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Abstract

In this paper we study of the notion of differing-input obfuscation, introduced by Barak et
al. (CRYPTO 2001, JACM 2012). For any two circuit C0 and C1, differing-input obfuscator
diO guarantees that non-existence of a adversary that can find find an input on which C0 and
C1 differ implies that diO(C0) and diO(C1) are computationally indistinguishable. We show
many applications of this notion:

- We define the notion of differing-input obfuscator for Turing machines and give a construc-
tion for the same (without converting it to a circuit) with input-specific running times.
More specifically, for each input our obfuscated Turning machine takes times proportional
to the running time of the Turing machine on that specific input rather than the machines
worst-cast running time.

- We give a functional encryption scheme that is fully-secure even when the adversary can
obtain an unbounded number of secret keys. Furthermore our scheme allows for secret-keys
to be associated with Turing machines and thereby achieves input-specific running times
and can be equipped with delegation properties. We stress that this is the first functional
encryption scheme with security for an unbounded number of secret keys satisfying any of
these properties.

- We construct a multi-party non-interactive key exchange protocol with no trusted setup
where all parties post only logarithmic-size messages. It is the first such scheme with such
short messages. We similarly obtain a broadcast encryption system where the ciphertext
overhead and secret-key size is constant (i.e. independent of the number of users), and the
public key is logarithmic in the number of users.

Both our constructions make inherent use of the power provided by differing-input obfuscation.
It is not currently known how to construct systems with these properties from the weaker notion
of indistinguishability obfuscation.

1 Introduction

General-purpose program obfuscation aims at making an arbitrary computer programs “unintel-
ligible” while preserving their functionality. The first formal study of the problem of obfuscation
was undertaken by Barak et al. in 2001 [?] where they proposed the notion of virtual black-box
(VBB) obfuscation. This notion requires that the obfuscation does not leak anything more than
what can be learnt with just a black-box oracle access to the function. However, unfortunately
in the same work Barak et al. showed a family of circuits that cannot be VBB obfuscated.

Weaker variants Obfuscation. In light of this impossibility result Barak et al. left open
the problem of realizing weaker notions of obfuscation such as indistinguishability obfuscation
and differing-inputs obfuscation (see below for further explanation).
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Indistinguishability obfuscation requires that given any two equivalent circuits C0 and C1

of similar size, the obfuscations of C0 and C1 are computationally indistinguishable. In a very
recent work, Garg et al. [GGH+13b], building upon a variant of the multilinear maps framework
of Garg et al. [GGH13a], gave the first candidate construction for a general-purpose obfuscator
satisfying this notion.

The stronger notion of differing-inputs obfuscation states that the existence of an adversary
that can distinguish between obfuscations of circuits C0 and C1 implies the existence of an
adversary that can actually extract an input on which the two circuits differ. The starting
point for our work is the conjecture that the Garg et al. construction (and variants of it [BR13,
BGK+13] indeed achieve the differing-inputs obfuscation notion. Perhaps the strongest evidence
for this conjecture is provided by analysis of this construction and variants in suitable generic
models [GGH+13b, BR13, BGK+13].1

The focus of this paper is to show (1) how to bootstrap the notion of differing inputs obfus-
cation to build differing inputs obfuscators for Turing Machines with per-input running time,
and (2) how to leverage differing inputs obfuscation to obtain a number of interesting applica-
tions. Before we turn to our main results, we first illustrate the usefulness of differing inputs
obfuscation with two simple examples.

Warmup: Extractable Witness Encryption for NP. As a warmup example we will
show how differing-inputs obfuscation can be used to construct extractable witness encryption, a
primitive which already has the flavor of extraction. The notion of extractable witness encryption
for NP recently introduced in [GGSW13, GKP+13a], states that given an NP language L, a
extractable witness encryption scheme for L is an encryption scheme that takes as input an
instance x and a message bit b, and outputs a ciphertext c. If x ∈ L and w is a valid witness for
x, then a decryptor can use w to decrypt c and recover b. Furthermore security requires that
any adversary that can decrypt ciphertext c corresponding to instance x can be used to extract
a valid witness for x.

Now we present our construction of extractable witness encryption, which is analogous
to the construction of witness encryption from indistinguishability obfuscation as in Garg et
al. [GGH+13b]. We define the circuits Cx,b for b ∈ {0, 1} taking w as input as follows. If w
is a valid witness for x, then Cx,b outputs b and ⊥ otherwise. Differing-input obfuscation of
Cx,b will serve as an encryption of the bit b. Correctness of decryption is immediate. Recall
that security of differing-inputs obfuscation states that existence of an distinguisher between the
obfuscations of the two circuits implies the existence of an adversary that can find an input on
which the two circuits differ. Thus by the security of differing-inputs obfuscation, we conclude
that an adversary breaking the semantic security of the above encryption scheme can be used
to extract a valid witness for x.

Example of restricted use software. We find the differing-inputs obfuscation notion
stated in its contrapositive form, i.e. non-existence of an adversary that can find input on which
the two circuits differ implies the non-existence of an adversary that can distinguish between the
obfuscations of the two circuits, as more insightful when considering applications. We highlight
how this interpretation can be useful for applications such as restricted-use software:

Software developers often want to release multiple tiers of a product with different price
points allowing for different levels of functionality. In principle each customer could be provided
a separate version of the software enabling only the features he needs. Ideally, a developer could
just have flags corresponding to each feature in his software. The developer could then create
a customized version of software simply by starting with the full version and then turning off

1In particular, this line of work [GGH+13b, BR13, BGK+13] culminated in an unconditional realization of the
VBB notion in the generic multilinear model. The crucial point for our case is that this proof shows extractability of
differing inputs from any distinguishing adversary, though only in a generic model.
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the features the consumer does not want directly at the interface level — requiring minimal
additional effort. However, if this is all that is done, then it would be easy for an attacker
to bypass these controls and gain access to the full version or the code behind it. The other
alternative is for a software development team to carefully remove all unused components —
an elaborate task. Can we have the best of both worlds? Our solution is for a developer to
release an obfuscated version of the program that takes as input a signature on the custom set
of functionality flags that the consumer has paid for. Next we argue that for this application
differing-inputs obfuscation suffices. Observe that assuming unforgeability we have that no
efficient malicious user can generate a signature on any set of attributes besides the ones provided
to it. Given that, differing-inputs obfuscation immediately implies that the obfuscated program
with selected features turned off in the perspective of the user is indistinguishable from the
obfuscation of the program with unwanted parts removed at the start.

On the other hand, note that indistinguishability obfuscation would not suffice here: This is
because the program with the unwanted parts removed implements a different functionality from
the original program, and therefore indistinguishability obfuscation alone does not guarantee
security in this setting.

1.1 Our Results

We obtain the following results: We obtain the following results:

Differing-input obfuscation for Turing Machines: We define the notion of differing-
input obfuscator for Turing machines and give a construction for Turing machines with bounded
length inputs (without converting it to a circuit) assuming the existence of differing-input
obfuscator for circuits, and SNARGs for P [BCCT13]. Additionally assuming SNARKs for
P [BCCT13] we can construct differing-input obfuscator even for the setting where the length
of the input is not bounded. (We stress that it is only for this extension that we need to assume
SNARKs.) Moreover our construction achieves input-specific running times (explained below).
This means that evaluating the obfuscated machine on input x does not depend on the worst-
case running time of the machine but just on the running time of the unobfuscated machine on
input x.

Input-specific runtime. Most tasks in cryptography are well suited for circuits and not
Turing machines. Hence most cryptographic applications require that a Turing machine be
first transformed to a circuit leading to inefficiency. This is especially true in the setting of
computation on encrypted data. Goldwasser et al. [GKP+13b] initiated the study of achieving
input-specific run times in the context of computation on encrypted data. For example consider
the case of full-homomorphic encryption (FHE): Lets say that we would like to compute a
specified Turing machine on an encrypted input. If we were to first convert this Turing machine
to a circuit then this would mean that on every input the evaluation will take time proportional
to the worst-case running time rather than time it takes for evaluation on that specific input.
The first variants of FHE that achieve these properties were given by [GKP+13b, GKP+13a].
We use ideas from both these works in our constructions.

Functional Encryption for Turing Machines: We give a functional encryption scheme
that is fully-secure even when the adversary can query for an unbounded number of secret-
keys. Furthermore our scheme allows for secret-keys to be associated with Turing machines and
thereby achieves input-specific running times and can be equipped with unbounded delegation
properties. We note that for the case of single-key functional encryption [?], the problem of sup-
porting Turing Machines and achieving input-specific runtimes was previously introduced and
resolved by Goldwasser et al. [GKP+13a]. We stress that ours is the first functional encryption
scheme with security for an unbounded number of secret keys satisfying any of these properties.
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Short multiparty key exchange and broadcast encryption: In recent work, Boneh
and Zhandry [BZ13] show that indistinguishability obfuscation gives a broadcast encryption
system with properties that were not previously achievable (see [BZ13] for a survey of related
work). While ciphertexts and secret keys in their system are constant size (i.e., independent of
the number of users) the size of their public-key is linear in the total number of users N . The
reason for the linear-size public-key is an obfuscated program used for decryption that takes
as input (a representation of) the recipient set S ⊆ [N ] and a recipient private key SKi. The
program verifies that recipient i is part of the recipient set S and if so outputs a ciphertext
decryption key. Since the recipient set can be linear size, the obfuscated program had to be
linear size, thereby forcing the public-key to be linear size.

A natural approach to shrink the decryption program in the public-key is as follows: instead
of giving the program the recipient set S as an argument, we give it a short proof that i is in S.
The obfuscated decryption program will check the proof, and if valid, will decrypt the given
ciphertext. A simple proof for the statement i ∈ S can be built from collision resistant hash
functions using Merkle hash trees [Mer88]. Unfortunately, indistinguishability obfuscation (iO)
is insufficient for proving security of this approach using current techniques. The problem is
that using iO we can only puncture a certain PRF embedded in the obfuscated program if the
resulting program is identical to the original program. However, because the proofs for i ∈ S
are succinct, there exist false proofs. That is, for any set S′ ⊆ [N ] for which i 6∈ S′, there exists
a convincing (false) proof that i ∈ S′. These false proofs prevent us from applying iO to argue
that the punctured program is indistinguishable from the original program. While false proofs
exist, finding a false proof will break collision resistance of the hash function used to construct
the Merkle tree. Therefore, differing-inputs obfuscation can be applied because no polynomial
time algorithm can distinguish the punctured program from the original program.

To make this idea work we have to further modify the mechanism used in the broadcast
system of [BZ13]. Our final construction, presented in Section 6, is such that proving security
requires two applications of diO in three hybrid games. We also show that the same idea can
be used to improve the multiparty non-interactive key exchange (NIKE) from [BZ13] so that,
even when there is no trusted setup, all parties post at most a logarithmic-size message (in the
number of users) to the public bulletin board.

1.2 Related Work.

A concurrent and independent work of [BCP13] also studies differing inputs obfuscation (that
they call extractable obfuscation), and obtains a number of applications for differing inputs
obfuscation. This work overlaps in part with our own, but [BCP13] also includes results that
are not in our work. Most notably, [BCP13] demonstrate a remarkable implication showing that
indistinguishability obfuscators must satisfy a weak form of differing inputs obfuscation for any
pair of circuits that only differ on a polynomial-size set of inputs2.

2 Preliminaries

2.1 Notation

We represent the security parameter by λ. A function f is said to be negligible in a variable n if
for every polynomial p, we have f(n) < 1

p(n) . For an algorithm A, we use the notation o← A(i)

to denote that the output of A on input i is o. We use r
$←− S to denote that r is drawn from

the space S uniformly at random.

2We note, however, that none of the applications we consider here would work with weak differing inputs obfus-
cators.
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We assume that the reader is familiar with the concept of Turing machines. We denote the
running time of Turing machine M on input x by time(M,x). We say that the output of two
Turing machines on an input are the same if the output tapes of the two Turing machines are
identical.

For every NP-language L, we associate a corresponding relation RL such that an instance
x ∈ L iff there exists a witness w such that (x,w) ∈ RL. Furthermore, we say an instance x is
a “valid” (or a true) instance iff x ∈ L. Correspondingly, those instances that don’t belong to
the language are referred to as invalid (or false) statements.

2.2 Differing-inputs Obfuscation for circuits and TMs

We recall the notion of differing-inputs obfuscation from Barak et. al. [?]. Next we present
this notion for both circuits and Turing machines. Before we go ahead with the definition, we
describe the notion of differing-inputs circuit family. Intuitively, we call a circuit family to be
differing-inputs circuit family if there does not exist any PPT adversary who given two circuits,
which are sampled from a distribution defined on this circuit family, can output a value such
that both the circuits differ on this input.

Definition 1. A circuit family C associated with a sampler Sampler is said to be a differing-
inputs circuit family if for every PPT adversary A there exists a negligible function α such
that:

Prob[C0(x) 6= C1(x) : (C0, C1, aux)
$←− Sampler(1λ), x← A(1λ, C0, C1, aux)] ≤ α(λ).

We now define the notion of differing-inputs obfuscation for a differing-inputs circuit family.

Definition 2. (Differing-inputs Obfuscators for circuits) A uniform PPT machine diO
is called a Differing-inputs Obfuscator for a differing-inputs circuit family C = {Cλ} if the
following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all C ∈ C, for all inputs x, we have
that

Prob[C ′(x) = C(x) : C ′ ← diO(λ,C)] = 1

• Polynomial slowdown: There exists a universal polynomial p such that for any circuit
C, we have |C ′| ≤ p(|C|), where C ′ = diO(λ,C).

• Differing-inputs: For any (not necessarily uniform) PPT distinguisher D, there exists
a negligible function α such that the following holds: For all security parameters λ ∈ N,

for (C0, C1, aux)
$←− Sampler(1λ), we have that

|Prob[D(diO(λ,C0), aux) = 1] − Prob[D(diO(λ,C1), aux) = 1] ≤ α(λ)

The concept of differing-inputs obfuscation can be thought of as a generalisation of indistinguish-
able obfuscation. This is because, indistinguishable obfuscation is defined for circuits which are
identical on all inputs and hence such circuits trivially satisfy the definition of differing-inputs
circuit familes. We conjecture that the construction defined in Garg et al. [GGH+13b] and its
optimizations from [BR13, BGK+13] satisfies this stronger notion of differing-inputs obfuscation.
In this work, using this notion we obtain many applications.

We now consider the case when we are obfuscating Turing machines. Again, to define the
differing-inputs property for Turing machines we need to define the notion of differing-inputs
Turing machines family. Before we define this, we consider the family of Turing machines M
which is equipped with SamplerM which efficiently samples two Turing machines fromM along
with auxiliary information. For simplicity, we assume each machine M in the family M on an
input x in addition to its output also outputs the time τx it runs in.
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Definition 3. A Turing machine family M associated with a sampler SamplerM is said to be
a differing-inputs Turing machine family if for every PPT adversary, the following holds

Prob[M0(x) 6= M1(x) : (M0,M1, aux)← Sampler(1λ), x← A(1λ,M0,M1, aux)] = negl(λ)

Remark 1. Note that for simplicity we have assumed, that all Turing machines in family M
outputs the time τx in addition to the output on input x. The above definition in particular
implies that there does not exist any efficient adversary who can produce x such that the two
Turing machines output by the sampler on x run in different times. We stress that this has been
done for simplicity and our definition can also deal with a family of machines with different
running times by just padding.

Similar to the case of circuits, we define the notion of differing-inputs obfuscation for a family
of differing-inputs Turing machines.

Definition 4. (Differing-inputs Obfuscators for Turing machines) A uniform PPT
machine diOTM is called a Turing machine differing-inputs Obfuscator defined for differing-
inputs Turing machine family M, if the following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all M ∈ M, for all inputs x, we
have that

Prob[M ′(x) = M(x) : M ′ ← diO(λ,M)] = 1

• Differing-inputs obfuscation property: For any (not necessarily uniform) PPT dis-
tinguisher D, there exists a negligible function α such that the following holds: For all

security parameters λ ∈ N, for (M0,M1, aux)
$←− SamplerM(1λ) we have that

|Prob[D(diO(λ,M0), aux) = 1] − Prob[D(diO(λ,M1), aux) = 1] ≤ α(λ)

In addition to the above properties if diOTM satisfies the following properties, with respect to a
universal polynomial p, then we say that diOTM is succinct and has input-specific run time.

• Succinct: The size of M ′ is p(λ, |M |), where |M | denotes the size of the Turing machine
M .

• Input-specific run time: The running time of M ′ on an input x is p(λ, time(M,x)).

We can also consider the notion of indistinguishability obfuscation for Turing machines. The
definition is very similar to the above definition except that the indistinguishability of obfus-
cations holds only only for Turing machines which are same on all inputs. We present the
formal definition in Appendix A for the sake of completeness. We note that our construction
of Turing machine differing-inputs obfuscation also satisfies the definition of Turing machine
indistinguishable obfuscation since Definition 4 implies Definition 8.

3 Differing-inputs Obfuscators for Turing Machines

In this section, we construct differing-inputs obfuscators for Turing machines. The advantage of
considering obfuscation of Turing machines over circuits is two-fold. Firstly, the running time
of the obfuscated Turing machine would be input specific. Secondly, the size of the obfuscation
does not depend on the worst case running time of the Turing machine. Since the real world
applications are programs it is more natural to consider obfuscation of Turing machines rather
than circuits.

Our construction is based on the assumption that the differing-input obfuscator for all circuits
exists along with well studied assumptions such as the existence of FHE, SNARKs and collision
resilient hash functions.
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3.1 Tools

We now describe the main cryptographic tools that we use in our construction.

Universal Turing machines. Universal Turing machine takes as input a Turing machine, an
input on which the Turing machine is executed and a time to indicate the number of steps of
execution. The output of the univeral Turing machine is basically the output of the Turing
machine on that input if the execution is completed within the time limit, which is given as
input to the universal Turing machine. Otherwise, the universal Turing machine outputs ⊥. We
consider a variant of universal Turing machine, that instead of outputting the entire result of
execution, will just output one particular bit from the result of execution. More formally, we

define the variant as follows. For every 1 ≤ i ≤ t, represent by UTM
(i)
y,t(·), the following program:

It takes as input a Turing machine M ′ and executes M ′ on y for t steps. If the execution is
completed within t steps then output the ith bit of the output of the execution otherwise output
⊥.

FHE for Turing machines. Goldwasser et al. in [GKP+13a] build a compiler that takes a
Turing machine M along with the number of steps t as input and then produces a Turing ma-
chine that computes the FHE evaluation of M for t number of steps. In more detail, the compiler
converts the machine into an oblivious Turing machine M using the Pippenger-Fischer [PF79]
transformation. It then constructs a new Turing machine MFHE which takes a ciphertext along
with a FHE public key as input and executes the oblivious Turing machine fully homomorphi-
cally on the ciphertext for t number of steps. The output of the compiler is MFHE. The compiler,
denoted by CompileTMFHE, is described formally in Appendix B.2.

SNARKs. Succinct non interactive arguments of knowledge, referred to as SNARKs, are
arguments where the proof sent by the prover to the verifer is succinct. By succinct, we mean
that the size of the proof is upper bounded by a fixed polynomial in the security parameter and
is independent of the instance for which the proof is given. In addition to succinctness, one
other main property satisfied by SNARKs is that the verifier runs in time that depends only on
the size of the input instance and the security parameter, and not on the size of the witness.
SNARKs have been constructed under knowledge assumptions [BCCT13]. The formal details
of SNARKs are presented in Appendix B.3. We denote the SNARK proof system we use by
(Setup, P, V ).

We occasionally refer to a weaker notion of SNARKs, referred to as SNARGs (Succinct Non-
interactive Arguments of Knowledge) [BCCT13, GW11]. In place of the extractability property,
SNARGs have the weaker property of soundness – there does not exist any efficient dishonest
prover who can convince a verifier with non-negligible probability that a false statement belongs
to a language.
Hash functions. The final tool we require for our construction are cryptographic hash func-
tions that map arbitrary length input to a fixed length output. More formally, we consider a
hash function H : {0, 1}∗ → {0, 1}l(λ), where l is a polynomial 3. There are constructions of
such functions known in the literature [Mer90, Dam90, GK03]. Henceforth, we refer to such
functions as collision-resilient size reducing hash functions.

3More formally, we do the following. We consider a hash function family from which we sample a hash function H.
Whenever we use H, we implicitly mean that H was sampled from an appropriate distribution on the hash function
family.
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3.2 Construction

We are now ready to describe the construction. Before we do this, we first describe a class of
programs P, represented by a circuit family to which we apply differing-inputs obfuscation for
circuits. Each program in this class is indexed by (g1, g2,CRS,SK1,PK1,PK2). We denote such

a program by P
(g1,g2,CRS)
(SK1,PK1,PK2). Here, (PK1,SK1), (PK2,SK2) denotes the FHE public key-secret

key pairs, g1, g2 denote the encryptions of M with respect to PK1 and PK2 respectively and
CRS denotes the common reference string output by the SNARK setup algorithm. We describe

P
(g1,g2,CRS)
(SK1,PK1,PK2) in Figure 1.

P
(g1,g2,CRS)
(SK1,PK1,PK2)

Given input (i, e
(i)
1 , e

(i)
2 , hx, t, ϕ),P

(g1,g2,CRS)
(SK,PK) proceeds as follows:

1. Execute the SNARK verifier V on input (e
(i)
1 , e

(i)
2 , g1, g2, hx, t, i) along with CRS and proof ϕ.

The SNARK proof system (P, V ) is defined for the language L where (e
(i)
1 , e

(i)
2 , g1, g2, hx, t, i)

are instances in L with witnesses x such that:

M
(i)
FHE = CompileTMFHE(UTM

(i)
x,t, 2

tlog2t) and e
(i)
1 = M

(i)
FHE(PK1, g1)

and e
(i)
2 = M

(i)
FHE(PK2, g2) and H(x) = hx (1)

2. If the verifier rejects then output 0; otherwise, output DecryptFHE(e
(i)
1 ,SK1).

Figure 1 A template of a program in the program class P.

We are now ready to give the construction of differing-inputs obfuscation of a differing-input
Turing machine family.

The obfuscation of a Turing machine is captured by the obfuscate algorithm, denoted by
ObfuscateTM. As in Garg et. al. [GGH+13b], we view the execution of the obfuscated Tur-
ing machine on an input as an evaluation algorithm, denoted by EvaluateTM.

ObfuscateTM(1λ,M): The obfuscation algorithm on input a security parameter and a Turing
machine M does the following:

1. Generate (PK1
FHE,SK

1
FHE)← SetupFHE(1λ) and (PK2

FHE,SK
2
FHE)← SetupFHE(1λ).

2. Generate ciphertexts g1 = EncryptFHE(PK1
FHE,M) and g2 = EncryptFHE(PK2

FHE,M).

3. Compute CRS by executing the setup algorithm Setup corresponding to the SNARK proof
system, denoted by (Setup, P, V ) for the relation described in Equation 1 in Figure 1.

4. Generate a differing-inputs obfuscation for the circuit P1 = P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

as P1obf =

diO(P1, λ).

5. The output of this algorithm is σ = (P1obf ,PK
1
FHE,PK

2
FHE, g1, g2,CRS).

EvaluateTM(σ = (P1obf ,PK
1
FHE,PK

2
FHE, g1, g2,CRS), x): On input the obfuscation of Turing ma-

chine M and input x, the EvaluateTM algorithm outputs M(x) as follows.

1. Compute the hash of x using the hash function, H and denote the result by hx (= H(x)).

2. Repeat the following for steps t = 0, 1, . . . , :
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- Execute CompileTMFHE(UTM
(i)
x,2t , 2tlog2t) 4, for all 1 ≤ i ≤ 2t, to obtain M

(i,t)
FHE

5. .

- Compute e
(i,t)
1 = M

(i,t)
FHE (PK1

FHE, g1) and e
(i,t)
2 = M

(i,t)
FHE (PK2

FHE, g2), where 1 ≤ i ≤ 2t.

- For every 1 ≤ i ≤ 2t, compute SNARK proof ϕi, using prover P , that the encryptions

e
(i,t)
1 and e

(i,t)
2 as well as the hash value hx are computed correctly as in Equation 1

in Figure 1.

- For every 1 ≤ i ≤ 2t, run P1obf(i, e
(i,t)
1 , e

(i,t)
2 , hx, t, ϕi). If the output of the program is

⊥ then go to the beginning of the loop. Else, first assign bi to be the output of P1obf .
Consider the concatenation of bi, for 1 ≤ i ≤ 2t to be out. The output of EvaluateTM
is out.

Remark: The construction as described above relies on the existence of SNARKs. Later,
in Appendix 2, we will see that we need SNARKs because we need to extract the witness x
corresponding to the NP-statement in Equation 1 in Figure 1.

We stress that the same construction as above actually achieves the weaker indistinguisha-
bility obfuscation notion for Turing Machines when the weaker assumption of SNARGs is made.
Alternatively the stronger notion of differing inputs obfuscation assuming just SNARGs can
be achieved if the inputs to the Turing machine are upper-bounded by some fixed parameter
as follows. Instead of passing hx to the program in Figure 1, we can directly pass x to the
program. Note that this could not be done if the input length was not apriori bounded because
the input length of the circuit implementing the program in Figure 1 is fixed. Since we are
directly including x as part of the input, we can use SNARGs instead of SNARKs since the
whole purpose of using SNARKs was to obtain x.

The above construction satisfies both the succinctness as well as the input-specific running
time properties. This is proved in Appendix C. We now focus on the correctness as well as
the security of the above scheme. Crucial to both these properties is the following lemma
which shows that the program class can be implemented by a differing-inputs circuit fam-
ily. To do this, we first define a PPT algorithm SamplerMP corresponding to the program
class P as follows. The sampler SamplerMP receives as input security parameter λ along with
(M0,M1, auxM), where (M0,M1, auxM) is the output of SamplerM, which is the sampler algo-
rithm of M. The sampler SamplerMP first executes the setup algorithm of FHE twice to obtain
(PK1

FHE,SK
1
FHE), (PK2

FHE,SK
2
FHE). Then, the Turing machines M0 and M1 are encrypted using

public keys PK1
FHE and PK2

FHE to obtain g1 and g2 respectively. Finally, execute the setup al-

gorithm of SNARK proof system to obtain CRS. Output the programs P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

and

P
(g1,g2,CRS)

(SK2
FHE,PK

1
FHE,PK

2
FHE)

. The auxillary information, denoted by auxMP , consists of (auxM,PK
1
FHE,PK

2
FHE,CRS).

Lemma 1. Consider a class of programs P, defined as before. Let P1 = P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

and

P2 = P
(g1,g2,CRS)

(SK2
FHE,PK

2
FHE),PK2

FHE
along with auxillary information aux be the output of sampler algorithm

SamplerMP . There does not exist any PPT adversary A on input (P1,P2, aux) outputs y such that
P1(y) 6= P2(y), with non-negligible probability under the assumption thatM is a differing-inputs
Turing machine family.

The proof of the above lemma can be found in Appendix C.1. Using this lemma, we now prove
the correctness and the security of the differing-inputs obfuscation scheme.

4A universal Turing machine that executes an input Turing machine for T steps, itself takes T logT number of
steps.

5Note that we need to execute the compile algorithm for every output bit. But, we know that the output length of
a Turing machine cannot exceed the running time required to produce that output. And so, we execute the compile
algorithm for 2t number of steps.
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Correctness. For simplicity, we assume that the obfuscaton of P1, denoted by P1obf , is exe-
cuted once, as against multiple times, and the entire output of the FHE evaluation phase is fed
to the obfuscation of P1. We now argue the correctness of the scheme. The correctness of the
FHE scheme along with the correctness of the SNARK proof system imply that the input to P
is an encryption of M(x) followed by a valid proof that the encryption is correctly computed,
where x is the input to the obfuscation scheme. Now, note that if a valid encryption of M(x)
and a valid proof that M(x) is correctly computed is given to P1 then the output of P1 would be
M(x). And so, by the correctness of diO it follows that the output of P1obf is M(x). This means
that the output of the evaluate algorithm is M(x). This proves the correctness of the diO scheme.

Security proof. We now describe the security proof of the differing-inputs obfuscation scheme
for the Turing machines. The security expermient proceeds by the challenger first executing
the sampler algorithm of M is executed to obtain (M0,M1, auxM). The challenger then sends
Mobf to the adversary, where Mobf is either the diO obfuscation of M0 or M1. The security
guarantee is that the adversary’s output when M0 is obfuscated is negligibly close to its output
when M1 is obfuscated. To show this, we first describe the hybrids which are similar to the
security arguments of the indistinguishability obfuscation scheme of the circuits from Garg et
al. [GGH+13b]. For completeness sake, we present the hybrids below.

Hybrid0: This corresponds to the honest execution of the differing-inputs obfuscation corre-
sponding to the Turing machine M0.

Hybrid1: In this hybrid, the ciphertext g1 is generated by encrypting M0 (under PK1
FHE) while

the ciphertext g2 is obtained by encrypting the Turing machine M1 (under PK2
FHE). The rest of

the hybrid is the same as the previous hybrid Hybrid0.

Hybrid2: The ciphertexts g1 and g2 are generated the same way as in the previous hybrid. The
only difference is that instead of obfuscating program P1, the program P2 is obfuscated.

Hybrid3: In this hybrid, the ciphertexts g1 is generated by encrypting M1 (under PK1
FHE) while

the ciphertext g2 is (still) generated by encrypting M1 (under PK2
FHE). As in the previous hy-

brid, the obfuscation component is still generated from P2.

Hybrid4: The ciphertexts are generated as in the previous hybrid. That is, g1 and g2 are
encryptions of M1 under keys PK1

FHE and PK2
FHE respectively. But this time, the obfuscation

component corresponds to the program P1 instead of P2.
Note that this corresponds to the honest execution of the differing-inputs obfuscation corre-

sponding to the obfuscation of M1.

We show that every two consecutive hybrids are computationally indistinguishable with respect
to each other. The proof of this can be found in Appendix C.2.

4 FE for Turing Machines

We present a construction of functional encryption for Turing machines using the differing-
inputs obfuscation construction for Turing machines in Section 3. This is very similar in spirit
to the construction of functional encryption in Garg et al. [GGH+13b]. The main tools re-
quired for this construction are IND-CPA secure public key encryption scheme (defined in
Appendix B.4), simulation sound non interactive zero knowledge (defined in Appendix B.5)
and a SNARK proof system (as defined as Appendix B.3). We denote the PKE scheme by
(SetupPKE,EncryptPKE,DecryptPKE) , simulation sound NIZK by (SetupSSNIZK, P

SS
NIZK, V

SS
NIZK) and a
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SNARK proof is denoted by (SetupSNARK, PSNARK, VSNARK). Further, we denote the SNARK
proof system by (SetupSNARK, PSNARK, VSNARK) The simulation sound NIZK proof is defined for
the relation RSS which is defined later. The SNARK proof system on the other hand is defined
for the relation defined in Equation 2.

We describe a class of Turing machines PFE which will be useful for our FE construction.
Every program in PFE is indexed by (f, SK1

PKE,CRSSS ,CRSSNARK) and we denote such a program

by P(f,SK1
PKE,CRSSS ,CRSSNARK), where f is a function implementable by a Turing machine. Before

we describe the program P(f,SK1
PKE,CRSSS ,CRSSNARK), we specify the relation RSS for which the

SS-NIZK proof system is defined. The relation consists of pairs of ciphertexts (CT1,CT2) as
instances such that both the ciphertexts are the output of the same message m under different
public keys PK1

PKE and PK2
PKE. More formally,

RSS = {(CT1,CT2;m, r1, r2) : CT1 = EncryptPKE(PK1
PKE,m; r1) and EncryptPKE(PK2

PKE,m; r2)}

We give the description of the program P(f,SK1
PKE,CRSSS ,CRSSNARK) in Figure 2.

P(f,SK1
PKE,CRSSS ,CRSSNARK)

Given input (CT1,CT2, hΠ,ΠSNARK),P(f,SK1
PKE,CRSSS ,CRSSNARK) proceeds as follows:

1. Execute the SNARK verifier V on input (CT1,CT2, hΠ,CRSSS) along with strings CRSSNARK

and proof ΠSNARK. The SNARK proof system (P, V ) is defined for the language L where
(CT1,CT2, hΠ,CRSSS) are instances in the language with witnesses ΠSS such that:

VSS(CT1,CT2,ΠSS ,CRSSS) = 1 and hΠ = H(ΠSS) (2)

2. If the verifier rejects then output 0; otherwise, output f(DecryptPKE(CT1,SK
1
PKE)).

Figure 2 The template of a program that is obfuscated during the KeyGen operation.

We now describe the construction of functional encryption for Turing machines.

Construction:

- SetupFE(1λ): The SetupFE algorithm takes the security parameter λ and computes the
following.

1. Generate (PK1
PKE,SK

1
PKE)← SetupPKE(1λ) and (PK2

PKE,SK
2
PKE)← SetupPKE(1λ).

2. Set CRSSS ← SetupSSNIZK(1λ) and CRSSNARK ← SetupSNARK(1λ).

It sets the public parameters and master secret key as

PP = {PK1
PKE,PK

2
PKE,CRSSS ,CRSSNARK} and MSK = {SK1

PKE}

- KeyGenFE(MSK, f): Output a differing-inputs obfuscation P1obf corresponding to the pro-

gram P1 = P(f,SK1
PKE,CRSSS ,CRSSNARK) using the size of the Turing machine to be equal to the

value max{|P(f,SK1
PKE,CRSSS ,CRSSNARK)|, |P(f,SK2

PKE,CRSSS ,CRSSNARK)|}, where |P(f,SK1
PKE,CRSSS ,CRSSNARK)|

(resp., |P(f,SK2
PKE,CRSSS ,CRSSNARK)|) denotes the size of the Turing machine representing P(f,SK1

PKE,CRSSS ,CRSSNARK)

(resp., P(f,SK1
PKE,CRSSS ,CRSSNARK)). Also, we adjust the running time of both the programs

P(f,SK1
PKE,CRSSS ,CRSSNARK) and P(f,SK2

PKE,CRSSS ,CRSSNARK) to be the same 6. We output the secret

6This can be done by making sure that the PKE decryption algorithm as well as the SNARK verifier take worst
case running time.
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key SKf as the obfuscated Turing machine.

- EncryptFE(PP, x ∈ {0, 1}n): Execute the following steps to compute the ciphertext corre-
sponding to the encryption of x.

1. Compute e1 = EncryptPKE(PK1
PKE, x; r1) and e2 = EncryptPKE(PK1

PKE, x; r2).

2. Generate a proof ΠSS using the SS-NIZK prover PSSNIZK that the encryptions e1 and
e2 are correctly computed defined for relation RSS .

3. Compute a hash, using H, of the proof ΠSS . Denote the hash by hΠSS .

4. Generate a SNARK proof ΠSNARK using PSNARK that the proof ΠSS is correctly com-
puted. Prover PSNARK takes as input, instance (e1, e2, hΠSS ) along with CRSSS and
witness ΠSS .

Then, the encryption algorithm outputs the ciphertext (e1, e2, cΠSS ,ΠSNARK).

- DecryptFE(SKf , c = (e1, e2, cΠSS ,ΠSNARK)): The decryption algorithm runs the obfuscated
program SKf on input (e1, e2, cΠSS ,ΠSNARK) and outputs the answer.

The above functional encryption scheme satisfies the succinctness and the input-specific runtime
properties, which is shown in Appendix D. Consider the following lemma. The lemma shows
that the class P is a differing-inputs circuit family. To do this, we first need to define the sam-
pling algorithm SamplerP corresponding to P. The sampler on input security parameter, first
executes Setup of the SNARK proof system to obtain CRSSNARK and then it executes the Setup of
the SS-NIZK proof system to obtain CRSSS . Finally it executes the setup algorithm of the PKE
system to obtain (SK1

PKE,PK
1
PKE). The sampler outputs the programs P(f,SK1

FHE,CRSSS ,CRSSNARK)

and P(f,SK2
FHE,CRSSS ,CRSSNARK). We prove the following lemma whose proof can be found in Ap-

pendix D.1.

Lemma 2. Consider the class of programs P defined as before. Let P1obf = P(f,SK1
FHE,CRSSS ,CRSSNARK)

and P1obf = P(f,SK2
FHE,CRSSS ,CRSSNARK) along with the auxilary information aux be the output of the

SamplerP . There does not exist any PPT adversary A on input (P1,P2, aux) outputs y such that
P1(y) 6= P2(y), with non-negligible probability.

Using this lemma, we now prove the correctness and the security of the FE scheme.

Correctness. We sketch the proof that the above scheme satisfies correctness. We first argue
that the program P1 correctly decrypts the FE ciphertext. Then, from the correctness of the
differing-inputs obfuscation it follows that the output of the obfuscated program is a correct
decryption of FE ciphertext. The correctness of the SS-NIZK as well as the SNARK implies that
the proof, that verifies that the ciphertexts are correctly computed, is accepted by the verifier
in P1. Since the proof is accepted by the verifier, the output of the program M1 is the output
of the decryption of the PKE ciphertext, which is part of the FE ciphertext. The correctness
of the PKE scheme ensures that the PKE ciphertext, and hence the FE ciphertext, is correctly
decrypted.

Security proof. We prove the security of the FE construction in this section. We first describe
the hybrids and then we argue the computational indistinguishability of the hybrids that will
complete the proof. Again, the structure of the hybrids follow the structure of the hybrids in
Garg et al. [GGH+13b]. For completeness sake, we present the hybrids here. In the following
sequence of hybrids, we move step by step from the indistinguishability game, described in Sec-
tion A.2, where x0 is encrypted to the indistinguishability game where x1 is encrypted. Then,
by showing the computational indistinguishability of the hybrids in Appendix D.1 we show that
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the FE scheme is secure.

Hybrid5: This hybrid represents the honest execution in the indistinguishability game in Ap-
pendix A.2 in which the challenger encrypts the message x0 in the ciphertext.

Hybrid6: In this hybrid, the generation of the PKE keys as well as the PKE encryption of the
message x0 is done as in the previous hybrid. The difference between this hybrid and Hybrid5

is in the generation of the proofs – unlike the previous hybrid, the SS-NIZK proof is simulated
here.

More formally, during the setup phase, along with executing other steps honestly, we execute
SimSS to obtain “fake” CRSSS , where SimSS is the simulator of (PSS , VSS). The keys of the
PKE scheme are generated honestly. The adversary on input the public parameters then sends
the messages x0 and x1 to the challenger. The challenger then encrypts x0 honestly using the
encryption of the PKE scheme, as described the FE scheme, to obtain e1 and e2. It then uses
the simulator SimSS to produce a simulated proof ΠSS for the statement that e1 and e2 are
correctly computed. The rest of the hybrid is the same as the previous hybrid.

Hybrid7: In this hybrid, instead of encrypting x0 both using PK1
PKE and PK2

PKE, we encrypt x0

using PK1
PKE and then encrypt x1 using PK2

PKE. The rest of the hybrid, including the simulation
of the proofs part, is the same as the previous hybrid.

Hybrid8,i for i ∈ [0, q]: We now describe a sequence of hybrids, one defined for each query the
adversary makes. We move from one hybrid to another by changing the secret key, generated as
part of the functional key, used to perform decryption. In Hybrid8,i the first i queries will result

in functional keys generated as obfuscations of the program P(fi,SK
2
PKE,CRSSS ,CRSSNARK), where fi is

the ith function queried. The remaining i+1 to q queries are generated using the obfuscations of
the program P(fi,SK

1
PKE,CRSSS ,CRSSNARK) as in hybrid Hybrid2. Also, the ciphertext in the challenge

message is generated as in Hybrid7. Note that Hybrid8,0 is equivalent to Hybrid7.

Hybrid9: This hybrid is the same as Hybrid8,q with the only difference being that in this case, the

challenge ciphertext is generated as encryptions of x1 under the public keys PK1
PKE and PK1

PKE

respectively. The rest of the hybrid, including the simulation of the NIZK proofs, is the same
as Hybrid8,q.

Hybrid10,i for i ∈ [0, q]: Again, we describe a sequence of hybrids one defined for each query
the adversary makes. In Hybrid10,i, the first i private keys requested will result in prvate keys

generated as obfuscations of the program P(fi,SK
1
PKE,CRSSS,CRSSNARK ). The rest of the private keys,

namely from i+ 1 to q, are generated using the program P(fi,SK
2
PKE,CRSSS ,CRSSNARK) as in Hybrid9.

Note that Hybrid10,0 is equivalent to Hybrid9.

Hybrid11: The hybrid is identical to Hybrid5 with the only difference being in the generation of
CRSSS . In this hybrid, the CRSSS is generated from an honest run of the SetupSS algorithm and
that the SS-NIZK proof ΠSS is generated from honestly using the prover PSS . This corresponds
to the security game when message x1 is encrypted for the challenge ciphertext.

5 Delegatable functional encryption scheme

The notion of delagatable functional encryption scheme is introduced in this section. Delegat-
able functional encryption is a functional encryption scheme having the additional operation of
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delegation of functional keys. We first give an informal description of the delegate operation.
Suppose, Alice has a functional key corresponding to some function. Alice decrypting all the
messages all by herself is cumbersome. She wants to delegate some specific decryptions to Bob.
One way to do that is Alice hands over her key to Bob. However, Bob can now decrypt mes-
sages which he is not supposed to. Instead what Alice can do is compute a new key from the
functional key it possesses and she can hand over the key to Bob. The key is designed in such a
way that Bob can only decrypt messages he is supposed to and nothing more. This is precisely
what delegation deals with. We define the class of functions that can be delegated. Suppose,
Alice has a key corresponding to function f then she can delegate those functions g which can
be written as a composition of f ′ on f , denoted by f ′ ◦ f , for some function f ′ 7.

5.1 Definition

We define a delegatable functional encryption scheme to consist of the following PPT algorithms
(Setup,KeyGen,Encrypt,Decrypt,Delegate). The first four PPT algorithms are the same as in
the definition of the functional encryption described in Section A.2.

• Setup(1λ) - a polynomial time algorithm that takes the unitary representation of the se-
curity paramter λ and outputs a public paramteres PP and a master secret key MSK.

• KeyGen(MSK, f) - a polynomial time algorithm that takes as input the master secret
key MSK and a function f implementable by a Turing machine M ∈ M and outputs a
corresponding secret key SKf .

• Encrypt(PP, x) - a polynomial time algorithm that takes the public parameters PP and a
string x ∈ S and outputs a ciphertext CT.

• Decrypt(SKf ,CT) - a polynomial time algorithm that takes a secret key SKf and ciphertext
encrypting message x ∈ S and outputs f(x).

• Delegate(PP,SKf , f
′) - a polynomial time algorithm that takes as input a public key PP,

a functional key SKf and a function f ′ and outputs a functional key SKf ′◦f that evaluates
the function f ′ ◦ f on the message contained in the ciphertext.

A delegatable functional encryption scheme satisfies two main properties, namely correctness
and security. The criterion for correctness is the same as that of the functional encryption
scheme. In addition, the following must be satisfied – if the output of a delegate operation
on input SKf and f ′ is SKf ′◦f then the decryption algorithm on input SKf ′◦f along with an
encryption of a message x should give f ′(f(x)) as its output. We describe the security notion
next.

5.2 Security notion

We now describe the security notion employed for a delegatable encryption scheme. We follow
the security notion defined in [SW08] for a predicate encryption scheme. The security is mod-
elled as a game between a challenger and an adversary.

Setup. The challenger executes the Setup algorithm of the delegatable functional encryption
scheme and gives the public key, denoted by PK to the adversary.
Query. The adversary submits queries to the challenger adaptively. There are three subphases
in the query phase. The first is the creation of the functional key, second is the delegation phase
and the third is the reveal phase.

7More formally, f ′ ◦ f takes as input x and outputs f ′(f(x)).
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• Creation. The adversary submits the queries fi to the challenger who computes the keys
SKfi corresponding to fi. These keys are not yet revealed to the adversary.

• Delegation. The adversary now chooses the keys, generated during the creation phase,
on which the delegation operation need to be applied. This is done by the adversary
submitting a function f ′i along with an index i, to indicate the key on which the delegate
operation need to applied. The challenger then executes Delegate on SKfi along with f ′i
to obtain SKf ′i◦fi . As in the previous case, the key is not yet revealed to the adversary.

• Reveal. The adversary asks the challenger to reveal a functional key that was generated
in one of the previous phases.

Challenge. The adversary then sends the two challenge messages x0, x1 such that for all
functional keys SKf created by the challenger (including the ones during the delegation phase),
f(x0) = f(x1). If this condition is not satisfied then the challenger aborts the game. Otherwise,
the challenger encrypts xb using the public key PK, where b is a bit chosen uniformly at random,
and the resulting ciphertext is then handed over to the adversary.
Query. This phase is similar to the previous query phase. In this phase too, for any functional
key SKf created, f(x0) should be the same as f(x1).

Guess. The game ends when the adversary guesses a bit b′. The advantage of an adversary in
the above game is defined to be |Prob[b′ = b]− 1

2 |.

Definition 5. A delegatable functional encryption scheme is said to be (fully) secure if for all
PPT adversaries A, the advantage of A is a negligible function of λ.

5.3 Construction

Consider the functional encryption scheme described in Section 4. Corresponding to this scheme
we define a delegate operation, denoted by Delegate, as follows. On input a key SKf and a
function f ′, the delegate operation computes the differing-inputs obfuscation of the program
Pf
′,SKf . The program Pf

′,SKf on input (CT1,CT2, hΠ, ϕ), first evaluates the obfuscation SKf
on input (CT1,CT2, hΠ) to obtain z. It then evaluates f ′ on z to obtain f ′(z), which it then
outputs.

We claim that this is a delegatable encryption scheme. The correctness of this scheme follows
from the correctness of differing-inputs obfuscation. We argue about the security informally here.
We first design the hybrids such that the first hybrid corresponds to the indistinguishability game
in the delegatable functional encryption scheme and the last hybrid corresponds to the game
in the functional encryption scheme. In each hybrid, we replace a delegate operation by a key
generation operation. That is, if an adversary requests delegate operation f ′ on key SKf , instead
of performing the delegation operation we generate a fresh key SKf ′◦f .

To argue the indistinguishability of the hybrids, note that it suffices to show that the output
distribution of the key generation for the function f ′ ◦ f is computationally indistinguishable
from the output distribution of the delegation operation on input SKf , corresponding to f , and

f ′. To see this, observe that the programs Pf
′,SKf and P(f,SK1,CRSSS ,CRSSNARK) are equivalent. The

output of the key generation is the obfuscation of P(f,SK1,CRSSS ,CRSSNARK) and correspondingly the
output of the delegate operation is the output of Pf

′,SKf . From the equivalence of these pro-
grams, it follows that their obfuscations, and hence the outputs (distributions) of KeyGen and
Delegate are computationally indistinguishable. This proves that any two consecutive hybrids
are computationally indistinguishable. The adversary can succeed in the last hybrid with only
negligible probability and this follows from the fact that our functional encryption scheme is
secure. Hence, the adversary can succeed in the first hybrid, which is the security game of the
delegatable encryption scheme, only with negligible probability. This completes the proof.
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Remark. The above delegatable functional encryption scheme works for both circuits as well as
Turing machines. If a delegatable scheme need to be constructed only for circuits then we can
directly construct the scheme from the functional encryption scheme by Garg et. al. [GGH+13b]
using the delegation operation defined as above. More specifically, instead of using differing-
inputs obfuscation we can directly use indistinguishable obfuscation for circuits.

6 Multiparty Key Exchange and Broadcast Encryption
with Small Parameters

In this section, we build multiparty non-interactive key exchange (NIKE) and broadcast encryp-
tion from differing-inputs obfuscation. Our constructions can be built from any differing-inputs
obfuscator and any collision-resistant hash function.

First, we review Merkle hash trees and puncturable pseudorandom functions (PRFs). Given
a collision-resistant hash function H : X 2 → X , a Merkle hash tree [Mer88] gives another
collision-resistant hash function H : Xn → X where n = 2k for some fixed k. The input
consists of 2k blocks xk[i] ∈ X for i ∈ {1, . . . , 2k}. These blocks are set as the leaves of a
binary tree with 2k leaf nodes. The value at each internal node is obtained by hashing the
values of that node’s children. The output of H is the value at the root of the tree. More
precisely, for each j ∈ {0, . . . , 2k−1 − 1}, blocks xk[2j] and xk[2j + 1] are hashed using H to
obtain xk−1[j] = H(xk[2j], xk[2j + 1]). This process is repeated for k − 1, k − 2, . . . , 1 until a
single block x0 ∈ X is obtained. The output of H is set to x0.

We need the following standard property of Merkle Hash Trees. Let y ∈ X and x ∈ Xn
such that x[i] = y for some i. Since H is collision resistant we can treat h = H(x) as a binding
commitment to x. The property we need is that, given h and y, it is possible to produce a short
proof that x[i] = y. The proof consists of xk[i] and the values at all siblings of nodes on the
path from xk[i] to the root of the Merkle tree. The size of a proof is O(log n) elements of X .
False proofs exist, but they lead directly to a collision for H. These proofs can be generalized
to the case where y consists of p (not necessarily contiguous) blocks, and the size of proof will
be O(p log n) elements of X .

Following [BW13, BGI13, KPTZ13], a puncturable pseudorandom function F is a pseudo-
random function (PRF) that supports the a procedure F x ← F.Puncture(x) where

F x(y) =

{
F (y) if y 6= x

⊥ if y = x

For security, we let an adversary A commit to a point x. A receives F x, as well as a value z,
where either z = F (x) or z is chosen uniformly in the codomain of F . A puncturable PRF is
secure if no efficient adversary A can distinguish the correct z from a random z. We note that
the PRF construction of Goldreich, Goldwasser, and Micali [GGM86] satisfies this functionality
and notion of security.

6.1 Non-interactive Multiparty Key Exchange

A NIKE protocol consists of the following three algorithms:

- Setup(λ, n): The setup algorithm takes a security parameter λ and a number n of users.
It outputs public parameters PP.

- Publish(PP, i): Each party executes the publishing algorithm, which takes as input the
public parameters and the index of the party, and generates two values: a user secret key
SKi and a user public value PVi. User i keeps SKi as his secret, and publishes PVi to the
other users.
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- KeyGen(PP, i,SKi, {PVj}j=1,...,n): Finally, each party derives the shared key k using the
public parameters PP, their secret SKi, and the other parties’ public values {PVj}j=1,...,n.

Static security for a NIKE protocol is defined by the following experiment denoted by EXP(b)
and parameterized by the total number of parties n and a bit b ∈ {0, 1} on an adversary A:

PP← Setup(1λ, 1n)

(SKi,PVi)← Publish(1λ, i) for i = 1, . . . n

b′ ← A
(
PP, {PVi}i=1,...,n, k

∗ )
where

k0 ← KeyGen(PP, {PVi}i=1,...,n,SK1, 1), k1 ← {0, 1}λ, and k∗ ← kb

For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b) and define AdvKE(λ) = |Pr[W0]−Pr[W1]|.

Definition 6. A multiparty key exchange protocol (Setup,Publish,KeyGen) is statically secure
if, for any PPT adversary A and any integer n, the function AdvKE(λ) is negligible.

Construction Let F be a puncturable pseudorandom function, f : X → Y a one-way function,
and H : Yn → Y a Merkle Hash Tree.

- SetupNIKE(1λ, 1n): The SetupNIKE algorithm takes the security parameter λ and a number
of users n and computes the following:

1. Generate an instance F of a puncturable pseudorandom function with security pa-
rameter λ.

2. Compute the differing-inputs obfuscation P1obf of the program P1 = P(F ) from Fig-

ure 3, using the size of the circuit to be max{|P(F )|, |P(h∗,Fh∗ )
2 |} where P

(h∗,Fh∗ )
2 is

defined in Figure 4.

It sets the public parameters as
PP = P1obf

- PublishNIKE(1λ, i): User i chooses a random xi ∈ X , and computes yi = f(xi) ∈ Y. User i
keeps xi as its secret key, and publishes yi as its public value.

- KeyGenNIKE(PP, {yj}j=1,...,n, xi, i): To compute the shared secret, user i computes the
Merkle hash h = H(y1, . . . , yn), and constructs a proof π that it knows a z such that
H(z) = h and z[i] = yi. Then it computes k ← P1obf(h, π, i, yi, xi).

P(F )

Given input (h, π, i, y, x), P(F ) proceeds as follows:

1. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = y.

2. Check that f(x) = y.

3. If either check fails, abort and output ⊥.

4. Otherwise, output F (h)

Figure 3 The program P(F ) that users will use for key generation.

Correctness. Correctness of our scheme is straightforward by inspection.
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Parameter sizes. Secret keys in our scheme just elements in the domain of a one-way
function, which is independent of the number of users. published values are images, which are
also independent of the number of users. The public key is an obfuscation of the program in
Figure 3, which only depend logarithmically on the number of users.

Untrusted Setup. As described, our key exchange requires a trusted setup. However, as
in [BZ13], SetupNIKE can be run independently from PublishNIKE. Therefore, we can set party 1
as the “master party” who runs SetupNIKE in addition to PublishNIKE, and publishes the public
key along with his published value. We note that the material published by player 1 is still
relatively small: polylogarithmic in the number of users. This is in contrast to the scheme of
[BZ13], where player 1 must publish material of size polynomial in the number of users.

Security. The security of our scheme is given by the following theorem:

Theorem 1. The scheme above is statically secure if H is a collision resistant Merkle hash tree,
F is a secure punctured PRF, f is a secure one-way function, and the P1obf is a differing-input
obfuscation of P(F ).

Proof. We prove security through a sequence of hybrids.
Hybrid0: This is the honest key exchange game, EXP(0) in the NIKE security definition, where
the adversary receives an obfuscation of P(F ), published values {yi}i=1,...,n, and the correct
challenge group key k∗ = F (h∗) where h∗ = H(y1, . . . , yn).
Hybrid1: This game is identical to Hybrid0, except that instead of receiving the correct public

key consisting of P1obf , the adversary receives the obfuscation P2obf of the program P
(h∗,Fh∗ )
2 in

Figure 4.

P
(h∗,Fh∗ )
2

Given input (h, π, i, y, x), P
(h∗,Fh∗ )
2 proceeds as follows:

1. Check that h 6= h∗.

2. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = y.

3. Check that f(x) = y.

4. If any check fails, abort and output ⊥.

5. Otherwise, output F h∗(h)

Figure 4 The program P
(h∗,Fh∗ )
2 that users will use for key generation.

Hybrid2: This game is identical to Hybrid1, except that instead of setting the challenge group
key as k∗ = F (h∗), this k∗ is chosen uniformly at random from the range of F , independent
of F .
Hybrid3: This game is identical to Hybrid2, except the adversary is given the correct public key
consisting of an obfuscation of P(F ). This game is the same as Hybrid0, except that the challenge
group key k∗ is chosen uniformly at random, and is therefore identical to EXP(1) in the NIKE
security definition.

We need to argue that each of these hybrids are indistinguishable. First, we argue that

P(F ) and Ph
∗,Fh∗

form a differing-inputs circuit family, where h∗ = H(y1, . . . , yn) where yi =
f(xi) and the adversary gets auxiliary information {yi}i=1,...,n. Consider any differing input
(h, π, i, y, x). It must be that h = h∗, π is a valid proof, and f(x) = y. There are two cases:
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• y = yi. Then x is a pre-image of yi under f . We can use such a differing input to break
the one-wayness of f .

• y 6= yi. Then since π is valid, but h∗ = H(y1, . . . , yn) with yi 6= y, the proof must yield a
collision on the underlying collision resistant hash H.

Therefore, the security of f andH show that P and P2 form a differing-inputs function family.
Therefore, the obfuscations P1obf and P2obf are indistinguishable. This in turn shows that
Hybrid0 is indistinguishable from Hybrid1. The same applies to Hybrid2 and Hybrid3. Therefore,
it remains to prove the indistinguishability of Hybrid1 and Hybrid2.

Let A be an adversary that distinguishes Hybrid1 from Hybrid2 with probability ε. We
construct an adversary B that breaks the security of F . B generates xi for himself and computes
yi = f(xi). B also computes h∗ = H(y1, . . . , yn), and then asks its challenger for the constrained
function Fh

∗
and the value of F at h∗, obtaining the key k∗. Now B constructs the obfuscation

of P2. It gives this obfuscation, all of the yi, and k∗ to A, and runs A. B outputs the output of
A.

If k∗ is the correct value of F (h∗), then B correctly simulates Hybrid1. Otherwise if k∗ is
random it simulates Hybrid2. Therefore, B breaks the security of F with probability ε, meaning
ε is negligible. Thus Hybrid1 is indistinguishable from Hybrid2, as desired.

We have thus shown that Hybrid0 is indistinguishable from Hybrid3, showing that our con-
struction is statically secure.

6.2 Broadcast Encryption

Next, we construct a broadcast encryption system with short ciphertexts, public keys, and secret
keys. We begin by defining a broadcast encryption scheme and what it means to be secure. A
(public-key) broadcast encryption system [FN94] is made up of three randomized algorithms:

Setup(λ, n) Given the security parameter λ and the number of receivers n, output n private
keys SK1, . . . ,SKn and public parameters PP. For i = 1, . . . , n, recipient number i is given
the private key SKi.

Encrypt(PP, S) Takes as input a subset S ⊆ {1, . . . , n}, and the public parameters PP. It
outputs a pair (Hdr, k) where Hdr is called the header and k ∈ K is a message encryption
key chosen from a key space K. We will often refer to Hdr as the broadcast ciphertext.

Let m be a message to be broadcast that should be decipherable precisely by the receivers
in S. Let cm be the encryption of m under the symmetric key k. The broadcast data
consists of (S,Hdr, cm). The pair (S,Hdr) is often called the full header and cm is often
called the broadcast body.

Decrypt(PP, i,SKi, S,Hdr) Takes as input a subset S ⊆ {1, . . . , n}, a user id i ∈ {1, . . . , n} and
the private key SKi for user i, and a header Hdr. If i ∈ S the algorithm outputs a key
k ∈ K. Intuitively, user i can then use k to decrypt the broadcast body cm and obtain the
message m.

The above definition describes a public-key broadcast encryption scheme. In a secret-key broad-
cast system, the encryption algorithm Encrypt requires as an additional input a private broadcast
key BK that is only known to the broadcaster.

The length efficiency of a broadcast encryption system is measured in the length of
the header Hdr. The shorter the header, the more efficient the system. Some systems such
as [BGW05, Del07, DPP07, BS03, SF07] achieve a fixed size header that depends only on the
security parameter and is independent of the size of the recipient set S.

As usual, we require that the system be correct, namely that for all subsets S ⊆ {1, . . . , n}
and all i ∈ S if (PP, (SK1, . . . ,SKn)) ← Setup(1λ, n) and (Hdr, k) ← Encrypt(PP, S) then
Decrypt(PP, i,SKi, S,Hdr) = k.
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Security. We define selective security for a broadcast system. Security is defined using the
following experiment, denoted EXP(b), parameterized by the total number of recipients n and
by a bit b ∈ {0, 1}:

(PP, (SK1, . . . ,SKn))← Setup(1λ, 1n)

(S∗, state)← A(1λ, 1n)
b′ ← A(PP, state, {SKi}i/∈S∗ ,Hdr, k∗)
where

(Hdr, k0)← Encrypt(PP), k1 ← {0, 1}λ, and k∗ ← kb.

For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b) and as usual define AdvKE(λ) = |Pr[W0]−
Pr[W1]|.

Definition 7. We say that a broadcast encryption system is selectively secure if for all proba-
bilistic polynomial time adversaries A the function AdvKE(λ) is negligible.

Notation: Fix a set Y, and label two elements of Y as 0 and 1. For a set S ⊆ {1, . . . , n}, let
χ(S) ∈ Yn denote a sequence of n elements of Y where χ(S)[i] = 0 if i /∈ S, and χ(S)[i] = 1 if
i ∈ S. We call χ(S) the incidence vector for S.

Construction We now construct a private key broadcast system — in Section 6.3, we show how
to make the scheme public key. Let F be a puncturable pseudorandom function, H : Yn → Y a
Merkle Hash Tree, and SIG = (SetupSIG,SSIG, VSIG) a signature scheme.

- SetupBE(1λ, 1n): The SetupBE algorithm takes the security paramemter λ and a number of
users n and computes the following:

1. Generate (PK,SK)← SetupSIG(1λ).

2. Generate an instance F of a puncturable pseudorandom function with security pa-
rameter λ

3. Compute the differing-inputs obfuscation P1obf of the program P1 = P(PK,F ), using

the size of the circuit to be max{|P(PK,F )|, |P(PK,h∗,Fh∗ )
2 |} where P

(PK,h∗,Fh∗ )
2 is defined

in Figure 6.

4. For each user i, compute the signature on i: σi ← SSIG(SK, i).

It sets the public parameters, broadcast key, and user secret key as:

PP = P1obf and BK = F and SKi = σi

- EncryptBE(BK, S). To encrypt to a set S, let z = χ(S) ∈ Yn be the incidence vector for S,
and let hS = H(z). Output an empty header, and the message encryption key kS = F (hS).

- DecryptBE(PP, σi, S, h). To compute the message encryption key kS , user i computes hS =
H(χ(S)), as well as a proof π that it knows a z such that H(z) = h and z[i] = 1 ∈ Y.
Then the message encryption key is kS ← P1obf(j, π, i, σi).

Correctness. Correctness of our scheme is straightforward by inspection.

Parameter sizes. Secret keys in our scheme are just signatures, which are independent of
the number of users. Headers are empty, and the public key is an obfuscations of the program
in Figure 5, which only depend logarithmically on the number of users.
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P(PK,F )

Given input (h, π, i, σ) P(PK,F ) proceeds as follows:

1. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = 1 ∈ Y.

2. Check that VSIG(PK, i, σ) accepts.

3. If any check fails, abort and output ⊥.

4. Otherwise, output F (h)

Figure 5 The program P(PK,F ) that users will use for decryption.

Security. The security of our scheme is given by the following theorem:

Theorem 2. The scheme above is selectively secure if H is a collision resistant Merkle hash tree,
F is a secure punctured PRF, SIG is a secure signature scheme, and the P1obf is a differing-input
obfuscation of P(PK,F ).

Proof. We prove security through a sequence of hybrids.
Hybrid0: This hybrid represents the honest selective security game for broadcast encryption. The
adversary commits to a set S∗. Then the adversary receives the public parameters PP = P1obf ,
and secret keys σi = SSIG(PK, i) for each i /∈ S∗. Let h∗ = H(χ(S∗)). The adversary also receives
k∗ = F (h∗). The adversary is now allowed to make encryption queries to any set S 6= S∗, to
which it receives the correct message encryption key.
Hybrid1: In this hybrid, we add the requirement that for any encryption query on a set S, that
h∗ 6= H(χ(S)). If this check fails, abort the game.
Hybrid2: This hybrid is identical to Hybrid1 except for the generation of P1obf in the public key.
Given F , we puncture F at h∗, obtaining the program Fh

∗
. We set the public key to be the

differing-inputs obfuscation P2obf of the program P
(PK,h∗,Fh∗ )
2 in Figure 6.

P
(PK,h∗,Fh∗ )
2

Given input (h, π, i, σ) P
(PK,h∗,Fh∗ )
2 proceeds as follows:

1. Check that h 6= h∗.

2. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = 1 ∈ Y.

3. Check that VSIG(PK, i, σ) accepts.

4. If any check fails, abort and output ⊥.

5. Otherwise, output F h∗(h)

Figure 6 The program P
(PK,h∗,Fh∗ )
2 that users will use for decryption.

Hybrid3: This hybrid is identical to Hybrid2, except that instead of k∗ = F (h∗), we set k∗ to be
a uniform string in the codomain of F .
Hybrid4: This is identical to Hybrid3, except the adversary is again given the correct public key
consisting of an obfuscation of P(PK,F ).
Hybrid5: This hybrid is identical to Hybrid4, except we remove the check in encryption queries
that h∗ 6= H(χ(S)). This game is identical to Hybrid0, except that k∗ is chosen at random and
independent of F . Therefore, this hybrid is exactly the dishonest selective security game.
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We need to argue that each of these hybrids is indistinguishable. First, if Hybrid1 aborts
during an encryption query for S, it means H(χ(S)) = h∗ = H(χ(S∗)), and thus χ(S) and χ(S∗)
form a collision for H (since S 6= S∗). By the collision resistance of H, this can only happen
with negligible probability. Therefore, Hybrid0 is indistinguishable from Hybrid1. The same is
true of Hybrid4 and Hybrid5.

Our next step is to show that P and P2 are input-indistinguishable. Indeed, suppose an
adversary, given P, P2, a set S∗, and σi = SSIG(SK, i) for i /∈ S∗ can compute an input (h, π, i, σ)
where P and P2 differ. The only way for P and P2 to have different outputs is for P2 to abort at
a point where P does not. Thus, at any such point, it must be that h = h∗, π is a valid proof,
and σ is a valid signature on i. There are two cases:

• i ∈ S∗. Then σ is a valid forgery. If an adversary produces such an input, we can use
it to break the security of SIG. The adversary works as follows: on input PK for SIG, it
generates the programs P and P2, and makes signature queries on i /∈ S∗ to obtain σi,
and gives all of these parameters to the differing-inputs adversary. The differing inputs
adversary then produces a differing input (h∗, π, i∗, σ∗). Since i∗ is assume to be in S∗, σ∗

is a valid forgery for the message i∗.

• i /∈ S∗. Then π proves h∗ = H(χ(S′)) for some S′ 6= S∗. This proof gives us a collision for
H.

Therefore, assuming H is collision resistant and SIG is a secure signature scheme, P and P2 are
input indistinguishable. This means that the obfuscations P1obf and P2obf are indistinguishable.

Since the only difference between Hybrid1 and Hybrid2 is the obfuscation of two input-
indistinguishable programs, the hybrids themselves are indistinguishable. The same applies
to Hybrid3 and Hybrid4. It remains to prove that Hybrid2 and Hybrid3 are indistinguishable.

Suppose we have an adversary A distinguishing Hybrid2 from Hybrid3. We construct an
adversary B breaking the security of F . B runs A, and when A outputs a set S∗, B computes
h∗ = H(χ(S∗)) and asks its F challenger for the punctured PRF Fh

∗
. It also makes a challenge

on h∗, obtaining the key k∗. With Fh
∗
, B can generate P2, which it obfuscates and gives to

A. It also generates the parameters for SIG and gives A the signatures on all points not in S∗,
and gives k∗ as the message encryption key. If k∗ is the correct key F (h∗), then B perfectly
simulates the view of A in Hybrid2. Otherwise, the view is identical to Hybrid3. Therefore, if A
distinguishes Hybrid2 from Hybrid3 with non-negligible probability, B distinguishes the correct
k∗ from a random k∗ also with non-negligible probability. The security of F therefore implies
that Hybrid2 is indisitnguishable from Hybrid3.

We can therefore conclude that Hybrid0 is indistinguishable from Hybrid5, proving the security
of our broadcast encryption scheme.

6.3 A public key broadcast scheme

In the broadcast system of the previous section the broadcaster’s key BK had to be kept secret.
Here we show how to modify the broadcast scheme to make it public key. Our modification is
simple: we have the broadcaster generate a random input x ∈ X to a one-way function f , and
let y = f(x) ∈ Y. The hash h is now H(χ(S), y). We we change the public program to be an
obfuscation P1O of P(PK,F ) in Figure 7.

To encrypt, the broadcaster lets z′ = χ(S) ∈ Yn, lets z = (z′, y), and sets h = H(z). The
broadcaster also generates a proof π that it knows a z with H(z) = h and z[n+1] = y, and runs
P1O on input (y, h, π, 0, x). The result is the message encryption key k = F (h). The header is
y. To decrypt, user i generates a proof π that it knows z ∈ Yn+1 with z[i] = 1, z[n+ 1] = y and
H(z) = h, and runs P1O on input (y, h, π, σi) to obtain the key k = F (h).
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P(PK,F )

Given input (y, h, π, i, σ) P(PK,F ) proceeds as follows:

1. If i = 0:

(a) Check that π is a valid proof that there exists z ∈ Yn+1 where H(z) = h and z[n+ 1] = y.

(b) Check that y = f(σ).

2. If i 6= 0,:

(a) Check that π is a valid proof that there exists z ∈ Yn+1 where H(z) = h, z[i] = 1 ∈ Y,
and z[n+ 1] = y.

(b) Check that VSIG(PK, i, σ) accepts.

3. If any check fails, abort and output ⊥.

4. Otherwise, output F (h)

Figure 7 The program P(PK,F ) that users will use for decryption.

For security, it is straightforward to adapt the proof from above to the public key scheme.

The main difference is arguing that the program P(PK,F ) and the modified program P
(PK,h∗,Fh∗ )
2

which aborts if h = h∗ form a differing-input circuit family. The only difference in the argument
is that a differing input might have i = 0. But in this case, the collision resistance of H implies
that y = y∗ from the challenge, and that f(σ) = y∗, which means σ is a preimage of y∗. The
one-wayness of f shows that this can only happen with negligible probability, meaning P and
P2 are a differing-inputs circuit family.
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A Indistinguishability Obfuscation for Turing machines
and FE for Turing machines: Definitions

A.1 iO for Turing machines

We define the notion of indistinguishability obfuscation for Turing machines similar to the
definition of indistinguishability obfuscation for circuits. Note that the two Turing machines
that need to be obfuscated in the security game, should not only be identical on all inputs but
they also need to having the same running time on all the inputs. Note that the definition of
differing-inputs obfuscation for Turing machines implies the following definition and hence our
construction in Section 3 also satisfies this definition.

Definition 8. (Indistinguishable Obfuscators for Turing machines) A uniform PPT
machine iOTM is called a Turing machine indistinguishable Obfuscators for the Turing machine
family M, if the following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all M ∈ M, for all inputs x, we
have that

Prob[M ′(x) = M(x) : M ′ ← iO(λ,M)] = 1

• Indistinguishable Obfuscation: For any (not necessarily uniform) PPT distinguisher
D, there exists a negligible function α such that the following holds: For all security pa-
rameters λ ∈ N, for all M0,M1 ∈ M, aux such that for all x, M0(x) = M1(x) and
time(M0, x) = time(M1, x) we have that

|Prob[D(iO(λ,M0)) = 1] − Prob[D(iO(λ,M1)) = 1] ≤ α(λ)

In addition to the above properties if iOTM satisfies the following properties, with respect to a
universal polynomial p, then we say that iOTM is succinct and has input-specific run time.

• Succinct: The size of M ′ is p(λ, |M |), where |M | denotes the size of the Turing machine
M .

• Input-specific run time: The running time of M ′ on an input x is p(λ, time(M,x)).
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A.2 Functional Encryption for Turing machines

We cast the definition of functional encryption in Garg et al. [GGH+13b] for the case of Turing
machines. Though the functional encryption for Turing machines have already been defined
by Goldwasser et al. [GKP+13a], our definition differs from their definition in many ways – (i)
single key versus many key queries, (ii) simulation based versus indistinguishability game based
and so on. While defining FE for Turing machines we restrict the adversary to make only certain
type of function queries which is based on the running time of the function. This is to avoid
trivial attacks where the attacker will be able to distinguish the encryptions of two messages by
choosing a function query whose running time is significantly different on both the messages.

Definition 9. Let the message space be S = Sλ. A functional encryption scheme defined
for a family of Turing machines MT , parameterized by a Turing machine T , consists of four
algorithms FE = {Setup,KeyGen,Encrypt,Decrypt}:

• Setup(1λ) - a polynomial time algorithm that takes the unitary representation of the security
paramter λ and outputs a public paramteres PP and a master secret key MSK.

• KeyGen(MSK, f) - a polynomial time algorithm that takes as input the master secret key
MSK and a function f implementable by a Turing machine M ∈ M and outputs a corre-
sponding secret key SKf .

• Encrypt(PP, x) - a polynomial time algorithm that takes the public parameters PP and a
string x ∈ S and outputs a ciphertext CT.

• Decrypt(SKf ,CT) - a polynomial time algorithm that takes a secret key SKf and ciphertext
encrypting message x ∈ S and outputs f(x).

A functional encryption scheme is correct for M if for all M ∈M and all messages x ∈ S :

Prob[(PK,MSK)← Setup(1λ);Decrypt(KeyGen(MSK, f),Encrypt(PK, x)) = f(x)] = negl(λ)

We now define the (fully) indistinguishability security for functional encryption which is de-
scribed in form of an indistinguishability game between an attacker A, whose running time is
upper bounded by λc for a constant c, and a challenger to whom the constant c is given.

Setup: The challenger runs (PK,MSK)← Setup(1λ) and gives PP to A.

Query: A submits queries fi ∈ M. We assume, without loss of generality that fi can be
represented by a Turing machine Mi which, on an input x, outputs fi(x) along with the taken
by Mi to execute on x. The adversary A is then given SK← KeyGen(MSK, fi)

Challenge: The adversary on input a security parameter outputs messages (x0, x1).

Query: A executes another query phase. It submits queries of the form fi ∈M which are rep-
resented by Turing machines Mi as in the previous Query phase. If fi(x0) = fi(x1), adversary
A is given SK ← KeyGen(MSK, fi) else the game is aborted. As in the previous definitions, we
assume that the description of Mi contains a time bound τ such that Mi(x) ≤ τ for all inputs
x.

Guess: A eventually outputs a bit b′ in {0, 1}.

The advantage of an adversary A is defined to be |Prob[b′ = b]− 1
2 |.

Definition 10. A functional encryption scheme is (fully) indistinguishability secure if for any
PPT adversary A, the advantage of A in the above indistinguishability game is negligible.
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In addition to the above properties, we also consider the following two properties for functional
encryption schemes for Turing machines.

• Succinctness: A functional encryption scheme is said to be succinct if the functional key
generated using KeyGen for the function f is p(λ, |M |), where p is a polynomial and M
denotes the size of the Turing machine representing the function f .

• Input-specific run time: A functional encryption scheme is said to have input-specific
run time if the decryption algorithm on input a functional key for a function f along
with an encryption of x, takes time p(λ, time(M,x)), where M is the Turing machine
representing the function f .

B Background

B.1 Fully Homomorphic Encryption

We define the notion of fully homomorphic encryption (FHE) scheme. It consists of four PPT
algorithms (KeyGen,Encrypt,Decrypt,Eval) defined as follows.

• KeyGen(1λ): On input a security parameter 1λ it outputs a public key PKFHE and a
decryption key SKFHE.

• Encrypt(m,PKFHE): On input a message m and public key PKFHE it outputs a ciphertext
denoted by CT.

• Decrypt(CT,SKFHE): On input a ciphertext and a decryption key SKFHE it outputs a
message m.

• Eval(CT,PKFHE, f): On input a ciphertext, a public key 8 and a function f , outputs another
ciphertext CT′ such that the decryption of CT′ yields the message f(m).

The security of FHE is defined very similar to the security of the IND-CPA public key encryption
scheme. There does not exist any PPT adversary A such that, for any pair of messages m0,m1,
the probability that on input Encrypt(m0,PKFHE) it outputs 0 (resp., 1) is negligibly close to
the probability that on input Encrypt(m1,PKFHE) it outputs 0 (resp., 1).

B.2 FHE for Turing machines

We present the construction of the compiler verbatim from Goldwasser et. al. [GKP+13a] be-
low. The compiler, denoted by CompileTMFHE, takes as input a Turing machine M and a number
of steps t, and produces a Turing machine that computes the FHE evaluation of M for t steps.
Let x̂ denote the FHE encryption of x.

CompileTMFHE(M, t):

• First, transform M into an oblivious Turing machine MO by applying the Pippenger-
Fischer transformation [PF79] for time bound t. This transformation results in a new
Turing machine MO and a transition function δ for MO. Namely, δ takes as input tape
input bit b, a state state and outputs a new state state′, new content b′ for the tape location,
and bit next indicating whether to move left or right; namely δ(b, state) = (state′, b′, next).
Let the movement function next be such that next(i) indicates whether the head on the
input tape of MO should move left or right after step i.

8It is not always necessary that we need to use the public key for FHE evaluation. Sometimes, a separate key for
FHE evaluation alone is also used.
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• Based on (MO, next), construct a new Turing machine MFHE that takes as input a FHE
public key PKFHE and an input encryption x̂. MFHE applies the transition function δFHE
(the FHE evaluation of δ using PKFHE) t times. Each cell of the tapes of MO corresponds
to an FHE encrypted value for MFHE. The state of MFHE at time i is the FHE encryption
of the state of MO corresponds to an FHE encrypted value for MFHE. The state of MFHE at
time i is the FHE encryption of the state of MO at time i. At step i, the transition function
δFHE takes as input the encrypted bit from the input tape b̂ that the head currently points

at, the current encrypted state ŝtate and outputs an encrypted new state ŝtate′ and a new
content b̂′. To determine whether to move the head left of right, compute next(i).

• Output the description of MFHE.

The running time of CompileTMFHE and MFHE is polynomial in t. The Turing machine MFHE takes
as input a public key and a ciphertext and then performs the FHE evaluation of M on the
ciphertext. The resulting answer is then output by MFHE.

B.3 Succinct Non Interactive Arguments of Knowledge

We now give background for succinct non-interactive arguments of knowledge. We present
the details verbatim from Goldwasser et al. [GKP+13a]. We define the universal relation as a
canonical form to represent verification-of-computation problems.

Definition 11. [BCCT13] The universal relation is the set RU of instance-witness pairs
(y, w) = ((U, x, t), w), where |y|, |w| ≤ t and U is a Turing machine, such that U accepts (x,w)
after at most t steps. We denote by LU the universal language corresponding to RU . For any
c ∈ N, the universal NP relation is the set RU,c, defined as RU with the additional constraint
that t ≤ |x|c.
A SNARK is a triple of algorithms (Setup, P, V ) that works as follows.

• The generator Setup on input the security parameter λ, samples a reference string CRS
(since we consider publicly verifiable SNARKs, the CRS can also contain the public verifi-
cation state). The Setup also takes as input a time bound B but we set this to B = λlogλ

which will never be achieved for NP language. Therefore, for simplicity, we do not make
B explicit from now on.

• The honest prover P (CRS, y, w) produces a proof π for the statement y = (U, x, t) given a
valid witness w.

• The verifier V (CRS, y, π) takes as input the CRS, the instance y and a proof π and deter-
ministically verifies π.

The SNARK is adaptive if the prover may choose the statement after seeing CRS.

Definition 12. A triple of algorithms (Setup, P, V ) for the relation RU,c, where Setup is prob-
abilistic and V is deterministic, is a SNARK if the following conditions are satisfied:

• Completeness: For every large enough security parameter λ ∈ N, and for every instance-
witness pair (y, w) = ((U, x, t), w) ∈ RU ,

Prob[CRS← Setup(1λ; π ← P (CRS, y, w) : V (CRS, y, π)) = 1]

• Proof of knowledge: For every polynomial-size prover P ∗ there exists a polynomial-size
extractor Ext such that for every large enough security parameter λ ∈ N, every auxillary
input z ∈ {0, 1}poly(λ), and every constant c:

Prob[CRS← Setup(1λ); (y, π)← P ∗(CRS, z); w ← Ext(CRS, z) :

V (CRS, y, π) = 1 and (y, w) /∈ RU,c] = negl(λ).
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• Efficiency. There exists a universal polynomial p such that, for every large security
parameter λ and every instance y = (M,x, t),

1. The generator Setup(1λ) runs in time p(λ);

2. The prover P (CRS, y, w) runs in time p(λ, |U |, |x|, t);

3. The verifier V (CRS, y, π) runs in time p(λ, |U |, |x|);
4. An honestly generated proof has size p(λ).

Bitansky et al. [BCCT13] demonstrated a SNARK proof system under knowledge of exponent
assumptions.

B.4 IND-CPA secure PKE

An IND-CPA (or semantically) secure Public Key Encryption scheme consists of three PPT
algorithms (KeyGen,Encrypt,Decrypt) described as follows.

1. KeyGen(1λ): On input 1λ, it outputs public key PKPKE and decryption key SKPKE.

2. Encrypt(m,PKPKE): On input message m and the public key, it outputs a ciphertext CT.

3. Decrypt(CT,SKPKE): On input a ciphertext CT and the decryption key, it outputs m.

The IND-CPA scheme is said to be semantically secure if for any PPT adversary A, there exists
a negligible function α such that the following is satisfied for any two messages m0,m1 and for
b ∈ {0, 1}:

|Prob[A(1λ,Encrypt(m0,PKPKE)) = b]− Prob[A(1λ,Encrypt(m1,PKPKE)) = b]| ≤ α(λ)

B.5 Simulation sound NIZK

We define the notion of simulation sound non-interactive zero knowledge [?], which is a specific
type of NIZK [BFM88] proof system. Intuitively, this notion says that there does not exist
any efficient adversary even after receiving “fake” proofs for statements of his choice he cannot
output any convincing proof, including fake proofs, for a statement for which he had not received
any proof before.

More formally, a simulation-sound NIZK satisfies the following property along from the
completeness, soundness and zero knowledge properties of any NIZK proof system. Consider
the following game defined for PPT any adversary A. The game begins with the execution
of the simulator of the NIZK proof system who generates a fake CRS and a corresponding
trapdoor. Then, A is given oracle access to a simulator which has a corresponding trapdoor.
The adversary can submit any statement to this oracle and he will correspondingly get back a
convincing proof (which is accepted by the NIZK verifier). The game ends with A outputting
(x,Π). The adversary wins the game if (1) x was not equal to any of the statements he had
queried the oracle and (2) x is not in the language for which the NIZK is defined and (3) Π
is accepted by the NIZK verifier. We now define the simulation soundness property of a NIZK
proof system.

Definition 13. A NIZK proof system is said to satisfy simulation soundness if A wins the
above game with negligible probability.

C Succinctness and Input-specific time of diO for TMs

Size of the Obfuscation: We now upper bound the size of the obfuscated Turing machine
which is obtained by inputting the Turing machine M to the ObfuscateTM algorithm. Denote
the output of the ObfuscateTM algorithm to be (P1obf ,PK

1
FHE,PK

2
FHE, g1, g2,CRS).
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• The size of the FHE public keys (PK1
FHE,PK

2
FHE) can be upper bounded by a polynomial

in the security parameter.

• The size of the FHE encryptions g1 and g2 depends on the size of the message, which is
in this case, Turing machine M along with the security parameter. That is, the size of g1

and g2 can be upper bounded by a polynomial in (λ, |M |).
• The size of the common reference string CRS is a polynomial in the security parameter

(refer to Appendix B.3).

• The size of the obfuscation P1obf is a polynomial in (λ, |P1|), where |P1| represents the size
of the circuit of P1. Program P1 consists of two main components – the SNARK verifier
circuit and the decryption circuit. The size of the SNARK verifier circuit is a polynomial
in its inputs. The inputs to the SNARK verifier circuit consists of the following.

- A pair of encryptions of Turing machine M . The size of this is a polynomial in
(λ, |M |).

- Encryptions of a single bit of the output of the Turing machine. The size of this is
just a polynomial in λ.

- Index of the output bit. The size of this is logarithmic in the running time of the
Turing machine. Since we are only interested with efficient Turing machines, we can
loosely upper bound this quantity by the security parameter λ.

- Iteration number t. Observe that this too can be can be loosely upper bounded by
the security parameter λ.

The decryption circuit on the other hand takes a ciphertext corresponding to the encryption
of a single bit and hence, the size of the decryption circuit is a polynomial in the security
parameter. Combining all the facts, we get |P1| to be a polynomial in (λ, |M |).

Running time of the Evaluate algorithm: We first make the following observation. Suppose
the Turing machine M takes time T to execute on input x then the number of iterations in the
evaluation procedure need to be performed for O(2T logT ) times. We then determine the amount
of time taken in each iteration t step by step.

• In the first step, the FHE compiler is executed which takes time which is a polynomial
in 2t, and hence at most time T , and the size of the universal Turing machine UTMi

(x,2t)

(Refer Appendix B.2). Further, the size of the universal Turing machine is a polynomial
in |x| and the security parameter λ. Hence, the running time of the compiler is essentially
a polynomial in (λ, T, |x|).

• In the second step, the hash of the input x is computed. The running time of this step is
a polynomial in (|x|, λ).

• In the third step, a SNARK proof is computed and the running time of this is nothing
but the running time of the SNARK prover. The running time of the SNARK prover is a
polynomial in (λ, |M |, |x|, time(M,x)).

• In the last step, the obfuscation algorithm is evaluated. Since this obfuscation is in the
form of a circuit, the running time of this depends on the size of the obfuscation, which is
nothing but a polynomial in (λ, |M |).

From the above points, we have that the running time of the Evaluate algorithm is a polynomial
in (λ, |M |, x, T ).
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C.1 Proof of differing-inputs of Lemma 1

To prove this, we assume that there exists an adversary A that outputs y such that P1(y) 6=
P2(y). Using A, we construct another adversary AM which violates the differing-inputs prop-
erty of M arriving at a contradiction. Before we proceed further, we make a notational
simplification. We assume that the input to P1 (or P2) can be parsed as (z, ϕ), where z =

(i, e
(i)
1 , e

(i)
2 , g1, g2, hx, t, ϕ).

We present the following claims that will be useful when we calculate the probability of suc-
cess of AM. The first claim says that if the programs P1 and P2 differ on any input y = (z, ϕ)
then the verifiers both in P1 and P2 accept the proof ϕ. Recall that any program in P has two
components, namely the SNARK verifier along with FHE decryption circuit. The second claim
states that if both the programs differ on any input (z, ϕ) then the output of P1 (resp., P2) is

the decryption of e
(i)
1 (resp., e

(i)
2 ). Hence, as a consequence, we have that the decryption of e

(i)
1

(with respect to public key PK1
FHE) different from the decryption of e

(i)
2 with respect to PK2

FHE.
We now state the claims.

Claim 11. If there exists a y = (z, ϕ) such that P1(y) 6= P2(y) then the verifier in both P1 and
P2 accept ϕ.
Proof. The first observation is that the verifier as part of P1 is same as the verifer which is part
of P2. The second observation is that the verifier in P1 (resp., P2) does not reject the proof ϕ.
This is because, if the verifier in P1 (resp., P2) rejects then the output of P1 (resp., P2) is 0
which will contradict our hypothesis that the output of the two programs are different.

Claim 12. If there exists y = (i, e
(i)
1 , e

(i)
2 , hx, t, ϕ) such that P1(y) 6= P2(y) then the output of

P1 (resp., P2) is the decryption of e
(i)
1 (resp., e

(i)
2 ) with respect to PK1

FHE (resp., PK2
FHE).

Proof. From Claim 11, we have that the verifiers as part of both P1 and P2 accept and hence,

the output of P1(y) is the decryption of e
(i)
1 with respect to PK1

FHE and similarly, the output of

P2 is the decryption of e
(i)
2 with respect to PK2

FHE.

Now, consider the following adversary. Since (P, V ) which is a SNARK system has knowledge
extractability property we assume that there exists an extractor Ext = (Ext1,Ext2) such that
Ext1 generates (CRS, state) and then Ext2 on input an instance, (CRS, state) along with a proof,
extracts a witness corresponding to that instance 9.

AM(M0,M1, auxM):

(SK1
FHE,PK

1
FHE)← SetupFHE(1λ)

(SK2
FHE,PK

2
FHE)← SetupFHE(1λ)

(CRS, state)← Ext1(1λ)
g1 ← EncryptFHE(PK1

FHE,M0)
g2 ← EncryptFHE(PK2

FHE,M1)

Denote diO(λ,P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

by P1

Denote diO(λ,P
(g1,g2,CRS)

(SK2
FHE,PK

1
FHE,PK

2
FHE)

by P2

y ← A(P1,P2,PK1
FHE,PK

2
FHE, g1, g2,CRS)

Parse y as (z, ϕ)
x← Ext2(z, ϕ,CRS, state)
Output x

9We emphasise that this is the only place where we need the extractability property. As mentioned a couple of
times before, if the length of the witness (which in this case is the input to M0 or M1) is bounded above apriori then
we could have just used SNARGs for our construction
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The next claim shows that if A can produce an input y such that P1(y) 6= P2(y) with non-
negligible probability then AM violates the security game of the differing-inputs corresponding
to the family M (Definition 4). Before we go ahead and prove the claim, we first observe that
the distribution of (P1,P2, auxM) as input to A in the description of AM is the same as the
output distribution of SamplerMP .

Claim 13. Let (P1,P2, aux) ← SamplerMP (1λ). If there exists an adversary A on input
(P1,P2, aux) outputs y with non-negligible probability then the adversaryAM on input (M0,M1),
which is the output of SamplerM(1λ), produces x such that M0(x) 6= M1(x).
Proof. Suppose the adversary A outputs y such that P1(y) 6= P2(y) with non-negligible proba-
bility. We make the following two observations that will prove the above claim.

• Using Claim 11, we have the fact that the verifier accepts the proof ϕ corresponding to the
instance z with non-negligible probability, where y can be parsed as (z, ϕ) is the output
of A. From the knowledge extractability property, we have the fact that the extractor
outputs a valid witness x with non-negligible probability. Since, x is a valid witness to z,

we have the fact that e
(i)
1 is an encryption of M0(x) with respect to public key PK1

FHE and

similarly, e
(i)
2 is an encryption of M1(x) with respect to public key PK2

FHE.

• Using Claim 12, we have that the output of program P1 (resp., P2) is the decryption
of g1 (resp., g2) with respect to PK1

FHE (resp., PK2
FHE). Rephrasing this in terms of first

observation, the output of P1 on input y is M0(x) and the output of P2 on input y is
M1(x). Since, y is such that P1(y) 6= P2(y) with non-negligible probability, we have that
M0(x) 6= M1(x). This completes the proof.

The above claim contradicts the assumption thatM is a differing-inputs Turing machine family
and this proves P is a differing-inputs circuit family.

Corollary 3. Differing-inputs obfuscation for the circuit family P exists under the assumption
that IND-CPA FHE exists, SNARKs exists, collision resistant hash functions and differing-
inputs obfuscation exists for any differing-inputs circuit family.

C.2 Indistinguishability of hybrids Hybrid0 to Hybrid4

We present a series of claims that show that the hybrids are computationally indistinguishable
with respect to each other.

Claim 1. Hybrids H0 and H1 are computationally indistinguishable under the assumption that
the FHE scheme is IND-CPA secure.
Proof. We assume that these two hybrids are distinguishable and then arrive at a contradiction
by contradicting the IND-CPA security of the FHE scheme. Suppose there exists an adversary
A that distinguishes hybrids Hybrid0 and Hybrid1 then we construct an adversary A′ that breaks
the IND-CPA security of FHE scheme as follows. The adversary A′, on input a public key PK1,
first executes A to get the messages M0 and M1. It then sends this to the challenger who decides
to encrypt either M0 or M1 depending on the challenge bit. The challenege ciphertext, CT(2),
is handed over to A′ who does the following. It generates public key-secret key pair (SK0,PK0)

and then encrypts m0 using PK0 to obtain CT(1). Further, it generates the program P1 in which
the decryption is done using the decryption key SK0. It finally gives (CT(1),CT(2),P1obf), where
P1obf = diO(P1), to A and then A′ outputs whatever A outputs.

Claim 2. Hybrids H1 and H2 are computationally indistinguishable under the assumption that
differing-inputs obfuscators exist for all circuits.
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Proof. Consider an adversary who receives P1,P2 and Pobf , which is either an obfuscation of
P1 or P2. If the adversary receives an obfuscation of P1 then we are in hybrid Hybrid1 and if
the adversary receives the obfuscation of P2 then we are in hybrid Hybrid2. So, if the adversary
could indeed distinguish the two hybrids with non-negligible probability then he can as well
distinguish the obfuscations of P1 and P2 with non-negligible probability. This contradicts the
differing-inputs property of P from Corollary 3, thus proving the claim.

Claim 3. Hybrids H2 and H3 are computationally indistinguishable under the assumption that
the FHE scheme is IND-CPA secure.
Proof. We assume that these two hybrids are distinguishable and then arrive at a contradiction
by contradicting the IND-CPA security of the FHE scheme. Suppose there exists an adversary
A that distinguishes hybrids Hybrid0 and Hybrid1 then we construct an adversary A′ that breaks
the IND-CPA security of FHE scheme as follows. The adversary A′, on input a public key PK0,
first executes A to get the messages m0 and m1. It then sends this to the challenger who decides
to encrypt either m0 or m1 depending on the challenge bit. The challenge ciphertext, CT(1), is
handed over to A′ who does the following. It generates public key-secret key pair (SK1,PK1)

and then encrypts m1 using PK1 to obtain CT(2). Further, it generates the program P2 in which
the decryption is done using the decryption key SK2. Finally, it computes P2obf , which is the
indistinguishability obfuscation of P2. It gives (CT(1),CT(2),P2obf) to A and then A′ outputs
whatever A outputs.

Claim 4. Hybrids H3 and H4 are computationally indistinguishable under the assumption that
differing-inputs obfuscators exist for all circuits.
Proof. This is similar to the proof of Claim 2. Consider an adversary who receives P1,P2 and
Pobf , which is either an obfuscation of P1 or P2. If the adversary receives an obfuscation of P2
then we are in hybrid Hybrid3 and if the adversary receives the obfuscation of P3 then we are in
hybrid Hybrid4. So, if the adversary could indeed distinguish the two hybrids with non-negligible
probability then he can as well distinguish the obfuscations of P1 and P2 with non-negligible
probability. This contradicts the differing-inputs property of P from Corollary 3, thus proving
the claim.

From the above arguments it follows that hybrids Hybrid0 and Hybrid4 are computationally
indistinguishable. This proves the differing-inputs of the Turing machines M0 and M1. More
formally,

Theorem 4. Under the existence of the following primitives, the construction in Section 3 is a
differing-inputs obfuscation for any family of differing-inputs Turing machines.

• IND-CPA secure fully homomorphic encryption scheme.

• Succinct Non-Interactive Arguments of Knowledge.

• Differing-inputs obfuscation for all circuits.

• Collision resilient size-reducing hash functions.

D Proofs of Section 4

Succinctness of functional keys. To argue about the size of a functional key f , we first argue
about the size of the program P(f,SK1

PKE,CRSSS ,CRSSNARK) and then we invoke the succinctness prop-
erty of the differing-inputs obfuscation for Turing machines. This is because, the functional key
f is essentially a differing-inputs obfuscation of P(f,SK1

PKE,CRSSS ,CRSSNARK). Let M be the Turing
machine implementing the function f . Then, the size of the program is a polynomial in the se-
curity parameter, size of M , size of the SNARK verifier and the size of PKE decryptor. Further,
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the size of the SNARK verifier as well as the PKE decryptor is bounded by a fixed polynomial
in the security parameter. Note that here both the SNARK verifier as well as the PKE decryp-
tor are implemented by Turing machines. So, the size of the both the programs is basically a
polynomial in the security parameter as well as the size of the Turing machine M . Denote this
polynomial by p′. Now, we know that if a Turing machine M ′ is being obfuscated and its size
is s then the size of the obfuscation of M ′ is p′(s), where p′ is also a polynomial. Hence, the

size of the obfuscation of P(f,SK1
PKE,CRSSS ,CRSSNARK) is basically p′(λ, |P(f,SK1

PKE,CRSSS ,CRSSNARK)|), and

from our earlier observation we have |P(f,SK1
PKE,CRSSS ,CRSSNARK)| = p(λ, |M |). Hence, the size of

the functional key is p′′(λ, |M |) for some fixed polynomial p′′.

Input specific running time of decryption algorithm. As in the previous case, we will
just argue the running time of the program P1 = P(f,SK1

PKE,CRSSS ,CRSSNARK) and then using the
bound on the running time of P1 we obtain a bound on the running time of its obfuscation.
The running time of the program P1 on input X, is essentially the sum of the running time
of the SNARK verifier, the running time of the PKE decryption as well as the running time
of M , where M is the Turing machine implementing f . The running time of the SNARK
verifier is polynomial in the security parameter and |X|. The running time of the PKE de-
cryptor is again a polynomial in the security parameter and |X|. Note that |X| is basically a
polynomial in |x|, where x is the message in contained in both the ciphertexts as part of X.
Also, the running time of the Turing machine is time(M,x), which is at least |x|. Overall, the
total running time of the obfuscation is a polynomial in the security parameter and time(M, |x|).

D.1 Proof of Lemma 2

The proof of this lemma is very similar to the proof of Lemma 1 and so we just sketch the details
below. Suppose there exists an adversary A who outputs y such that the output of the programs
P1 and P2 are different, where P1 and P2 are the programs output by SamplerP . Using this
adversary, we construct an adversary ASS which contradicts the simulation soundness of the
SS-NIZK system. To show this, we first recall that all the programs in the family P have the
following three steps in common – SNARK verification phase, PKE decryption and the execution
of the function f . Now, if the adversary A indeed outputs an y, parsed as (z, ϕ) where ϕ is a
SNARK proof, such that both the programs are different then it has to happen that ϕ passes
the SNARK verification phase. The proof of this follows directly from the proof of Claim 11 in
Lemma 1. Now, let z, which is the first component of y be further parsed as (CT1,CT2, hΠ).
We claim that the output of the program P1 (resp., P2) is M(out1) (resp., M(out2)), where out1
(resp., out2) is the decryption of CT1 (resp., CT2), where M is the Turing machine implementing
the function f . This directly follows from the proof of Claim 12 in Lemma 1. Since y is an input
such that the output of P1 on input y is different from the output of P2 on input y, we have the
fact that M(out1) 6= M(out2). This can happen only if the message contained in the ciphertexts
CT1 and CT2 are different. This further means that the SS-NIZK proof contained in the hash hΠ

corresponds to a false statement. We use this fact to contradict the simulation soundness of the
SS-NIZK proof system as follows. The adversary ASS , which breaks the simulation soundness
of the SS-NIZK proof system, first executes the setup algorithm of PKE system twice to get two
pairs of public key-secret keys, namely (SK1

PKE,PK
2
PKE), (SK2

PKE,PK
2
PKE). Further it executes the

fake setup algorithm of the SNARK proof system to obtain (CRSSNARK, tdSNARK). Now, instead
of itself executing the setup algoritm of the SS-NIZK proof system it gets the CRSSS from
the challenger of the SS-NIZK security game. Using the PKE keys, CRSSNARK as well as the
CRS obtained from the challenger it generates the programs P1 = P(f,SK1

PKE,CRSSS ,CRSSNARK) and
P2 = P(f,SK2

PKE,CRSSS ,CRSSNARK). It then passes these two programs to the adversary A who outputs
y. It parses y as (CT1,CT2, hΠ, ϕ). Using the trapdoor of the SNARK extractor it extracts the
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proof Π corresponding to the instance hΠ. The adversary ASS finally outputs (CT1,CT2,Π).
Note that if ϕ is an accepting proof with non-negligible probability then Π is also accepted by
the SS-NIZK verifier with non-negligible probability. This fact follows from the extractability
property of the SNARK proof system. Further, from our earlier observation (CT1,CT2) has
to be a false statement and hence, Π is a proof for a false statement that is accepted by the
SS-NIZK verifier with non-negligible probability, which contradicts the simulation soundness of
the SS-NIZK proof system. This completes the proof.

D.2 Proof of indistinguishability of hybrids Hybrid5 to Hybrid11

We now show that any two consecutive hybrids are computationally indistinguishable from each
other thus showing that the hybrids Hybrid5, which corresponds to the indistinguishability game
when x0, is encrypted and Hybrid11, which corresponds to the indistinguishability game when
x1 is encrypted are computationally indistinguishable from each other. This further proves the
security of the FE scheme. We present a sketch of the proofs of the claims since the proofs of the
claims that show the indistiguishability of the hybrids are more or less similar to the arguments
in Garg et al. [GGH+13b].

Claim 5. There does not exist any PPT adversary who can distinguish the hybrids Hybrid5 and
Hybrid6 and this follows from the zero knowledge property of our SS-NIZK proof system. 10

Proof sketch. If there exists a PPT adversary, denoted by A(5,6), who can distinguish the two
hybrids then we construct an adversary, denoted by ASS , that violates the zero knowledge
property of the SS-NIZK proof system. The adversary ASS first receives the common reference
string CRSSS from the challenger (who either uses the honest prover or the simulator). It then
executes the keys (public and the secret) of the PKE scheme itself. It then passes the CRSSS
along with the public keys to the adversary A(5,6), who then sends the messages x0 and x1 to
ASS who first encrypts a message under both the public keys. It then composes a statement y
which says that the encryptions are correctly computed whose witness is essentially the message
along with the randomness to generate the encryption. It sends y, along with the witness, to
the challenger who produces a proof for the statement. This proof is then sent to ASS who,
using the PKE ciphertexts along with the proof, composes a FE ciphertext which it sends it to
A(5,6).

If the challenger had used an honest prover to generate the proof then we are in Hybrid5

else if it used a simulator to generate the proof then we are in Hybrid6. Hence, if A(5,6) can
distinguish the two hybrids then ASS can distinguish the proof produced by the honest prover
from the proof produced by the simulator which would contradict the zero knowledge property
of (PSS , VSS).

Claim 6. If our PKE system is IND-CPA secure then there does not exist any PPT adversary
who can distinguish the hybrids Hybrid6 and Hybrid7 respectively.
Proof sketch. If there exists a PPT adversary A(6,7) who can distinguish the hybrids Hybrid6 and
Hybrid7 then we construct an adversary APKE who can violate the security of the PKE scheme.
Adversary executes the setup algorithm and sends the public parameters to the adversary A(6,7).
Just like the previous hybrid, even in this hybrid the adversary A(6,7) generates the fake CRS
for the SS-NIZK proof system. The adversary APKE then obtains the messages x0 and x1 from
A(6,7) which it then sends to the challenger. The challenger will encrypt either x0 or x1 and
then sends the encryption to APKE. Then, APKE executes the setup algorithm of the PKE

10The main difference between this proof and the proof in Garg et al. [GGH+13b] is that in their case, CRS had to
be produced by the simulator after the message was fixed whereas in our case, CRS can be generated by the simulator
even before the messages are fixed. This is precisely the reason why we are able to achieve full security whereas their
construction achieves only selective security.

35



scheme to obtain a new public key-secret key pair. It then encrypts x1 using the new public
key. It then generates CRSSS ,CRSSNARK corresponding to the common reference strings of the
SS-NIZK and the SNARK system respectively. It then generates the proofs as described in
the FE encryption algorithm. Finally, it sends the FE ciphertext to the adversary A(6,7). The
output of A determines the output of APKE.

If the challenger gave an encryption of x0 to APKE then we are in Hybrid6 and if the chal-
lenger gave an encryption of x1 then we are in Hybrid7. Hence, if A(6,7) can distinguish both
the hybrids then the adversary APKE can violate the security of the IND-CPA scheme.

Claim 7. If the differing-inputs assumption holds for the family P then for every i ∈ [0, q −
1], there does not exist any PPT adversary that can distinguish the hybrids Hybrid8,i and
Hybrid8,i+1.

Proof. Suppose there exists an adversary A(i,i+1)
8 that can distinguish the hybrids Hybrid8,i

and Hybrid8,i+1 then we construct an adversary AdiO who violates the differing-inputs property
of P as follows. The challenger enerates both the public keys of the PKE scheme as well as
the common reference strings CRSSS ,CRSSNARK of the SS-NIZK as well as the SNARK system
respectively all by itself. Like in the previous hybrid, the common reference string of the SS-
NIZK proof system, namely CRSSS is simulated here. It then passes the public parameters,
which include the public keys as well as the common reference strings, to AdiO who in turn
sends it to A8,i+1.

A(i,i+1)
8 then makes the key queries to AdiO which it forwards to the challenger. For j ≤ i,

the private key is generated as an obfuscation of the program P1 = P(f,SK1
PKE,CRSSS ,CRSSNARK).

And for j > i + 1, the jth private key is created as an obfuscation of the program P2 =
P(f,SK2

PKE,CRSSS ,CRSSNARK). For the i+ 1th private key query, the challenger either chooses to
obfuscate the program P1 or P2, denoted by Pobf , which it sends to the adversary AdiO which

forwards it to A(i,i+1)
8 . The output of A(i,i+1)

8 is essentially the output of AdiO.
Note that the distribution to generate the above programs which are submitted to the chal-

lenger for obfuscation is identical to the output distribution of the sampler algorithm of P. And
hence, invoking the differing-inputs obfuscation on the program family P we get the fact that
the obfuscations of both the programs are computationally indistinguishable from each other.

If the challenger in the differing-inputs security game chose P1 then we are in hybrid Hybrid8,i

and if it chose P2, then we are in Hybrid8,i+1. And so, if an adversary Ai,i+1
8 can distinguish

between the two hybrids with non-negligible probability then it will violate the fact that the
obfuscations of both the programs are computationally indistinguishable from each other.

Claim 8. If our PKE system is IND-CPA secure then no PPT adversary can distinguish with
non-negligible probability between Hybrid8,q and Hybrid9.
Proof. The proof of the above claim is similar to the proof of Claim 2. If there exists a PPT
adversary A(8,9) who can distinguish the hybrids Hybrid8,q and Hybrid9 then we construct an
adversary APKE who can violate the security of the PKE scheme. Adversary executes the setup
algorithm and sends the public parameters to the adversary A(8,9). Just like the previous hybrid,
even in this hybrid the adversary A(8,9) generates the fake CRS for the SS-NIZK proof system.
The adversary APKE then obtains the messages x0 and x1 from A(8,9) which it then sends to the
challenger. The challenger will encrypt either x0 or x1 and then sends the encryption to APKE.
Then, APKE executes the setup algorithm of the PKE scheme to obtain a new public key-secret
key pair. It then encrypts x0 using the new public key. As in the previous hybrids, we generate
the simulated SS-NIZK proof. Finally, it sends the FE ciphertext to the adversary A(8,9). The
output of A determines the output of APKE.

If the challenger gave an encryption of x0 then we are in Hybrid8,q and if the challenger gave

an encryption of x1 then we are in Hybrid9. Hence, if A(8,9) can distinguish both the hybrids
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then the adversary APKE can violate the security of the IND-CPA scheme.

Claim 9. If the differing-inputs assumption holds for the program family P then no PPT
adversary can distinguish between Hybrid10,i and Hybrid10,i+1 for i ∈ [0, q − 1].
Proof. The proof of the above claim is similar to the proof of Claim 5. Suppose there exists an

adversary A(i,i+1)
10 that can distinguish the hybrids Hybrid10,i and Hybrid10,i+1 then we construct

an adversary AdiO who violates the differing-inputs property of P as follows. The challenger
enerates both the public keys of the PKE scheme as well as the common reference strings
CRSSS ,CRSSNARK of the SS-NIZK as well as the SNARK system respectively all by itself. Like
in the previous hybrid, the common reference string of the SS-NIZK proof system, namely
CRSSS is simulated here. It then passes the public parameters, which include the public keys
as well as the common reference strings, to AdiO who in turn sends it to A10,i+1.

A(i,i+1)
10 then makes the key queries to AdiO which it forwards to the challenger. For j ≤ i,

the private key is generated as an obfuscation of the program P1 = P(f,SK1
PKE,CRSSS ,CRSSNARK).

And for j > i + 1, the jth private key is created as an obfuscation of the program P2 =
P(f,SK2

PKE,CRSSS ,CRSSNARK). For the i+ 1th private key query, the challenger either chooses to
obfuscate the program P1 or P2, denoted by Pobf , which it sends to the adversary AdiO which

forwards it to A(i,i+1)
10 . The output of A(i,i+1)

8 is essentially the output of AdiO.
Note that the distribution to generate the above programs which are submitted to the chal-

lenger for obfuscation is identical to the output distribution of the sampler algorithm of P. And
hence, invoking the differing-inputs obfuscation on the program family P we get the fact that
the obfuscations of both the programs are computationally indistinguishable from each other.

If the challenger in the differing-inputs security game chose P2 then we are in hybrid Hybrid10,i

and if it chose P1, then we are in Hybrid10,i+1. And so, if an adversary Ai,i+1
8 can distinguish

between the two hybrids with non-negligible probability then it will violate the fact that the
obfuscations of both the programs are computationally indistinguishable from each other.

Claim 10. If our SS-NIZK system is computational zero knowledge then no PPT distinguisher
with non-negligible probability can distinguish the hybrids Hybrid10,q and Hybrid11, for i ∈ [0, q].

Proof. If there exists a PPT adversary, denoted by A(10,11), who can distinguish the two hybrids
then we construct an adversary, denoted by ASS , that violates the zero knowledge property of
the SS-NIZK proof system. The adversary ASS first receives the common reference string CRSSS
from the challenger (who either uses the honest prover or the simulator). It then executes the
keys (public and the secret) of the PKE scheme itself. It then passes the CRSSS along with the
public keys to the adversary A(10,11), who then sends the messages x0 and x1 to ASS who first
encrypts a message under both the public keys. It then composes a statement y which says that
the encryptions are correctly computed whose witness is essentially the message along with the
randomness to generate the encryption. It sends y, along with the witness, to the challenger
who produces a proof for the statement. This proof is then sent to ASS who, using the PKE
ciphertexts along with the proof, composes a FE ciphertext which it sends it to A(10,11).

If the challenger had used an honest prover to generate the proof then we are in Hybrid11

else if it used a simulator to generate the proof then we are in Hybrid10,q. Hence, if A(10,11) can
distinguish the two hybrids then ASS can distinguish the proof produced by the honest prover
from the proof produced by the simulator which would contradict the zero knowledge property
of (PSS , VSS).

Theorem 5. Under the following assumptions we have the fact that the functional encryption
system constructed in Section 4 is fully secure according to the indistinguishability game described
in Section A.2.

• An IND-CPA secure public key encryption scheme exists.
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• A simulation-sound NIZK proof system exists.

• Succinct Non Interactive Arguments of Knowledge exists.

• Differing-inputs obfuscation for Turing machines exists.

• Collision resilient size-reducing hash functions.

Proof. The above claims show that every consecutive hybrids are computationally indistinguish-
able. This means that the hybrids Hybrid5 and Hybrid11 are computationally indistinguishable.
This proves the security of the indisitnguishability game because Hybrid5 corresponds to the
indisinguishability when the message x0 is encrypted and hybrid Hybrid11 corresponds to the
indistinguishability game when the message x1 is encrypted.
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