databases such
as Amazon Dynamo DB or S3 in this paper, so we assume that each record is uniquely
addressable by an address k in the store. We now formalize our forward-secure privacy.

Definition 2 (Operation). For m-Range and m-Sort scheme Π , operation op is de-
fined as either (Encrypt,I,M,Seedi), (RangeQuery,a,b,SK) or (SortQuery,m,SK).
For ease of exposition, we introduce the following functions on operations:

– Type : op→{Encrypt,RangeQuery,SortQuery} which extracts the operation type
from an operation.

– Execute : (op,K) → (K = (k1, ... ,kt),C = (c1, ... , ct)) which executes op using
the key K and returns the result. The set K contains the sequence of addresses ac-

cessed on the cloud, and C contains the data, i.e., records at those addresses after
the operation.

– Categories : (c1,...,ct)→{I1,...,It}⊂Dt which extracts the categories Ii out of a
sequence of records ci.

Definition 3 (History). A q-query history is the sequence of operationsH=(o1,...,oq),
where oi=(Encrypt,I,M), oi=(RangeQuery,a,b) or oi=(SortQuery,m).

Definition 4 (Operation Pattern). The operation pattern induced by a q-query history
H is the sequence β(H)=(Type(o1),...,Type(oq)).

Definition 5 (Category Pattern). Let π be a random permutation of integers {1,...,D}.
The category pattern of a q-query history is the following q-length sequence σ(H):
first, consider the case that Type(oi) = RangeQuery or Type(oi) = SortQuery. Let
Execute(oi,K) = ((k1, ... , kt), (c1, ... , ct)) and Categories(c1, ... , ct) = {I1, ... , It}.
Then, σ(H)[i] is the unordered set of tuples {(π(I1),χ(I1)),...(π(It),χ(It))}, where
χ(I) = (e1, ... ,em) returns the indices such that ∀j < i : oej = (Encrypt,Ij ,Mj). If
Type(oi)=Encrypt, then σ(H)[i] is the empty set.

That is, σ(H) reveals which previous Encrypt operations are being queried as part of
the current range search or sort query operation i and the pattern of categories that are
accessed for that operation. For any two range queries, σ(H) will tell which categories
they have in common. Due to random permutation π, σ(H) does not give any informa-
tion about the ordering of the categories beyond what can be inferred by the overlap.

Definition 6 (Sort Leakage). The sort leakage from a q-query historyH is the q-length
sequence γ(H) defined as follows: if oi is a sort query, i.e., Type(oi) = SortQuery
with Execute(oi) = ((k1, ... ,kt),(c1, ... , ct)) and Categories(c1, ... , ct) = {I1, ... , It},
then γ(H)[i] is the tuple (m,(π(1), ... ,π(t))). If Type(oi) = Encrypt or Type(oi) =
RangeSearch, then γ(H)[i] is ⊥.

This means that the sort leaks the first j categories, including their order, as well as the
number of records returned by the query.

Definition 7 (Trace). The trace induced by a q-query history H is the tuple τ(H) =
(σ(H),β(H),γ(H)).

Definition 8 (Forward-Secure Privacy). Let Π be an m-Range Search and m−Sort
Scheme implementing Execute for operations Encrypt,RangeQuery, SortQuery and
therewith generating trace τ . Let s∈N be the security parameter, A be an adversary,
and S be a simulator. Consider the following two experiments:

RealΠA(s) SimΠ
A,S(s)

K←KeyGen(1s) for 1≤ i≤q
for 1≤ i≤q (stA,oi)←A(stA,(K1,C1),

(stA,oi)←A(stA,(K1,C1), ...,(Ki−1,Ci−1))
...,(Ki−1,Ci−1)) (Ki,Ci,stS)←S(stS ,τ(o1,...,oi))

(Ki,Ci)←Execute(oi,K) let K∗=(K1,...,Kq)
let K∗=(K1,...,Kq) let C∗=(C1,...,Cq)
let C∗=(C1,...,Cq) output v=(K∗,C∗) and stA
output v=(K∗,C∗) and stA

Scheme Π is forward-secure privacy-preserving, iff for all PPT adversaries A, there
exists a PPT simulator S, such that for all PPT distinguishers D,

|Pr[D(v,stA)=1:(v,stA)←RealΠA(s)]−
Pr[D(v,stA)=1:(v,stA)←SimΠ

A,S(s)]|≤negl(s).

Discussion: Our definition captures an adaptive adversary which generates the history
one operation at a time, seeing the results of the previous operations. This allows for an
adversary which changes his strategy depending on what the simulator has output after
i<q operations. Consequently, the simulator calculates one step of the simulation at a
time based on a partial trace generated from an adaptive history.

Definition 8 is generic in that it allows us to bound the information leaked by any
protocol which uses a cloud store. If there exists a simulator, given only the trace, which
can produce a sequence of “accesses” that is indistinguishable from a real execution of
the protocol, then no information other than the trace can be leaked.

2.3 Forward-Secure privacy vs. privacy of related work
We stress that forward-secure privacy, Definition 8, is stronger than privacy models of
related work on range search [6, 16, 19]. These schemes offer only selective security.
That is, a query for a specific range [a,b] implies that A from then on will be able to
automatically determine whether new records added in future will also be within [a,b]
or not – a major disadvantage. In contrast, our privacy definition guarantees that even a
record R∈ [a,b] added after the range query for [a,b] is indistinguishable from random
until [a,b] is queried again. Moreover, the work by Shi et al. [19] is Match Revealing
(selective-MR). This means that, if a record matches, its category is leaked toA, too. In
contrast, the work by Boneh and Waters [6] and Lu [16] is Match Concealing (selective-
MC). Definition 8 never leaks the category toA. Additionally, Lu [16] requires that the
adversary must not know the distribution of records’ categories. As the ciphertexts are
stored in a B-tree, visible to the store, knowledge of the category distribution is enough
to reveal all ciphertexts, cf. Lu [16], §9. This is a rather significant drawback, as there
are many useful situations where the adversary may either partially or fully know the
plaintext distribution.

Definition 8 is also stronger than Order Preserving Encryption (IND-OPE). In IND-
OPE, A immediately learns the order of records. After a range query, A can determine
for any record added in the future whether it is in the range or not. Also, A learns for
any record whether it is smaller or larger than a range’s endpoint. In contrast, Defi-
nition 8 only leaks membership to an encrypted range of encrypted records for those
records queried at the time of the query, but not for updates (therefore called “update-
oblivious”). Targeting practicality, Definition 8 is weaker than the one of ORAM. In
contrast to ORAM, Definition 8 does not protect access patterns. That is, A can ob-
serve that subsequent queries access the same records.

3 Update-Oblivious Linked Lists
For its range and sort queries, RASP relies on a new kind of data type that we call
update-oblivious add-enumerate data type. Its purpose is to allow a Writer to add val-
ues to buckets (the categories). Also, a Reader can enumerate all values of a bucket. The

sole privacy goal is to hide from an adversary storing all data which bucket a new value
is added to by the Writer until this specific bucket is enumerated by the Reader. We
will now start by describing the operations and privacy properties that update-oblivious
add-enumerate data types support. Then, we will introduce an original data type LL, a
sequence of linked lists that supports update-oblivious operations, and we will prove its
privacy properties.

An add-enumerate data type comprises a sequence of D buckets, dynamic data
structures indexed by I,1 ≤ I ≤ D. This data type supports adding values to the in-
dividual buckets and enumerating individual buckets, i.e., enumerating all values that
have been previously added to one of the buckets. Again, we assume a key-value based
underlying cloud store. Each “value” v added is uniquely addressable by an address k
in the store. More formally, an add-enumerate data type supports two algorithms:

– Add(I,v) : On input bucket I,1≤I≤D and a value v∈{0,1}∗, this algorithm adds
v to I and outputs an address k∈{0,1}∗. We call the pair (k,v) valid.

– Enumerate(I) : This algorithm returns the set {(k,v)|v∈I∧(k,v) is valid}.

3.1 Update-Oblivious Privacy

Again, we use a simulation-based privacy definition for update-oblivious data types.
Similarly to Definition 8,A can learn (1.) the operation pattern (which operation is per-
formed on the data type), (2.) the data access pattern (which data in the individual data
structures is accessed during an operation), and (3.) the enumeration pattern (which val-
ues are returned as part of an Enumerate). However, the enumeration pattern will not
reveal the indices of values enumerated never before. Being clear from the context, we
reuse the notions of histories and operations defined previously in the context of add-
enumerate data types, with a new definition of Trace to quantify information leakage.

Definition 9 (Operation). An operation op is either (Add,I,v) or (Enumerate,I,⊥).

Definition 10 (Enumeration Pattern). The enumeration pattern induced by a q-query
history H is q×q binary matrix σ(H) where for 1≤ i,j≤q the entry in the ith row and
jth column is 1, iff i≤j Type(oj)=Enumerate and Ii=Ij . Otherwise, this entry is 0.

If Type(oi) = Add, then the ith row of this matrix contains ones in the columns
corresponding to an enumerate that happens after this add. Therewith, the enumeration
pattern reveals which category an add corresponds to only after an enumerate occurs
for that same category. If the result of an add is never queried, i.e., no enumerate occurs
after for that category, then the entire row in the matrix will contain only zeroes, and
the category of the add is not leaked.

Definition 11 (Access Pattern). Let π be a random permutation of the integers {1,...,
D}. The access pattern of a q-query history is q-length sequence γ(H), such that, if oi
is an enumerate on category j, then γ(H)[i]=π(j). Otherwise, γ(H)[i]=0.

That is, access pattern γ will reveal when two enumerates are on the same category.
This is also revealed as part of the enumeration pattern, but we include this separate
notation for clarity.

Definition 12 (Trace). The trace induced by a q-query history H is the tuple τ(H)=
(σ(H),β(H),γ(H)).

Definition 13 (Adaptive update-oblivious). We define adaptive update-oblivious (“update-
oblivious”) privacy using the same generic simulation-based experiments as above
(Definition 8), but include the new Definition 12 of trace for this data structure.

3.2 The Data Type LL

We present a new add-enumerate data type LL which implements the sequence of D
buckets as linked lists on top of any key-value based store.

Overview: The main rationale of LL is that Reader and Writer synchronize their access
to the same bucket/linked list I using an array of flags. If the Writer wants to update
linked list I by adding a new value v, he verifies whether the Reader has enumerated I
after the last add by checking the flag for this list. If the Reader has enumerated I , then
the Writer does not simply append v to I , but creates a new chain for I , adds v to this
chain, and updates the flag. The Writer will continue adding values to this new chain,
until the Reader enumerates I again. Then, the Writer will create another new chain etc.
On the other hand, the Reader checks a flag to understand whether the Writer has created
a new chain for I , thereby knowing how many chains of I contain values. The security
rationale for starting a new chain for I after an enumeration of I is that A cannot
determine category I for a newly added value by linking to a previous enumerate of I .

Details: Reader and Writer share a secret key κ. LL comprises a total of D linked lists
which are indexed by I,1≤I≤D. In the underlying key-value store, the head of linked
list I , the start of the first chain of I , can be accessed using address hκ(I,1), where h is
a pseudo-random function, and “,” is an unambiguous pairing of inputs.

Writer and reader synchronize using an encrypted array of flags ∆ = (δ1,...,δD),
δi ∈ {0,1}. They can save and retrieve Eκ(∆), where E denotes encryption, in the
underlying key-value store using address hκ(“delta”). Initially, all flags δi are set to 0.

For each linked list I , the Writer stores a local counter γWriter
i . All counters are ini-

tialized to 1. The purpose of these counters is to keep track of the number of chains that
have been created per linked list. Each time the Writer starts a new chain for a linked
list I , he increases γWriter

I by one. Along the same lines, the Reader also keeps a local
sequence of counters γReader

i , initialized to 1. Each time the Reader sees that the flag for
a specific linked list I has been changed, i.e., the Writer has created a new chain for
I , the Reader will increase γReader

I by one. Moreover, the Writer locally stores for each
linked list I a next pointer ψI . This next pointer represents the address in the underlying
key-value store for the next value v to be added to linked list I . Initially, each ψI is set
to hκ(I,1), i.e., the start of the first chain of list I .

Add: In case the Writer wants to add a new value v to linked list I , he executes Algo-
rithm 1. First, he downloads and decrypts the δi. Note that we use the standard key-
value semantic Get and Put to access data in the underlying store. If δI = 1, then the
Reader has accessed list I since the last add, and the Writer creates a new chain for I .
The Writer increases counter γWriter

I , sets next pointer ψI to the start of the new chain
hκ(I,γ

Writer
I), resets flag δI , and uploads a new encryption of all flags ∆. In any case,

the Writer uploads an encrypted version of v using the current address that ψI points at.

Algorithm 1: LL-Add(I,v,κ)
Input : Pair (I,v), secret

key κ, local sequences of next
list pointers Ψ=(ψ1,...,ψD)
and counters ΓWriter =(γWriter

1 ,
...,γWriter

D),security parameter s
Output: Address

k, ciphertext e of new record
1 Eκ(∆) :=Get(hκ(“delta”))

and decrypt to ∆=(δ1,...,δD);
2 if δI=1 then
3 γWriter

I :=γWriter
I +1;

4 ψI :=hκ(I,γ
Writer
I);

5 δI :=0;
6 Put(hκ(“delta”),

Eκ(∆)=Eκ(δ1,...,δD));
7 end
8 k :=ψI ;

9 ψI
$←{0,1}s;

10 new Record e;
11 e.value :=Eκ(v); e.ψ :=Eκ(ψI);
12 Put(k,e);
13 return (k,e);

Algorithm 2: LL-Enumerate(I,κ)

Input : Category
I , secret key κ, local counters
Γ Reader =(γReader

1 ,...,γReader
D)

Output: Set
of ciphertexts S={ci|ci∈I}

1 S :=∅;
2 Eκ(∆) :=Get(hκ(“delta”))

and Decrypt to ∆=(δ1,...,δD);
3 for i :=1 to γReader

I −1 do
4 start :=hκ(I,i);
5 S :=S∪Retrieve(start,κ);
6 if δI=0 then
7 start :=hκ(I,γ

Reader
I);

8 S :=S∪Retrieve(start,κ);
9 δI :=1;

10 Put(hκ(“delta”),
Eκ(∆)=Eκ(δ1,...,δD));

11 γReader
I :=γReader

I +1;

12 return (S);

Together with the encryption of v, the Writer also uploads a randomly chosen encrypted
new next pointer ψI . For convenience, we call the combination of an encrypted value v
and encrypted next pointer ψI a record.

Enumerate: In case the Reader wants to retrieve all (encrypted) values of linked list I ,
he executes Algorithm 2. First, the Reader downloads and decrypts the δi. If δI=1, then
the Writer has not updated I since the last enumerate. Consequently, the Reader will
retrieve all values of all the current (γReader

I −1) chains of list I . Otherwise, if δI = 1,
then the Writer has started a new chain for I since the last enumerate. So, the Reader
will retrieve all records of the previous (γReader

I −1) chains of I , then retrieve all records
of chain γReader

I , set flag δI , encrypt and upload all flags ∆, and finally increase counter
γReader
I . Note that the Reader retrieves all values of a chain by using Algorithm 3. There,
D is the decryption algorithm for encryptions E. Using ∆ for synchronization between
Writer and Reader, the Writer will avoid putting a new value into the underlying store
using an address that the Reader has previously already queried for as part of an enu-
merate. In this case, the Writer will start a new chain and notify the Reader that a new
chain is available.

3.3 Privacy Analysis

In accordance with Rogaway [18], we introduce IND$-CPA encryption as an encryp-
tion producing ciphertexts that are indistinguishable from random. This can be imple-
mented, e.g., by a PRP (like AES) in CBC- or Counter-mode.

Algorithm 3: LL-Retrieve(ψ,κ)
Input : Chain start pointer ψ, secret key κ
Output: Set of ciphertexts S

1 S :=∅;
2 Record e :=Get(ψ);
3 while e 6=⊥ do
4 S :=S∪e.value;
5 ψ :=Dκ(e.ψ);
6 e :=Get(ψ);

7 return S;

Theorem 1. If h is a pseudo-random function, andE is an IND$-CPA encryption, then
LL is update-oblivious.

Proof. We describe a PPT simulator LS such that for all PPT adversaries A, the out-
puts of RealLLA (s) and SimLL

A,LS(s) are indistinguishable. Consider the simulator LS
that, given a partial trace of a history H , τ(o1,...,oi), outputs v= (Ki,Ci) as follows.
LS keeps as state, a vector B of length D which contains the most recent contents of
each bucket (from the simulator’s perspective). B is initialized to all empty sequences,
and LS will update B for each Enumerate which reveals additional bucket records.
Additionally, LS manages list k which holds the addresses of add operations and an
associative array c which maps addresses to values. c represents the simulator’s view
of the store’s memory. If c is evaluated on an address which is empty, it returns ⊥. If i
is the operation LS is simulating and
1.) β(o1, ..., oi)[i] = Add: LS sets k[i] and c[k[i]] to uniformly random strings and
outputs Ki={k[i]} and Ci={c[k[j]]}.
2.) β(o1, ...,oi)[i] = Enumerate: LS creates the sequence K′ such that it contains, in
order, every record k[x] where σ(H)[x,i] = 1. LS then sets Bγ(H)[i] to Bγ(H)[i] con-
catenated with K′ and a uniformly random string. This can be viewed as the simulator
returning all the records from the previous enumerate on the same bucket, plus any addi-
tional records that have been added to the bucket since then and finally adding a random
empty address on the end (representing the end of a list). LS then returns Ki=Bγ(H)[i]

and Ci equal to c evaluated on every address in Ki.
Since the outputs of h and E are indistinguishable from random, simulator LS can

put random strings in Ki and Ci during adds. Because of the enumeration pattern leak-
age, LS can also guarantee the correct pattern in Ki during enumerates by a simple
check of β(H). Future enumerates will also return, as a prefix, previous enumerates
which guarantees consistency. LS simulates the end of a linked list by appending a ran-
dom address and a ⊥ value to each enumerate. ut

Consistency Attacks: In contrast to related work on, e.g., range search [6, 16, 19],
LL allows two different entities to use the store: the Reader and the Writer. As the
two entities synchronize using ∆, a fully malicious adversary could mount attacks by
desynchronization, such as sending outdated versions of ∆.

Our definitions of update-oblivious and data type LL above capture, however, only
semi-honest (“honest-but-curious”) adversariesA and (implicitly) read-after-write con-

sistency. Although the Reader has read bucket I and set δI := 1, A could send an old
version of E(∆) with δI=0 to the Writer during Add. Consequently, the Writer would
not create a new chain, but add a new record at an address already read by the Reader –
violating update-obliviousness.

Therefore, we now show how we can easily extend our system to cope even with
fully malicious A and possible consistency attacks. Inspired by Li et al. [15], we aug-
ment ∆ by two additional global counters, one for the Reader, one for the Writer. Both
counters will be encrypted as part of ∆. For each Enumerate, the Reader increases its
counter. For each Add, the Writer increases its counter. Both parties keep local copies
of counters, compare to ∆’s counters upon receipt, and therewith verify the freshness
of ∆. Even in the face of fully malicious A mounting consistency attacks on the (aug-
mented)∆, this approach achieves Fork Consistency, the strongest consistency possible
in the absence of a third trusted party [15]. In short, after such an attack, Surveyor and
User will be in different “worlds”: no change performed to the data will ever be seen
by the Surveyor. The surveyor remains at the state of the old, not-updated data set,
however with full privacy guarantees. For more details on this technique, we refer to Li
et al. [15]. Note that in scenarios similar to related work with only one entity to read and
write to the store, LL would not synchronize∆, making consistency attacks impossible.

Generalization: The update-oblivious property can be extended to other data types.
Let a monotonically-expanding data type be any data type S, that supports two gen-
eral operations Add(S,E), and Enumerate(S,param) such that i < j⇒ Enumerate(Si,
param) ⊆ Enumerate(Sj,param). We postulate that any monotonic data type can be
made update-oblivious. Hash Tables, Trees, Graphs are examples of data types that can
be restricted to be monotonically-expanding, if deletions are not allowed. Such expand-
ing types make sense in applications where data is continuously added to an application
data store. For example, an update-oblivious Hash Table that stores key-value pairs can
be constructed using our bucket data type LL. The user hashes the key into a bucket
id I , then invokes LL-Add(I,v,κ). Graphs (and their special case trees) can be viewed
as a collection of edges. The Add adds edges to the collection, while Enumerate lists
the edges (or properties of the edges). We conjecture that our bucket data type LL can
be used to enable the same update-obliviousness for expanding graphs, trees, and other
dynamic data types.

4 RASP

Overview: The main rationale behind RASP is to arrange uploaded data with category
I using an update-oblivious add-enumerate data type such as LL that offers buckets. In
RASP, each individual bucket represents a category I within domain D of uploaded data
M . With n�D, we achieve low query complexity similar to bucket sort. Uploading
new data into a bucket is realized by using Add in LL. Similarly, range search queries
and actual bucket sorts can be realized using Enumerate. Our goal with this approach
is to reduce the complexity for range search and sort queries over related work. RASP’s
query complexity depends only on D and U which we assume to be small, but the
complexity is independent of n as in related work. To support multiple users U , we use
an LL data type per user. Users share pairwise different keys with the surveyor.

Algorithm 4: KeyGen(s) – generate keys for surveyor and users
Input: Security parameter s
Output: Surveyor’s secret key SK, set of user keys {Seedi}1≤i≤|U|

1 SK $←{0,1}s;
2 for i :=1 to |U| do
3 Seedi :=hSK(i);

4 return SK,{Seedi}1≤i≤|U|;

Algorithm 5: Encrypt(I,M,Seedi) –
user Ui encrypts and uploads to cloud.

Input: Category
I , data M , user Ui’s key Seedi

Output: Ciphertext
C that is uploaded to cloud

1 κ :=Seedi;
2 (k,C) :=LL-Add(I,M,κ);
3 return C;

Algorithm 6: Decrypt(C, SK, i) –
surveyor decrypts ciphertext

Input: Ciphertext C,
surveyor secret key SK, user ID i

Output: Data M
1 Seedi :=hSK(i);
2 M :=DSeedi(C);
3 return M ;

4.1 RASP Details

We now present RASP’s details, following the notation introduced in Section 2.1. The
system is initialized with KeyGen, producing key material for users and the surveyor.
Each time, a user Ui wants to upload data to the cloud, he first uses Encrypt and uploads
the resulting ciphertext into the cloud’s key-value store. For a range query, the surveyor
executes PrepareRangeQuery and RangeQuery intertwined. For a sort query, he uses
PrepareSortQuery and SortQuery intertwined. In the algorithms below, E and D are
IND$-CPA encryption and decryption (see Section 3.3) such as AES-CBC with random
IVs, and h is a pseudo-random function such as HMAC [4] using proper input padding.

KeyGen(k) As shown in Algorithm 4, the system is initialized by generating a secret
key SK for the surveyor as well as individual user keys Seedi. A key Seedi is then sent
to user Ui, and the surveyor receives SK. Note that knowledge of SK is sufficient for
the surveyor to compute users keys Seedi himself.

Encrypt(I,M,Seedi) Algorithm 5 is executed by user Ui that wants to add data M
to bucket I in the key-value store. Ui simply runs LL-Add to add data M to cate-
gory/bucket I in LL. Note that LL-Add uploads the encrypted data to the key-value
store as of Algorithm 1.

Decrypt(C,SK, i) Algorithm 6 is run by the surveyor. The surveyor computes Seedi
using his secret key SK and decrypts the ciphertext.

PrepareRangeQuery(a,b,SK) and RangeQuery(T R,{C1, ... ,Cn}) For ease of under-
standing, we present PrepareRangeQuery and RangeQuery together in Algorithm 7. As
you will see, token T R of PrepareRangeQuery is the sequence of addresses ki required
to download ciphertexts Ci from the key-value store. The surveyor iterates over all pos-
sible users to generate their keys Seedi and retrieve all data for buckets j∈ [a,b]. The sur-
veyor permutes his access to buckets j by using permutations πSeedi which are random

Algorithm 7: PrepareRangeQuery(a,
b, SK) and RangeQuery(T R, {C1,
... , Cn}) – surveyor prepares and
executes range query from a to b with
cloud

Input: Surveyor:
Indices a and b, surveyor’s secret
key SK, Cloud: pairs (ki,Ci)

Output: Set of ciphertext SR={Ci}
1 SR :=∅;
2 for i :=1 to |U| do
3 for j :=a to b do
4 Seedi :=hSK(i);
5 SR :=SR∪LL-

Enumerate(πSeedi(j),Seedi);

6 return SR;

Algorithm 8: PrepareSortQuery(m,
SK) and SortQuery(T S ,{C1,...,Cn})

Input: Surveyor: Position in sorted
data P , window length m, secret
key SK, Cloud: pairs (ki,Ci)

Output: Set of ciphertext SS={Ci}
1 for i :=1 to |U| do
2 Seedi :=hSK(i);

3 SS :=∅; i :=1; pos :=1;
4 while m>0 and pos≤D do
5 S′ :=LL-

Enumerate-UpTo(pos,Seedi,m);
6 m :=m−|S′|;
7 SS :=SS∪S′;
8 if i= |U| then
9 i :=1;

10 pos :=pos+1;

11 else
12 i := i+1;

13 return SS ;

permutations over integers {a,...,b}. To retrieve all data of user Ui in bucket π(j)Seedi ,
the surveyor uses LL-Enumerate(πSeedi(j),Seedi). The rationale behind using πSeedi to
enumerate buckets is not to always access, first, bucket a, then bucket a+1, then a+2
etc. until bucket b, but to access buckets in a random order. Note that LL-Enumerate
internally uses addresses to access data in the key-value store, representing T R.

PrepareSortQuery(m,SK) and SortQuery(T S , {C1,...,Cn}) Similar to range search
queries, we consolidate PrepareSortQuery and SortQuery together in Algorithm 8.
Again, the surveyor starts by computing all possible user keys Seedi. Now, the sur-
veyor iterates over all possible buckets and therein over all possible users, starting with
the lowest bucket. To retrieve data from individual buckets, the surveyor uses Algo-
rithm LL-Enumerate-UpTo(i,Seedj ,m). This is a slight variation of the standard LL-
Enumerate(i,Seedj), cf. Algorithm 2. We do not give details for LL-Enumerate-UpTo,
because the only difference is the additional parameter m. This parameter specifies that
algorithm LL-Enumerate will stop retrieving ciphertexts after finding m ciphertexts (if
available) while iterating over the chains of category i, regardless whether there might
be more ciphertexts in the chains. Following the definition of m-sort in Section 2.1, the
search token T S in RASP is the sequence of addresses for the key-value store.

Note During range search and sort queries, when the surveyor performs multiple
Enumerate sequentially for the same user, it is not necessary to download and upload
∆ multiple times, but only once. The same ∆ can be used for all categories/buckets of
a single user, so this saves a factor ofD in computation and communication complexity
without affecting privacy. We apply this optimization in our evaluation in Section 4.3.

4.2 Privacy Analysis

Theorem 2. If LL is update-oblivious, then RASP is forward-secure privacy-preserving.

Proof. We describe a PPT simulator S such that for all PPT adversaries A, the outputs
of RealRASP

A (s) and SimRASP
A,S (s) are indistinguishable. We construct a simulator S

that uses data type LL. Given a partial trace of a history H , τ(o1, ... , oi), S outputs
v=(Ki,Ci) as follows:

Using the trace information, S will translate the encrypt, range search, and sort op-
erations in H into LL’s Add and Enumerate operations which can be passed to LS . S
keeps, as state, sequences b, and g, and a matrix s, representing the operation pattern,
access pattern, and enumeration pattern respectively, which will be created and passed
to LS as its trace. Generally speaking, encrypt operations will be translated into Adds
in a one-to-one manner, and both range searches and sort queries will be translated
into one or more Enumerate operations. Therefore, S will also have a counter x which
keeps track of what location in the simulated trace it is at (initially set to 1). If oi is the
operation S is simulating, and
1.) β(H)[i]=Encrypt: S sets b[x] to Add, increments x, and returns LS(b,s,g).
2.) β(H)[i] =RangeSearch: Parse σ(H)[i] as {(b1,t1),...,(bn,tn)}, where bs are per-
muted bucket IDs and ts are indices of related Encrypt operations. σ(H)[i] is an un-
ordered set, so S orders it numerically by b` from lowest to highest. S sets Ki := ∅
and Ci = ∅. ∀b`, S sets b[x] to Enumerate, sets g[x] to b`, ∀u ∈ t` sets s[x,u] to 1,
appends LS(b,s,g) to Ki and Ci, and increments x. This creates a series of enumerate
operations in the trace for LS which is linked to all the correct add operations through
σ(H). S returns Ki and Ci.
3.) β(H)[i]=SortQuery: Parse γ(H)[i] as (m,(b1,...,bn)). S proceeds as for RangeSearch,
but instead of ordering the enumerates by the random permutation π, it orders them ac-
cording to the leakage from γ(H) (i.e., in the order of the underlying categories).
S, according to the algorithms for range search and sorting, emulates a number of

add and enumerate queries which are to be done by the update-oblivious linked list data
structure. Since we can translate every encrypt, range search or sort operation directly
into one or more add or enumerate operations, S returns exactly the output of simulator
LS. Therefore, if the linked list data structure is secure and can be simulated by simu-
lator LS, the output of S is indistinguishable from the output of the real protocol. ut

4.3 Evaluation

We have implemented RASP in Java, and the source code is available for download [3].
As RASP does not require any computation on the store, our implementation uses the
standard Amazon Dynamo DB cloud as the underlying key-value store. Dynamo DB
charges based on the required Get/Put operations per second which is essentially an
estimation of the load expected on the database. For our tests, we configured a database
supporting 3000 Get and 1000 Puts per second and read-after-write consistency. Such
a database would cost ≈ $680 per month [2]. As encryption E, we use 128 Bit AES
in CBC-mode and HMAC with SHA-1 as hash function h. As we are only interested
in the additional overhead of RASP compared to a non-privacy preserving protocol, we
did not encrypt and upload a real payload d (e.g., patient data) as part of records, but

0.5

1

1.5

2

2.5

 0.02 0.04 0.08 0.13 0.23 0.38

T
im

e
 (

m
s
)

p
e

r
re

c
o

rd

m (%)

RASP D=64
RASP D=256

RASP D=1024
Pairing-based D=64

Pairing-based D=256
Pairing-based D=1024

Baseline

(a) Range Queries

0.1

1

10

100

 32 64 128 256 512

T
im

e
 (

m
s
)

p
e

r
re

c
o

rd

m

RASP D=64
RASP D=256

RASP D=1024
Baseline

(b) Sort Queries

Fig. 1: RASP evaluation results

only a random string of length 160 Bit. In the real world, this could be an address for a
larger file in the cloud. For the user and surveyor part of RASP, we have used a laptop
with 2.4 GHz i7 CPU and 8 GByte RAM.

As RASP’s query performance does not depend on n, we have measured timings
for Encrypt (Algorithm 5, including upload), Range Queries, and Sort Queries on a
Dynamo data store with a fixed number of n = 225 records. We have set the number
of users |U| = {100} and varied D = {64,256,1024}, and m from .01% to .4% of
n for range queries. For m-sort, we varied m from 32 to 512. Data is distributed into
buckets according to a Gaussian distribution to better represent a real world scenario.
In practice, the most interesting pieces of data are usually in the tail of the distribution,
and most data is distributed normally. However, this choice does not significantly effect
the running time of our scheme as it depends only on m and D. The uneven values
of m for range search are the result of querying ranges separated by one bucket when
D=64 (the smallest unit of change that would be evenly divisible for all values of D).
Since the data is Gaussian, increasing the range by one bucket increasesm by an uneven
amount. To model interleaving client and surveyor operations (and force creating new
chains), we distributed queries exponentially with n

100 average arrival rate. However, we
measured timings only after adding all n records, representing worst case queries. We
have run each sample point 20 times, and relative standard deviation was low at <5%.

Figure 1 sums up our evaluation and presents timings in ms per record. All timings
are dominated by network latency. In Dynamo, a single Get takes 31ms, and a Put takes
39 ms. In contrast, (Java Bouncy Castle) AES encryption (≈ 14 µs) and HMAC eval-
uation (≈6 µs) are comparably fast on our setup. In comparison, a typical Type-A 512
bit pairing [8] required by related work [6, 16, 19] is 3 orders of magnitude more ex-
pensive and takes ≈8ms, an exponentiation takes ≈11ms. We stress that, in contrast
to other work [16], our evaluation does not rely on (expensive) cryptographic hardware
acceleration running on the user, surveyor, and cloud store. We established a baseline
(≈ 0.21 ms) by testing the amount of time it takes to retrieve a record from Dynamo
without any encryption or secure data structure. This was done using Dynamo’s built-in
range search capability and represents a lower bound for any range search algorithm. A
single Encrypt of a single user in RASP takes ≈64ms in our configurations.

Times for single Get, Put, and Encrypt are significantly higher compared to Range
and Sort queries for the surveyor per record, although the same operations (encryption,
hash, network access) are required. This is due to the fact that during, e.g., a range
query, RASP allows the surveyor to enumerate multiple LL-buckets in parallel with
Dynamo. Dynamo allows to issue multiple Get-requests from multiple threads in par-
allel, reducing the total response time significantly. We estimate the time for upload of
a single record in related work, e.g., Lu [16] to ≈ 589 ms for D = 256 (2+6 · logD
exponentiations + 1 Put) which is notably higher than RASP.

Timings for range queries, Fig. 1a, and sort queries, Fig. 1b, increase slightly with
D, as∆ becomes larger and needs to be downloaded/uploaded and decrypted/encrypted
by the surveyor. Similarly, with increasing |U|, more∆ need to be downloaded and pro-
cessed. Sort is more expensive than range search, because access to buckets cannot be
parallelized: to find the first m records, buckets need to be accessed sequentially. How-
ever, sort has an additional security property that is not present with range search. If
the end of a sort query lands in a bucket which contains entries for more than one user,
not all of the users’ data will be revealed (only enough to satisfy the sort query). In ex-
change for this additional privacy, sort queries are significantly more expensive. If this
additional privacy is not needed, one can accomplish the same thing by issuing sequen-
tial range queries for each bucket until enough results are returned to satisfy the m-sort.
This will achieve similar performance per record to the much faster range sort.

To put RASP’s range search into perspective, we determined the performance for Lu
[16] by using JPBC [8] to find a cost for one pairing on our hardware and then multiply-
ing by the number of pairings needed per query in their scheme. We then divided by the
number of records returned to get an amortized query computation cost per record and
finally added the baseline communication cost as outlined above. Note that our compar-
ison is for RASP with 100 users and related work with just a single user. When related
work is modified for multiple users, the straightforward way which allows for the same
cross-user privacy guarantees as RASP (making a separate index for each user) imposes
over a 20 times slowdown. We compare against our scheme with 100 users to show that
we can scale to a multi-user setting with minimal performance degradation.

In comparison with Lu [16], range search with RASP is several times faster whenD
or m are small, but also comes very close to the optimal baseline when m is larger, see
Fig. 1a. Additionally, RASP is faster at adding records by an order of magnitude. As
the costs for exponentiation and pairing based related work is non-negligible even on
our powerful hardware, we conclude that its use in scenarios with embedded devices,
smartphones, and large n is limited. On the server side, RASP does not require any
computation to be performed at the store and so can be run on a cloud storage service
without any costly computational resources.

5 Related Work and Summary

ORAM Privacy-preserving range search and sort queries could be realized based on,
for example, ORAM [11] protocols. The idea would be to simply encrypt all records,
store them in an ORAM (e.g., in sorted order), and let the surveyor perform the range
search on the ORAM. This results in strong privacy, because plaintexts can be encrypted
using an IND-CPA cipher, and ORAM does not leak any information about accesses

and therewith queries. The drawback of ORAM is that its worst-case communication
complexity remains high for this application, despite recent results that reduce it to
poly(logn) [20, 24]. We do not include “ObliviStore” [22] in our comparison, because,
fundamentally, it is only an implementation of the

√
n complexity ORAM by Stefanov

et al. [23]. While also targeting practicality, it requires either trusted hardware on the
data store or a private cloud for the user and is therefore difficult to compare to our setup.

OPE Alternatively, using OPE [5, 17], ciphertexts retain the order of their underlying
plaintexts, making range search and sorting straightforward. However, OPE gives weak
privacy, as the relationship between ciphertexts is immediately visible to the cloud.

Searchable Encryption Schemes for general search on encrypted data, see seminal work
by Song et al. [21] or Boneh et al. [7], or see Curtmola et al. [10] for an overview, can
be extended in a straightforward way to perform range search. For example, each data
record could be encrypted with the category it belongs to. Such constructions would
have the (prohibitive) drawback of being linear in n. Any more efficient approach, e.g.,
enumerating over categories as RASP, would need to solve the (non-trivial) problem
of being forward-secure. One might apply RASP to allow for such privacy, resulting
in a protocol comparable to RASP. Similarly, it is non-trivial to extend searchable en-
cryption schemes to allow for sort in a privacy-preserving, yet practical way and, con-
sequently, deserves its own research.

Range Search Some related work focuses especially on privacy-preserving range search.
For example, Hacigümüs et al. [13] and Hore et al. [14] encrypt records and put cipher-
texts in a set of permuted categories. While this hides into which category a record is
added, the cloud automatically learns the relationship between ciphertexts and can de-
termine which ciphertexts are in the same category. Boneh and Waters [6], Lu [16], and
Shi et al. [19] overcome this drawback and hide membership to a category until this par-
ticular category is queried – still, the cloud will be able to determine for any ciphertext
added after the query whether it is belonging to the previously queried category or not.
While the works by Boneh and Waters [6] and Lu [16] are selective match concealing
(selective-MC), the work by Shi et al. [19] is selective match revealing (selective-MR),
i.e., the cloud will learn the category of a record that matches a range query. Moreover,
these schemes make use of computationally expensive bilinear pairings.

Comparison: As RASP offers not only range search, but also sort capabilities together
with stronger (forward-secure) privacy than related range search schemes or OPE, it is
difficult to compare its performance. Still, to put things into perspective, we sum up
RASP’s asymptotic performance and contrast it to related work in tables 1 and 2. We
stress that related work has not been designed for use in multi-user scenarios. While re-
lated work could be extended to multiple users, e.g., using different keys for each user
in OPE or separate ORAMs for each user, this increases complexities significantly or
would require a significant redesign. A straightforward extension adds a factor of |U| in
tables 1 and 2, which quickly renders such approaches overly costly.
Computation and Communication Tables 1 and 2 show the computational complexities
to add a new record to the store for the user (for both range search and sort), for the sur-
veyor to perform the query, and for the cloud during a query. The computational com-
plexities comprise record encryption and decryption (for m records) operations. The

Table 1: Worst-case complexities for m-range search and privacy comparison. n: total
number of records, m: number of records queried D: size of records’ domain, U : set
of users, s,s′: security parameters. Typically, s� logn,s� logD,s′>s,n�D,n≥m.
Related work requires additional factor |U| for multi-user.

m-Range

PrivacyComputation per CommunicationInsert Query per QueryUser Surveyor Cloud

Si
ng

le
U

se
r

OPE [17] O(logn+ O(logn+logD — O((logn+logD+ IND-OCPA
logD)‡ +m)‡ m)·s)

ORAM

[20] O(logD· O((logD+m)· — O((m+logD)·
log3n)‡ log3n)‡ log3n·s) IND-CPA and

[24] O(logD· O((logD+m)· — O((m+logD)· Pattern
log2n)‡ log2n)‡ log2n·s)

Range Search
[6] O(D)‡,� O(m)‡,� O(n)� O(m·s) selective-MC

[16] O(logD)‡,� O(logD+m)‡,�
O(logD· O(s′ ·logD+ selective-MC
logn+m)� s·m)

[19] O(logD)‡,� O(logD+m)‡,� O(n)� O(m·(logD+s)) selective-MR

M
ul

ti
U

se
r

Ideal O(logD) O(logD+m) — O((m+logD)·s) IND-CPA and
Pattern

This paper O(D)‡ O(|U|·D+m)‡ — O((|U|·D+m)·s) Forward-
Secure

‡ Involves Symmetric Cryptography �Involves Exponentiations/Pairings

communication complexities denote the communication between surveyor and cloud
during a range or sort query. Security factor s in the communication complexities in-
dicates that symmetric key ciphertexts are exchanged, and s′ indicates asymmetric key
ciphertexts. In each table, we compare to an ideal solution, representing a lower bound
for each complexity, respectively.

ORAM provides a regular RAM interface, so any operation can be done by simply
using the same “ideal” algorithm that would be used on unencrypted data. The overall
cost of this operation will then be the same as the ideal, but with a poly-logarithmic
overhead specific to the ORAM implementation. For example, In the case of an Insert,
an ideal solution would be using an interval tree [9]. OPE and an Ideal solution all re-
quire (a factor of) logD communication complexity, because the m records in the D
categories/buckets need to be addressed.

Note: It is important to point out that, while related work on range search [6, 16, 19]
or OPE [17] has better asymptotic complexities than RASP (logD vs. D), RASP is
linear in D only due to synchronization array ∆. In practice, bit array ∆ is very small,
especially compared to a single patient record. For example, with D=8192 categories,
|∆|=1 KByte resulting in only 64 AES operations. In all practical scenarios as targeted
in this paper (n � D) the linear number of AES operations will outperform logD
exponentiations and pairing operations.

Refering to our evaluation in Section 4.3, we indicate that RASP’s constants are
very low, using only symmetric cryptography, i.e., hash functions and block ciphers.

Table 2: Worst-case complexity for m-Sort.
m-Sort

Computation per CommunicationQuery per QuerySurveyor Cloud

Si
ng

le
U

se
r

OPE [17] O(m)‡ O(logn+m) O(m·s)
ORAM

[20] O(m·log3n)‡ — O(m·log3n·s)
[24] O(m·log2n)‡ — O(m·log2n·s)

M
ul

ti
U

se
r Ideal O(m) — O(m·s)

This paper O(|U|·D+m)‡ — O((|U|·D+m)·s)
‡ Involves Symmetric Cryptography

Also, RASP does not require any expensive O(n) computation on the cloud side that
the surveyor would have to pay for [1], but only a cheap key-value based storage cloud
such as Amazon Dynamo [2].

For m-sort, a scheme based on OPE [17] would just parse the OPE tree and send
the m records. Again, ORAM-based sorting mechanisms with O(m) accesses to the
ORAM (assuming records are already sorted, e.g., in an interval tree) become quickly
too expensive. In contrast to related work, RASP is close to an Ideal solution, besides
the additional factor of |U| ·D which is small in practice, cf. Section 4.3. Note that re-
cent range search schemes [6, 16, 19] do not supportm-sort queries in a straightforward
way, so we cannot include them in Table 2. While extending any range search scheme to
support sorting in an efficient, yet secure (e.g., forward-secure) way might be possible,
it is far from being straightforward.
Privacy RASP’s forward-secure privacy notion is stronger than related work’s selective
match concealing or selective match revealing [19] or IND-OCPA as discussed in Sec-
tion 2.3. Yet, RASP offers weaker privacy than ideal IND-CPA and indistinguishable
query patterns.
Storage Finally, we briefly summarize storage requirements. Being tree based, OPE by
Popa et al. [17] requires an additional O(logn) storage overhead per ciphertext. Simi-
larly, recent ORAMs are tree based and, with n nodes in the tree, require an overhead
factor of eitherO(logn) [20] orO(s′) [24] per ciphertext. Here, s′ is an additional secu-
rity parameter. While the work by Stefanov et al. [24] has superior computational worst-
case complexity than Shi et al. [20], O(log2n) compared to O(log3n), a drawback is
its large memory requirement of O(s′ ·log2n·s). In contrast, RASP features only O(s)
ciphertext overhead andO(D·logn+s) (forD counters and SK) memory requirements.

6 Conclusion

RASP addresses privacy-preserving range search and sort on outsourced, encrypted
data. RASP offers stronger privacy than related work as well as support for multiple,
non-trusted users. RASP builds on top of LL, a new dynamic data structure (of inde-
pendent interest) for privacy-preserving add/enumerate operations. Both, RASP and LL
seamlessly integrate into cheap, real world storage-only cloud services such as S3 or
DynamoDB. Abstaining from pairings and exponentiations, our protocols target prac-

ticality. Our performance evaluations show that, even without hardware acceleration
support, RASP offers substantially better performance than recent logD range search
techniques for some interesting settings, in addition to requiring only storage capabili-
ties and not cloud computation (a significant cost savings).

References
[1] Amazon. Elastic EC2 Pricing, 2013. http://aws.amazon.com/ec2/pricing/.
[2] Amazon. DynamoDB Pricing, 2013. http://aws.amazon.com/dynamodb/

pricing/.
[3] Anonymized for submission. RASP Source Code, 2014. https://www.dropbox.

com/s/5am2r9g9u4coe2d/rasp.zip.
[4] M. Bellare. New Proofs for NMAC and HMAC: Security without Collision-Resistance. In

Proceedings of CRYPTO, pages 602–619, Santa Barbara, USA, 2006. ISBN 3-540-37432-9.
[5] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited:

Improved security analysis and alternative solutions. In Proceedings of CRYPTO, pages
578–595, Santa Barbara, USA, 2011.

[6] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In Pro-
ceedings of TCC, pages 535–554, Amsterdam, Netherlands, 2007. ISBN 3-540-70935-5.

[7] D. Boneh, G. DiCrescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Proceedings of Eurocrypt, pages 506–522, Barcelona, Spain, 2004.

[8] A. De Caro and V. Iovino. jPBC: Java pairing based cryptography. In Proceedings of
Symposium on Computers and Communications, pages 850–855, Kerkyra, Greece, 2011.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2009. ISBN 978-0262033848.

[10] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable Symmetric Encryp-
tion: Improved Definitions and Efficient Constructions. IACR ePrint Archive, 2006.
http://eprint.iacr.org/2006/210.

[11] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996. ISSN 0004-5411.

[12] Google. A new approach to China, 2010. http://googleblog.blogspot.com/.
[13] H. Hacigümüs, B.R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data

in the database-service-provider model. In Proceedings of SIGMOD Conference, pages
216–227, Madison, USA, 2002. ISBN 1-58113-497-5.

[14] B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-Preserving Index for Range Queries. In
Proceedings of VLDB, pages 720–731, Toronto, Canada, 2004. ISBN 0-12-088469-0.

[15] J. Li, Maxwell N. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data Repository
(SUNDR). In Proceedings of Operating System Design and Implementation, pages
121–136, San Francisco, USA, 2004.

[16] Y. Lu. Privacy-preserving Logarithmic-time Search on Encrypted Data in Cloud. In Pro-
ceedings of Network and Distributed System Security Symposium, San Diego, USA, 2012.

[17] R.A. Popa, F.H. Li, and N. Zeldovich. An Ideal-Security Protocol for Order-Preserving
Encoding, 2013. IACR ePrint Archive, http://eprint.iacr.org/2013/129.

[18] P. Rogaway. Nonce-Based Symmetric Encryption. In Proceedings of FSE, pages 348–359,
Delhi, India, 2004. ISBN 3-540-22171-9.

[19] E. Shi, J. Bethencourt, H.T.-H. Chan, D.X. Song, and A. Perrig. Multi-Dimensional Range
Query over Encrypted Data. In Proceedings of Symposium on Security and Privacy, pages
350–364, Oakland, USA, 2007.

[20] E. Shi, T.-H.H. Hubert Chan, E. Stefanov, and M. Li. Oblivious RAM with O(log3(N))
Worst-Case Cost. In Proceedings of ASIACRYPT , pages 197–214, Seoul, S. Korea, 2011.

[21] D.X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data.
In Proceedings of Symposium on Security and Privacy, pages 44–55, Berkeley, USA, 2000.

[22] E. Stefanov and E. Shi. ObliviStore: High Performance Oblivious Cloud Storage. In
Proceedings of Symposium on Security and Privacy, pages 253–267, Berkeley, USA, 2013.

[23] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In Proceedings of
Network and Distributed System Security Symposium, San Diego, USA, 2012.

[24] E. Stefanov, M. van Dijk, E. Shi, C.W. Fletcher, L. Ren, X. Yu, and S. Devadas. Path-
ORAM: An Extremely Simple Oblivious RAM Protocol, 2013. IACR ePrint Archive,
http://eprint.iacr.org/2013/280.

[25] Techcrunch. Google Confirms That It Fired Engineer For Breaking Internal Privacy
Policies, 2010. http://techcrunch.com/.

