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Abstract. Since AES and PRESENT are two international standard
block ciphers representing the most elegant design strategies for byte-
oriented and bit-oriented designs respectively, we regard AES and PRES-
ENT the two most significant candidates to scrutinize with respect to
related-key differential attack. In EUROCRYPT 2010 and CRYPTO
2013, the security of AES with respect to related-key differential at-
tack has been completely analyzed by Alex Biryukov et al and Pierre-
Alain Fouque et al with automatic related-key differential characteristic
searching tools. In this paper, we propose two methods to describe the d-
ifferential behaviour of an S-box with linear inequalities based on logical
condition modelling and computational geometry. In one method, in-
equalities are generated according to some conditional differential prop-
erties of the S-box; in the other method, inequalities are extracted from
the H-representation of the convex hull of all possible differential patterns
of the S-box. For the second method, we develop a greedy algorithm for
selecting a given number of inequalities from the convex hull. Using these
inequalities combined with Mixed-Integer Linear Programming (MILP)
technique, we successfully prove that 24 rounds of PRESENT-80 is e-
nough to resist against standard related-key differential attack, which is
the tightest security boud obtained so far for PRESENT-80 with respect
to related-key differential attack. This proof is accomplished automati-
cally on a workstation with 8 CPU cores in a time within 14 hours. In
a similar way, we also prove that the probability of the best related-key
differential characteristic of full LBlock is upper bounded by 2−56, which
is the first result concerning the security of full LBlock with respect to
related-key differential attack. The methodology presented in this paper
is generic, automatic and applicable to lightweight constructions with
small block size, small S-boxes, and bit-oriented operations, including
but not limited to PRESENT, EPCBC, LBlock, etc, which opens a new
interesting direction of research for bit-oriented ciphers and for the ap-
plication of MILP technique in cryptography.

? All source code for generating valid cutting-off inequalities and MILP instances will
be made freely available online after publication of the paper.
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1 Introduction

Contrary to the single-key model, where methodologies for constructing block
ciphers provably resistant to differential attack are readily available, the under-
standing of the security of block ciphers with regard to related-key differential
attack is relatively limited. This situation can be seen from the fact that even
internationally standardized block ciphers such as AES and PRESENT enjoy
no security proof at all for related-key differential attack at the time of their
publication. This limited understanding of the security concerning related-key
differential attack has been greatly improved in recent years for AES-like byte- or
word-oriented SPN block ciphers. Along this line of research, two representative
papers [8, 17] were published in Eurocrypt 2010 and Crypto 2013. In the former
paper [8], an efficient search tool for finding differential characteristics both in
the state and in the key was presented, and the best differential characteristics
were obtained for some byte-oriented block ciphers such as AES, byte-Camellia,
and Khazad. In the latter paper [17], Pierre-Alain Fouque et al showed that
the full-round AES-128 can not be proven secure against related-key differential
attack unless the exact coefficients of the MDS matrix and the S-Box differen-
tial properties are taken into account. Moreover, a variant of Dijkstra’s shortest
path algorithm to efficiently find the most efficient related-key attacks on SPN
ciphers was developed in [17].

For bit-oriented block ciphers such as PRESENT-80, Sareh Emami proved
that no related-key differential characteristic exists with probability higher than
2−64 for PRESENT-80, and therefore PRESENT-80 is secure against basic
related-key differential attack [16]. In [30], Sun et al obtained tigher security
bounds for PRESENT-80 with respect to related-key differential attack using
MILP technique.

Due to the fact that the PRESENT block cipher is an international stan-
dard for light-weight cryptography and is a representative bit-oriented design,
we think it is important to scrutinize its security against related-key differential
attack. In this paper, we investigate this problem by Mixed-Integer Linear Pro-
gramming technique.

Mixed-Integer Linear Programming (MILP). The problem of Mixed In-
teger Linear Programming (MILP) is a class of optimization problems derived
from Linear Programming in which the aim is to optimize an objective function
under certain constraints. The field of MILP has received extensive study and
achieved great success in both academic and industrial worlds. A Mixed Integer
Linear Programming problem can be formally described as follows.

MILP: Find a vector x ∈ Zk × Rn−k ⊆ Rn with Ax ≤ b, such that the
linear function c1x1 + c2x2 + · · · + cnxn is minimized (or maximized), where
(c1, . . . , cn) ∈ Rn, A ∈ Rm×n, and b ∈ Rm.
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Despite its intimate relationship with discrete optimization problems, such as
the set covering problem, 0-1 knapsack problem, and travelling salesman prob-
lem, it is only in recent years that MILP has been explicitly applied in crypto-
graphic research.

In [33], Michael Walter et al modelled the problem of finding a set of variables
involved in a system of polynomial equations over F2, such that when assigned
to fixed values, the number of known variables in the system can be maximized
as an MILP problem. They have applied this idea in guess-and-determine alge-
braic attack on the EPCBC block cipher [38], and experimental results showed
that this strategy resulted in a faster key recovery attack compared to random
assignment. In [12], Julia Borghoff employed two methods, standard conversion
[4] and adapted standard conversion [22], to convert the problem of solving a
system of polynomial equations into an MILP problem. Martin Albrecht et al
[1] treated the problem of recovering cryptographic key material from decayed
DRAM as a Partial Weighted Max-Polynomial System Solving Problem which
can be solved with MILP techniques. Bulygin et al studied the invariant coset
attack on PRINTcipher by establishing a one-to-one correspondence between
defining sets of the invariant projected subsets of PRINTcipher and all feasible
solutions of a specific 0-1 integer programming problem [13]. Moreover, MILP
was employed in error-tolerant side channel algebraic attacks [25].

In this paper, we are mainly concerned with the application of MILP method
in evaluating the security of block ciphers against related-key differential crypt-
analysis. Roughly speaking, differential attack [6] is a cryptanalysis technique
used to discover non-random behaviour of a cipher by analyzing the input and
output difference of a cipher. A practical approach to evaluate the security of a
cipher against differential attack is to determine the lower bound of the num-
ber of active S-boxes throughout the cipher. This strategy has been employed
in many designs [2, 7, 11, 10, 15]. MILP was applied in automatically determin-
ing the lower bounds of the numbers of active S-boxes for some word-oriented
symmetric-key ciphers, and therefore used to prove their security against differ-
ential cryptanalysis [9, 23, 36] . Sun at el [30] extended this method by making
it applicable to ciphers involving bit-oriented operations.

Our Contributions. We find that a main imperfection of [30] is as follows which
prevents researchers from obtaining tighter security bounds for round-reduced
variants of PRESENT-80.

The constraints presented in [30] is too coarse (and some of these constraints
are redundant in some specific case) to accurately describe the differential prop-
erties of a specific cipher, since there are a large number of invalid differential
patterns of the cipher satisfying all these constraints, which yields a feasible
region of the MILP problem much larger than the set of all valid differential
characteristics.

In this paper, we propose two methods to tighten the feasible region by
cutting off some impossible differential patterns of a specific S-box with linear
inequalities: one method is based on logical condition modelling, and the other
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is a more general approach based on convex hull computation — a fundamental
algorithmic problem in computational geometry. In the first method, typically
less than 15 inequalities are generated according to some conditional differential
properties of the S-box; while in the second method, several hundreds of inequal-
ities are extracted from the H-representation of the convex hull of all possible
differential patterns of the S-box.

However, the second approach produces too many inequalities so that adding
all of them to an MILP problem will make the solving process impractical.
Therefore, we develop a greedy algorithm for selecting a given number of linear
inequalities from the convex hull.

By adding all or a part of the constraints generated by these methods, we
automatically prove that the probability of the best related-key differential char-
acteristic of 24-round PRESENT-80, a bit-oriented SPN block cipher, is upper
bounded by 2−64. Also, we apply the method to LBlock [37] — a bit-oriented
Feistel block cipher, and prove that the probability of the best related-key d-
ifferential characteristic for full-round LBlock is at most 2−56. This is the first
theoretic result concerning full LBlock’s security against differential attack in
the related-key model. Moreover, the methodology presented in this paper is
generic, automatic, and applicable to other lightweight ciphers with bit-oriented
operations such as EPCBC [38], LBlock [37], and MIBS [20].

Limitations of the Methodology. The methodology presented in this paper
has some limitations which we would like to make clear, and trying to overcome
these limitations is a topic deserving further investigation.

1. It’s very hard to solve the MILP models generated in this paper, since
in our models, we introduce a new variable for almost every input/output bit-
level difference, which makes the sizes of the MILP instances reasonably large
with respect to the number of variables and constraints. Also, there seems to
be no method to estimate the computational complexity before actual compu-
tation. This is why we only apply our method to the light-weight block ciphers
PRESENT-80 and LBlock whose block sizes and key sizes are 64-bit and 80-bit
respectively. For the same reason, the method presented in this paper can only
analyze a small number of rounds of a full cipher.

2. This methodoly is only suitable to evaluate the security of constructions
with S-boxes, XOR operations and bit permutations, and can not be applied to
block ciphers like SIMON and SPECK [3], which involve modulo addition ,and
bitwise AND and no S-boxes at all.

Organization of the paper. In Section 2, we introduce Mouha et al’s frame-
work and its extension for counting the number of active S-boxes of PRESENT-
like ciphers automatically with MILP technique. In Sections 3, 4 and 5 we intro-
duce the concept of valid cutting-off inequalities for tightening the feasible region
of an MILP problem, and explore how to generate and select valid cutting-off
inequalities. We add these inequalities to the overall constraints of the MILP
problems describing the differential behaviour of the block ciphers PRESENT-
80 and LBlock in Section 6, which enables us to obtain tighter security bounds
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for PRESENT-80 against related-key differential attack. Finally, in Section 7 we
conclude the paper and propose some research directions for bit-oriented ciphers
and the application of MILP technique in cryptography.

2 Mouha et al’s Framework and Its Extension

In this section, we present Mouha et al’s framework and its extension for counting
the number of differentially active S-boxes for word-oriented and bit-oriented
block ciphers respectively.

2.1 Mouha et al’s Framework for Word-oriented Block Ciphers

Assume a cipher is composed of the following three word-oriented operations,
where m is the word size:

- XOR, ⊕ : Fω
2 × Fω

2 → Fω
2

- Linear transformation L : Fm
2ω → Fm

2ω with branch number

BL = min
a 6=0
{WT(a||L(a)) : a ∈ Fm

2ω},

where WT(a||L(a)) is the number of non-zero entries of the 2m-dimensional
vector a||L(a) over the finite field F2ω

- S-box, S : Fω
2 → Fω

2

Mouha et al’s framework uses 0-1 variables, which are subjected to certain con-
straints imposed by the above operations, to denote the word level differences
propagating through the cipher (1 for nonzero difference and 0 for otherwise).

Detailed MILP model building process for determining a lower bound of the
number of active S-boxes is described as follows. Firstly, we should include the
constraints imposed by the operations of the cipher.

Constraints Imposed by XOR Operations:
Suppose a ⊕ b = c, where a, b, c ∈ Fω

2 are the input and output differences
of the XOR operation, the following constraints will make sure that when a, b,
and c are not all zero, then there are at least two of them are nonzero:

a+ b+ c ≥ 2d⊕
d⊕ ≥ a
d⊕ ≥ b
d⊕ ≥ c

(1)

where d⊕ is a dummy variable taking values from {0, 1}.

Constraints Imposed by Linear Transformation:
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Let xik and yjk , k ∈ {0, 1, . . . ,m−1}, be 0-1 variables denoting the word-level
input and output differences of the linear transformation L respectively. Since
for nonzero input differences, there are totally at least BL nonzero m-bit words
in the input and output differences, we include the following constraints:

m−1∑
k=0

(xik + yjk) ≥ BLdL
dL ≥ xik , k ∈ {0, . . . ,m− 1}
dL ≥ yjk , k ∈ {0, . . . ,m− 1}

(2)

where dL is a dummy variable taking values in {0, 1} and BL is the branch num-
ber of the linear transformation.

Then, we set up the objective function to be the sum of all variables
representing the input words of the S-boxes. Obviously, this objective function
corresponds to the number of active S-boxes, and can be minimized to determine
its lower bound.

Following this approach, the minimum numbers of active S-boxes were ob-
tained in [23] for the r-round (r ≤ 96) Enocoro-128V2 and full AES ciphers
under both single-key and related-key models. We refer the reader to [23] for
more information.

2.2 Extension of Mouha’s Framework for PRESENT-like Ciphers

For PRESENT-like ciphers, bit-level representations and additional constraints
are needed [30]. For every input and output bit-level difference, a new 0-1 variable
xi is introduced obeying the following rule of variable assignment

xi =

{
1, for nonzero difference at this bit,
0, otherwise.

For every S-box in the schematic diagram, including the encryption process
and the key schedule algorithm, we introduce a new 0-1 variable Aj such that

Ai =

{
1, if the input word of the Sbox is nonzero,
0, otherwise.

At this point, it is nature to choose the objective function f , which will be
minimized, as

∑
Aj for the goal of determining a lower bound of the number of

active S-boxes.
For PRESENT-like ciphers, we need to include two sets of constraints. The

first one is the set of constraints imposed by XOR operations, and the other is
due to the S-box operation. After changing the representations to bit-level, the
set of constraints imposed by XOR operations for PRESENT-like ciphers are
the same as that presented in (1). The S-box operation is more tricky.

Constraints Describing the S-box Operation:
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Suppose (xi0 , . . . , xiω−1
) and (yj0 , . . . , yjω−1

) are the input and output bit-
level differences of an S-box marked by At. Firstly, to ensure that At = 1 holds
if and only if xi0 , . . . , xiω−1 are not all zero, we require that:{

At − xik ≥ 0, k ∈ {0, . . . , ω − 1}
xi0 + xi1 + · · ·+ xiω−1

−At ≥ 0
(3)

Also, nonzero input difference must result in nonzero output difference and vice
versa: {

ωyj0 + ωyj1 + · · ·+ ωyjω−1
− (xi0 + xi1 + · · ·+ xiω−1

) ≥ 0
ωxi0 + ωxi1 + · · ·+ ωxiω−1 − (yj0 + yj1 + · · ·+ yjω−1) ≥ 0

(4)

Finally, the Hamming weight of the 2ω-bit word xi0 · · ·xiω−1yj0 · · · yjω−1 is lower
bounded by the branch number BS of the S-box for nonzero input difference
xi0 · · ·xiω−1

, where dS is a dummy variable:
ω−1∑
k=0

(xik + xjk) ≥ BSdS
dS ≥ xik , k ∈ {0, . . . , ω − 1}
dS ≥ yjk , k ∈ {0, . . . , ω − 1}

(5)

where the branch number of an S-box S, BS , is defined as

BS = min
a6=b
{wt((a⊕ b)||(S(a)⊕ S(b)) : a, b ∈ Fω

2 }

and wt(·) is the standard Hamming weight of a 2ω-bit word. We point out that
constraint (5) is redundant for an invertible S-box with branch number BS = 2,
since in this particular case, all differential patterns not satisfying (5) violate (4).

0-1 Variables:
The MILP model proposed above is indeed a Pure Integer Programming

Problem since all variables appearing are 0-1 variables. However, in practice we
only need to explicitly restrict variables representing the differences of plain-
texts, master keys and all dummy variables to be 0-1, while all other variables
can be allowed to be any real numbers, which leads to a Mixed-integer Linear
Programming problem. Following this approach, the MILP solving process may
be accelerated as suggested in [12].

3 Tighten the Feasible Region with Valid Cutting-off
Inequalities

The feasible region of an MILP problem is defined as the set of all variable as-
signments satisfying all constraints in the MILP problem. The modelling process
presented in the previous sections indicates that every differential path corre-
sponds to a solution in the feasible region of the MILP problem. However, a
feasible solution of the MILP model is not guaranteed to be a valid differential
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path, since our constraints are far from perfect to rule out all invalid differential
patterns. For instance, assume xi and yi (0 ≤ i ≤ 3) are the bit-level input
and output differences of the PRESENT-80 S-box (see Table 1). According to
Section 2.2, xi, yi are subjected to the constraints of (3), (4) and (5). Obvious-
ly, (x0 · · · , x3, y0, · · · , y3) = (1, 0, 0, 1, 1, 1, 0, 1) satisfies the above constraints,
whereas 0x9 = 1001 → 0xB = 1101 (the left most bit is the least significant
bit in our representation) is not a valid difference propagation pattern for the
PRESENT S-box, which can be seen from the differential distribution table p-
resented in Table 2. Hence, we are actually trying to minimize the number of
active S-boxes over a larger region as illustrated in Fig. 1, and the optimum
value obtained in this setting must be smaller than or equal to the actual min-
imum number of active S-boxes. Although the above fact will not invalidate
the lower bound we obtained from our MILP model, this prevents the designers
from obtaining tighter security bounds and therefore making better security and
efficiency trade-offs.

Fig. 1: The relationship between the set of all differential paths and the feasible
region of the MILP problem, and the effect of cutting-off inequality

The situation would be even worse when modelling an invertible S-box with
branch number BS = 2, which is the minimal value of the branch number for an
invertible S-box. In the case of invertible S-box with BS = 2, the constraints of
(3), (4) are enough, and (5) is redundant. In this situation, all differential pat-
terns with nonzero input and output differences satisfy the constraints presented
in the previous sections, which is obviously too coarse to describe a specific S-
box. For instance, all 10 S-boxes of LBlock [37] are invertible and their branch
numbers are all 2.
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Therefore, we are motivated to look for linear inequalities which can cut off
some part of the feasible region of the MILP model while leaving the region
of valid differential paths intact as illustrated in Fig. 1. For the convenience of
discussion, we give the following definition.

Definition 1. A linear inequality satisfied by all possible valid differential pat-
terns is called a valid cutting-off inequality if it is violated by at least one feasible
solution corresponding to an impossible differential pattern in the feasible region
of the original MILP problem.

4 Methods for Generating Valid Cutting-off Inequalities

In this section, we present two methods for generating valid cutting-off inequal-
ities by analyzing the differential behaviour of the underlying S-box.

Table 1: The S-box of PRESENT-80
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2: The Differential Distribution Table of the PRESENT S-box
0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1x 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2x 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3x 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4x 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5x 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6x 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7x 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8x 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9x 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

Ax 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

Bx 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

Cx 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

Dx 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

Ex 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

Fx 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4
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4.1 Modelling Conditional Differential Behaviour with Linear
Inequalities

In building integer programming models in practice, sometimes it is possible to
model certain logical constraints as linear inequalities. For example, assume x is
a continuous variable such that 0 ≤ x ≤M , and we know that δ is a 0-1 variable
taking value 1 when x > 0, that is

x > 0 ⇒ δ = 1.

It is easy to verify that the above logical condition can be achieved by imposing
the following constraint

x−Mδ ≤ 0.

In fact, there is a surprisingly large number of different types of logical con-
ditions can be imposed in a similar way, and we refer the reader to [34, 35] for
many other examples.

In this subsection, we take the advantage of this technique to describe the
conditional differential behaviour of the PRESENT S-box, which is referred to
as undisturbed bits in [31].

Theorem 1. The S-box of PRESENT-80 has the following properties:
(i) If the input difference of the S-box is 0x9 = 1001, then the least significant

bit of the output difference must be 0;
(ii) If the input difference of the S-box is 0x1 = 1000 or 0x8 = 0001, then

the least significant bit of the output difference must be 1;
(iii) If the output difference of the S-box is 0x1 = 1000 or 0x4 = 0010, then

the least significant bit of the input difference must be 1; and
(iv) If the output difference of the S-box is 0x5 = 1010, then the least signif-

icant bit of the input difference must be 0.

Note that similar conditional differential behaviours of other ciphers were
also used by other cryptanalysts in different context [18, 21, 13].

Theorem 2. Let 0-1 variables xi and yi (0 ≤ i ≤ 3) represent the input and
output bit-level differences of the S-box respectively. Then the logical conditions
in Theorem 1 can be described by the following linear inequalities:

x0 + x3 − x1 − x2 + y0 ≤ 2 (6){
x0 − x1 − x2 − x3 − y0 ≤ 0
x3 − x0 − x1 − x2 − y0 ≤ 0

(7)

{
y0 − y1 − y2 − y3 − x0 ≤ 0
y2 − y0 − y1 − y3 − x0 ≤ 0

(8)

y0 + y2 − y1 − y3 + x0 ≤ 2 (9)
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For example, the linear inequality (6) removes all differential patterns of the
form (x0, x1, x2, x3, y0, y1, y2, y3) = (1, 0, 0, 1, 1, ∗, ∗, ∗), where (x0, . . . , x3) and
(y0, . . . , y3) are the input and output differences of the PRESENT S-box respec-
tively. We call this group of constraints presented in (6), (7), (8), and (9) the
constraints of conditional differential propagation (CDP constraints for short).
The CDP constraints obtained from Theorem 1 and the differential patterns
removed by these CDP constraints are given in Table 3.

Table 3: Impossible differential patterns removed by the CDP constraints gen-
erated according to the differential properties of the PRESENT S-box. Here,
a 9-dimensional vector (λ0, . . . , λ3, γ0, . . . , γ3, θ) in the left column denotes a
linear inequality λ0x0 + · · · + λ3x3 + γ0y0 + · · · + γ3y3 + θ ≥ 0, and an 8-
dimensional vector in the right column denotes a difference propagation pattern,
e.g., (1, 0, 0, 1, 1, 1, 1, 0) denotes 0x9 = 1001→ 0x7 = 1110.

Constraints obtained by
logical condition modelling

Impossible differential patterns removed

(−1, 1, 1,−1,−1, 0, 0, 0, 2) (1, 0, 0, 1, 1, 1, 1, 0) (1, 0, 0, 1, 1, 0, 0, 1) (1, 0, 0, 1, 1, 0, 0, 0) (1, 0, 0,

1, 1, 1, 0, 0) (1, 0, 0, 1, 1, 1, 0, 1) (1, 0, 0, 1, 1, 0, 1, 0) (1, 0, 0, 1, 1, 0, 1,

1) (1, 0, 0, 1, 1, 1, 1, 1)

(−1, 1, 1, 1, 1, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1, 1, 1) (1, 0, 0, 0, 0, 1, 1, 0) (1, 0, 0, 0, 0, 0, 0, 1) (1, 0, 0, 0,

0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1) (1, 0, 0, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1, 1)

(1, 1, 1,−1, 1, 0, 0, 0, 0) (0, 0, 0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) (0, 0, 0, 1,

0, 1, 0, 0) (0, 0, 0, 1, 0, 1, 0, 1) (0, 0, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 1, 1)

(−1, 0, 0, 0,−1, 1,−1, 1, 2) (1, 1, 1, 0, 1, 0, 1, 0) (1, 0, 1, 1, 1, 0, 1, 0) (1, 1, 0, 1, 1, 0, 1, 0) (1, 1, 1, 1,

1, 0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 0) (1, 0, 0, 0, 1, 0, 1, 0) (1, 1, 0, 0, 1, 0, 1, 0)

(1, 0, 0, 0,−1, 1, 1, 1, 0) (0, 0, 0, 1, 1, 0, 0, 0) (0, 1, 0, 0, 1, 0, 0, 0) (0, 1, 0, 1, 1, 0, 0, 0) (0, 0, 1, 0,

1, 0, 0, 0) (0, 0, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 0, 1, 0, 0, 0)

(1, 0, 0, 0, 1, 1,−1, 1, 0) (0, 0, 1, 1, 0, 0, 1, 0) (0, 1, 0, 0, 0, 0, 1, 0) (0, 1, 1, 0, 0, 0, 1, 0) (0, 0, 1,

0, 0, 0, 1, 0) (0, 1, 1, 1, 0, 0, 1, 0) (0, 1, 0, 1, 0, 0, 1, 0)

However, there are cases where no such conditional differential property ex-
ists. For example, two out of the eight S-boxes of Serpent [5] exhibit no such
property. Even when the S-box under consideration can be described with this
logical condition modelling technique, the inequalities generated may be not e-
nough to produce a satisfied result. The number of valid cutting-off inequalities
can be obtained in this way is given in Table 4 for typical 4× 4 S-boxes.

In the next subsection, a more general approach for generating valid cutting-
off inequalities is proposed.

4.2 Convex Hull of All Possible Differentials for an S-box

The convex hull of a set Q of discrete points in Rn is the smallest convex set
that contains Q. A convex hull in Rn can be described as the common solutions
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Table 4: Number of valid cutting-off inequalities obtained using different meth-
ods. Notations: the “# CDP” columns record the number of constraints obtained
using logical condition modelling approach, and the “#CH” columns record the
number of constraints in the H-representation of the convex hull.

S-box #CDP #CH S-box #CDP #CH

Klein 0 312 LBlock S6 12 205

Piccolo 12 202 LBlock S7 12 205

TWINE 0 324 LBlock S8 12 205

PRINCE 0 300 LBlock S9 12 205

MIBS 0 378 Serpent S0 6 327

PRESENT/LED 6 327 Serpent S1 6 327

LBlock S0 12 205 Serpent S2 6 325

LBlock S1 12 205 Serpent S3 0 368

LBlock S2 12 205 Serpent S4 3 321

LBlock S3 12 205 Serpent S5 3 321

LBlock S4 12 205 Serpent S6 3 327

LBlock S5 12 205 Serpent S7 6 368

of a set of finitely many linear equations and inequalities as follows:


λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n ≥ 0

· · ·
γ0,0x0 + · · ·+ γ0,n−1xn−1 + γ0,n = 0

· · ·

(10)

This is called the H-Representation of a convex hull. Computing the H-
representation of the convex hull of a set of finitely many points is a funda-
mental algorithm in computation geometry with many applications [19, 28, 26].
Here, we treat a possible differential of the PRESENT S-box as a point in R8.
For example, the difference propagation pattern 0x9 = 1001 → 0x7 = 1110 is
identified with (1, 0, 0, 1, 1, 1, 1, 0).

We now define the convex hull of a specific ω × ω S-box to be the set of
all linear inequalities in the H-Representation of the convex hull VS ⊆ R2ω of
all possible differential patterns of the S-box. For instance, the Convex Hull of
PRESENT S-box can be found in Appendix B. This result is obtained by using
the inequality generator() function in the sage.geometry.polyhedron class of the
SAGE computer algebra system [29]. The convex hull of the PRESENT S-box
contains 327 linear inequalities. Any one of these inequalities can be taken as
a valid cutting-off inequality. The numbers of linear inequalities in the convex
hulls of typical 4× 4 S-boxes are given in Table 4.
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5 Selecting Valid Cutting-off Inequalities from the
Convex Hull: A Greedy Approach

It is well known that the number of equations and inequalities in the H-Represent-
ation of a convex hull computed from a set of discrete points in n dimensional
space is exponential in n. For instance, the convex hull VS ⊆ R8 of a 4×4 S-box
typically involves several hundreds of linear inequalities. Adding all of them to
an MILP problem for counting the number of active S-boxes will quickly make
the MILP problem insolvable in practical time. Hence, it is necessary to selec-
t a small number, say n, of “best” inequalities from the convex hull. Here by
“best” we mean that, among all possible selections of n inequalities, the selected
ones maximize the number of removed impossible differentials. Obviously, this
is a hard combinatorial optimization problem. Therefore, we design a greedy
algorithm, listed in Algorithm 1, to approximate the optimum selection.

Algorithm 1: Selecting n inequalities from the convex hull H of an S-box

Input:
H: the set of all inequalities in the H-representation of the convex hull of
an S-box;
X : the set of all possible differential patterns of an S-box;
n: a positive integer.
Output: O: a set of n inequalities selected from H

1 l∗ := None;
2 X ∗ := X ;
3 H∗ := H;
4 O := ∅;
5 for i ∈ {0, . . . , n− 1} do
6 l∗ := The inequality in H∗ which maximizes the number of removed

impossible differential patterns from X ∗ ;
7 X ∗ := X ∗ − {removed impossible differential patterns by l∗};
8 H∗ := H∗ − {l∗};
9 O := O ∪ {l∗};

10 end
11 return O

The algorithm builds up a set of valid cutting-off inequalities by selecting at
each step an inequality from the convex hull which maximizes the number of
removed impossible differential patterns from the current feasible region.

We select 6 valid cutting-off inequalities from the convex hull of the PRESENT
S-box using Algorithm 1. These inequalities and the impossible differential pat-
terns removed are listed in Table 5. Compared with the 6 valid cutting-off in-
equalities obtained in Theorem 1 (see Table 3), they cut off 66− 42 = 24 more
impossible differential patterns, which leads to a relatively tighter feasible region.
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Table 5: Impossible differential patterns removed by the constraints selected from
the convex hull of the PRESENT S-box

Constraints selected from the
convex hull by the greedy algo-
rithm

Impossible differential patterns re-
moved

(−2, 1, 1, 3, 1,−1, 1, 2, 0) (1, 0, 1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 0, 0, 0) (1,

0, 1, 0, 0, 1, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0) (1, 1, 0, 0, 0, 1, 0, 0) (1, 1,

0, 0, 0, 1, 1, 0) (1, 0, 0, 0, 0, 1, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0) (1, 0, 0,

0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1) (1, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 0,

1, 1, 0, 0) (1, 1, 1, 0, 0, 1, 0, 0)

(1,−2,−3,−2, 1,−4, 3,−3, 10) (0, 1, 1, 0, 1, 1, 0, 1) (1, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 1, 1) (1,

0, 1, 1, 0, 1, 0, 1) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 0, 0) (0, 1,

1, 1, 0, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0, 1) (0, 0, 1, 1, 0, 1, 0, 1) (0, 1, 1,

1, 1, 1, 0, 1) (1, 1, 1, 1, 0, 1, 0, 1) (0, 1, 0, 1, 0, 1, 0, 1) (0, 0, 1, 1,

1, 1, 0, 1)

(2,−2, 3,−4,−1,−4,−4, 1, 11) (0, 1, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 1, 1, 0) (0,

1, 0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 1, 1, 1, 1) (0, 1, 0, 1, 1, 1, 1, 1) (0, 1,

0, 1, 1, 1, 1, 0) (0, 0, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 0) (0, 1, 1,

1, 1, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 1)

(−1,−2,−2,−1,−1, 2,−1, 0, 6) (1, 1, 1, 0, 1, 0, 1, 1) (1, 1, 1, 0, 1, 0, 1, 0) (1, 1, 1, 1, 1, 0, 0, 1) (1,

1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 0) (0, 1,

1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 0, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1,

1, 0, 0, 1, 0)

(-2, 1, -2, -1, 1, -1, -2, 0, 6) (1, 1, 1, 1, 0, 1, 1, 0) (1, 1, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 0) (1,

0, 1, 0, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 1) (1, 0, 1, 1, 1, 1, 1, 0) (1, 0,

1, 1, 1, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 0)

(2, 1, 1,−3, 1, 2, 1, 2, 0) (0, 0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) (0,

1, 0, 1, 1, 0, 0, 0) (0, 0, 0, 1, 0, 1, 0, 0) (0, 0, 0, 1, 0, 0, 1, 0) (0, 0,

1, 1, 1, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 1, 0, 1, 0)
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6 Application to PRESENT-80 and LBlock

In this section, we apply our method to two block ciphers with different struc-
tures. One is the bit-oriented SPN block cipher PRESENT-80, and the other is
the bit-oriented Feistel block cipher LBlock.

6.1 The 24-round Reduced PRESENT-80 is Secure Against
Related-key Differential Attack

We have applied the method presented in previous sections to the block cipher
PRESENT-80 to determine its security bound with respect to related-key differ-
ential attack. A Python module [32] is developed to generate the MILP instances
in “lp” format [14]. In each of these MILP models, we include one more con-
straint to ensure that the difference of the initial key register is nonzero, since
the case where the difference of the initial key register is zero can by analyzed in
a single-key model. Then we employ the Gurobi 5.5 optimizer [24] to solve the
MILP instances.

By default the computations are performed on a PC using 4 threads with
Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Windows XP), and a
star “*” is appended on a timing data to mark that the corresponding com-
putation is taken on a workstation equipped with two Intel(R) Xeon(R) E5620
CPU(2.4GHz, 8GB RAM, totally 8 cores). Despite there are only 2 CPUs and
totally 8 physical cores on the workstation, we fire up 16 threads in Gurobi5.5
to solve the corresponding MILP instances to exploit Intel’s Hyper-Threading
Technology, where for each physical core, the operating system simulates two
virtual or logical cores, and shares the workload between them.

We have computed the number of active S-boxes for PRESENT-80 in the
related-key model up to 14 rounds, and the results are summarized in Table 6
and Table 7, where the “#Constraints” columns record the number of constraints
imposed and the “#Variables” columns show the number of 0-1 variables and
continuous variables in the underlying MILP instance. For example, according to
the first row of Table 6, there are 97 0-1 variables and 277 continuous variables
in the MILP instance corresponding to 1-round PRESENT-80, and the Gurobi
optimizer find the minimum number of active S-boxes is 0 in no more than 1
second.

Note that there are (17× 6)r more constraints of the rth row(corresponding
to r rounds) of Table 6 than that of Table 7. This is due to the fact that for
every S-box there are 6 more constraints (see Theorem 1) in the MILP instance
with CDP constraints included, and for every round there are 17 S-boxes: 16 in
the encryption process (Appendix A, Fig. 2) and 1 in the key schedule algorithm
(Appendix A, Fig. 3).

These results clearly demonstrate that the MILP models with CDP con-
straints lead to tighter security bounds. In particular, we have proved that there
are at least 16 active S-boxes in the best related-key differential characteris-
tic for any consecutive 12-rounds of PRESENT-80. Therefore, the probability
of the best related-key differential characteristic of 24-round PRESENT-80 is
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Table 6: MILP models with CDP constraints added
Rounds #Variables #Constraints #Active S-boxes Time (in seconds)

1 97 + 277 632 0 1

2 130 + 474 1262 0 1

3 163 + 671 1892 1 1

4 196 + 868 2522 2 1

5 229 + 1065 3152 3 5

6 262 + 1262 3782 5 16

7 295 + 1459 4412 7 107

8 328 + 1656 5042 9 254

9 361 + 1853 5672 10 522

10 394 + 2050 6302 13 4158

11 427 + 2247 6932 15 18124

12 460 + 2444 7562 16 50017

13 493 + 2641 8192 18 137160*

14 526 + 2838 8822 20 1316808*

15 559 + 3035 9452 − > 20days

Table 7: MILP models without CDP constraints
Rounds #Variables #Constraints #Active S-boxes Time (in seconds)

1 97 + 277 530 0 1

2 130 + 474 1058 0 1

3 163 + 671 1586 1 1

4 196 + 868 2114 2 1

5 229 + 1065 2642 3 3

6 262 + 1262 3170 4 10

7 295 + 1459 3698 6 26

8 328 + 1656 4226 8 111

9 361 + 1853 4754 9 171

10 394 + 2050 5282 12 1540

11 427 + 2247 5810 13 8136

12 460 + 2444 6338 15 18102

13 493 + 2641 6866 17 49537*

14 526 + 2838 7394 18 685372*

15 559 + 3035 7922 − > 20days
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(2−2)16× (2−2)16 = 2−64, leading to the result that the 24-round PRESENT-80
is resistant to basic related-key differential attack.

For round reduced variants of PRESENT-80 with round r ≥ 15, we are
unable to accomplish the computation within 20 days.

It is possible to get tighter security bounds by adding more constraints: exper-
imental result shows that, by adding 6 more valid cutting-off inequalities listed
in Table 5 to the MILP problems for each S-box appearing in the schematic rep-
resentation of PRESENT-80, we are able to prove that the guaranteed number of
active S-boxes in related-key model for 7-round PRESENT-80 is at least 8, which
is the tightest bound obtained so far (see Table 6 and Table 7 for comparison).

6.2 Results on LBlock

Up to now, there is no concrete result concerning the security of full-round
LBlock [37] against differential attack in the related-key model due to a lack of
proper tools for bit-oriented designs.

Since the encryption process of LBlock is nibble-oriented, the security of
LBlock against single-key differential attack can be evaluated by those word-
oriented techniques. However, the “≪ 29” operations in the key schedule al-
gorithm of LBlock destroy its overall nibble-oriented structure, and make those
word-oriented approaches infeasible in evaluating the security of LBlock against
related-key differential attack.

In this subsection, we apply the method proposed in this paper to LBlock,
some results concerning its security against related-key differential attack are
obtained. The valid cutting-off inequalities used to obtain these results are listed
in Appendix C. Note that the type of constraints given in (5) are removed in our
MILP models for LBlock according to the explanations presented in previous
sections.

From Table 8, we can deduce that the probability of the best differential
characteristic for full LBlock (totally 32 = 11+11+10 rounds) is upper bounded
by (2−2)10×(2−2)10×(2−2)8 = 2−56, where 2−2 is the best differential probability
for a single S-box of LBlock. To the best of our knowledge, this is the first result
concerning the security of the full-round LBlock against related-key differential
attack.

7 Conclusion and Directions for Future Work

In this paper, we bring new constraints into Mohua et al’s framework to describe
the differential properties of a specific S-box, and therefore obtain a more accu-
rate mixed integer programming model for the differential behaviour of a block
cipher. Following this methodology, we prove that the 24-round PRESENT-80
is secure against basic related-key differential attack. Moreover, our method is
automatic, generic, and applicable to bit-oriented ciphers such as PRESENT,
LBlock, and EPCBC.
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Table 8: Results for related-key differential analysis on LBlock
Rounds #Variables #Constraints #Active S-boxes Time (in seconds)

1 218+104 660 0 1

2 292+208 1319 0 1

3 366+312 1978 0 1

4 440+416 2637 0 1

5 514+520 3296 1 2

6 588+624 3955 2 12

7 662+728 4614 3 38

8 736+832 5273 5 128

9 810+936 5932 6 386

10 884+1040 6591 8 19932

11 958+1144 7250 10 43793

At this point, several open problems emerged. Firstly, we have observed that
the MILP instances derived from such cryptographic problems are very hard to
solve compared with general MILP problems with the same scale with respect
to the numbers of variables and constraints. Hence, it is interesting to develop
specific methods to accelerate the solving process of such problems and therefore
increase the number of rounds of the cipher under consideration can be dealt
with. Secondly, the method presented in this paper is very general, is it possible
to develop a compiler which can convert a standard description, say a description
using hardware description language [27], of a cipher into an MILP instance
to automate the entire security evaluation cycle with respect to (related-key)
differential attack?
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A The PRESENT-80 Lightweight Block Cipher

PRESENT-80 is a 31-round SPN block cipher with 64-bit block size and 80-bit
secret key. The substitution and diffusion layers of PRESENT-80 are constructed
with 4× 4 S-boxes and bit-wise permutation to make its hardware implementa-
tion suitable for extremely constrained devices.

The schematic description of PRESENT-80’s encryption process and key
schedule algorithm are given in Fig.2 and Fig.3. These two schematic descriptions
are enough to understand the contents of the following sections, and for more
information on PRESENT, we refer the reader to [10].

Fig. 2: Two consecutive rounds of PRESENT-80 encryption process

Fig. 3: The key schedule algorithm of PRESENT-80: for each round the most
significant 64 bits of the 80-bit key register K are extracted as the subkey ki
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B The Convex Hull of the PRESENT S-box

( 0, 2, -2, 1, -1, -1, -2, -2, 6)( 0, -2, 2, 1, -2, -1, -1, -2, 6)( 0, 1, -1, 1, 0, -1, -1, -1, 3)(-1, 0, 1, -1, -1, -1, 0, -1, 4)

( 1, 0, 1, 1, 1, 1, -1, 0, 0)( 0, 1, 1, 1, -1, 0, 0, 1, 0)(-1, -1, 0, 1, -1, 0, -1, -1, 4)( 1, 0, -1, 2, 1, 2, 2, -1, 0)

( 1, -1, -1, 0, 0, -1, 1, -1, 3)(-1, 0, -1, -1, 1, 0, -1, 0, 3)( 0, 1, 1, 0, -1, 1, -1, 1, 1)( 1, 1, 1, 0, 0, 0, -1, 1, 0)

( 2, 1, 2, 2, 0, 1, -1, -1, 0)(-1, 0, 0, 1, 1, 1, 1, 0, 0)(-1, 0, 0, 1, 1, 0, 1, 1, 0)( 0, 1, 1, -1, -1, 1, -1, 0, 2)

( 0, 0, -1, 0, 0, 0, 0, 0, 1)( 1, 2, 0, -1, -2, -2, -2, -1, 6)( 0, 1, -1, -1, -1, -1, 0, 1, 3)( 0, 0, -1, 0, 1, 1, 1, 1, 0)

( 0, 1, 1, -2, -2, -1, -2, -2, 7)( 2, 2, -1, 2, -1, 3, 2, -1, 0)( 1, 0, 1, -1, 0, 1, 1, 1, 0)( 0, 1, -1, 2, 1, 2, 2, -1, 0)

(-2, 1, 1, 3, 1, -1, 1, 2, 0)( 1, -1, -1, 1, 1, 0, 0, -1, 2)( 0, 1, 1, -1, 1, 1, 1, 0, 0)(-2, 1, 1, 2, 1, 0, 1, 1, 0)

( 0, -1, -1, -1, -1, 1, 0, -1, 4)(-1, 1, -2, -1, -2, -2, 1, 2, 6)( 2, -2, 3, -4, -1, -4, -4, 1, 11)( 1, -1, 1, 2, 2, 2, 0, -1, 0)

( 0, -1, 1, -1, 0, -1, -1, 1, 3)( 0, 1, -1, 1, 0, 1, 1, -1, 1)( 1, -1, 2, -1, 0, 2, 2, 2, 0)(-1, 0, -1, 1, -1, 0, -1, -1, 4)

( 0, -1, -1, 0, -1, 1, -1, 1, 3)( 2, 1, 1, 0, -2, -1, -2, -1, 4)( 1, 0, -1, 1, 0, 1, 1, -1, 1)( 1, 2, 2, 1, 0, 0, -2, 1, 0)

( 0, 0, 0, 0, 0, -1, 0, 0, 1)( 1, 1, 1, 1, 1, 1, 1, -2, 0)( 1, 0, 1, -1, 1, 1, 0, 1, 0)( 0, -1, 1, -1, -1, -1, -1, 0, 4)

( 2, 1, 1, -2, 1, 1, 0, 2, 0)(-2, 1, -1, -1, 1, -1, -1, -1, 5)( 1, -1, 0, 2, 2, 2, 1, -1, 0)( 3, 2, 2, -1, -4, -2, -4, -1, 8)

( 0, 0, 0, 1, 1, -1, 1, 1, 0)( 0, -1, -1, -1, 1, 0, -1, -1, 4)( 2, 2, 1, 2, -1, 1, 0, -1, 0)( 1, -1, -1, 0, 1, -1, 0, -1, 3)

( 1, -1, -1, 0, -1, 0, 1, -1, 3)(-2, 0, 0, 1, 2, 1, 2, 1, 0)( 1, -1, 1, 2, -2, -2, 1, -2, 5)( 1, -1, 0, 0, 1, 1, -1, -1, 2)

( 3, 2, 3, 3, -1, -1, 0, -1, 0)( 1, 1, -1, 1, -1, 2, 1, -1, 1)( 1, -1, -1, 1, 2, 0, 2, 1, 0)( 1, -1, -1, 1, 0, 0, 1, -1, 2)

( 1, 1, 1, 1, 1, 1, -2, 1, 0)( 2, 1, 2, -1, 1, 0, -1, 2, 0)( 0, -1, -1, -1, -1, 0, 1, -1, 4)(-2, 1, -2, -1, 1, -1, -2, 0, 6)

( 0, -1, 2, -1, -2, -2, -2, -1, 7)(-1, 0, -1, -1, 1, -1, 0, -1, 4)( 3, -3, -2, 1, -1, -1, 3, -3, 7)( 1, 1, -1, 1, 0, 1, 1, 0, 0)

( 1, 1, -1, -1, -1, -1, 0, 0, 3)( 1, -2, -2, 0, 1, -2, 1, -1, 5)(-1, -1, -1, -1, 3, 4, 3, 4, 0)( 2, 2, 2, 0, -1, 0, -1, 1, 0)

( 2, 0, 2, -1, 2, 1, -1, 2, 0)( 1, -1, -2, -1, -2, 0, 2, -2, 6)( 1, -1, 0, -1, 1, 0, -1, -1, 3)( 1, 0, -1, -1, 0, -1, 1, -1, 3)

( 1, 1, 1, 1, 0, 0, -1, 0, 0)( 1, 0, 1, 1, 1, 1, 0, -1, 0)( 0, 0, 0, -1, 0, 0, 0, 0, 1)( 1, -2, -2, -1, 2, -3, 1, -2, 7)

( 1, 0, 1, 0, -1, 1, 1, 1, 0)(-1, 1, 1, -2, -1, -1, -1, -2, 6)( 1, 2, -1, -2, -2, -1, 1, 1, 4)( 2, 2, -1, 1, -1, 2, 2, 0, 0)

( 1, 1, 0, 1, -1, 1, 0, -1, 1)( 0, 0, 0, -1, 1, 1, 1, 1, 0)( 1, 1, -1, 0, 0, 1, 1, 1, 0)( 1, -1, 2, -2, 1, -1, -2, 1, 4)

( 1, 1, -1, 0, -1, 1, 1, 0, 1)(-3, 2, -2, -1, 1, -2, -2, -1, 8)( 0, 0, 1, -1, -1, -1, -1, -1, 4)( 0, 0, 0, 1, 0, 0, 0, 0, 0)

(-1, 0, -1, -1, 3, 3, 2, 3, 0)( 0, 1, -1, -1, -1, -1, -1, 0, 4)(-1, 0, -1, -1, -1, -1, 1, 1, 4)(-1, 1, -1, 0, -1, -1, 1, 1, 3)

( 1, -1, 1, 0, 0, 1, 1, 1, 0)( 1, -1, 1, 0, 1, 1, -1, 0, 1)(-4, 1, 1, 2, 3, 2, 3, 1, 0)( 2, 1, 1, -3, 1, 2, 1, 2, 0)

( 0, 0, -1, 1, 1, 1, 1, 0, 0)(-1, 0, -1, -1, 1, 1, 0, 1, 2)( 0, 0, -1, 1, 1, 0, 1, 1, 0)( 0, 1, -1, 1, -1, 0, -1, -1, 3)

( 1, -1, 0, -1, 1, -1, 0, -1, 3)(-1, 1, 0, -1, 0, -1, -1, -1, 4)( 0, -1, 0, 0, 0, 0, 0, 0, 1)( 0, -1, -1, -1, -1, 1, -1, 0, 4)

( 1, 1, -1, 2, 1, -2, -2, -2, 5)( 1, 1, -1, -1, -1, 0, 1, 0, 2)(-1, 1, 0, -1, 1, -1, 0, -1, 3)( 0, -1, 0, 0, 1, 1, 1, 1, 0)

( 0, 1, 1, -1, -1, 0, -1, -1, 3)( 0, 1, -1, 0, -1, -1, -1, -1, 4)( 2, -3, -1, -1, 2, 1, -3, -3, 8)( 0, 0, 0, 0, 0, 0, 0, -1, 1)

( 1, 2, -1, -2, -2, -2, -1, 0, 6)(-1, 1, 1, 2, 0, -1, 1, 2, 0)( 1, 1, -2, 1, 1, 1, 1, 1, 0)( 1, -1, 1, 1, 1, 1, 0, 0, 0)

( 0, -1, -1, -1, 1, -2, 1, -2, 5)( 1, 3, -2, -2, 3, 4, 1, 4, 0)(-1, -1, -1, -1, 0, 1, 0, 1, 3)(-2, 0, 2, -2, -1, -1, 1, -2, 6)

( 1, -2, 1, 0, 1, 2, 1, 2, 0)( 1, -1, -2, -2, 1, -3, 2, -2, 7)( 0, -2, -2, 3, 4, 1, 4, 1, 0)( 0, 0, 0, -1, 1, -1, 1, -1, 2)

(-1, 1, 1, 1, 0, 0, 0, 1, 0)(-1, 0, 1, 1, 0, -1, 1, 1, 1)( 0, 2, 2, 1, -1, 1, -1, 2, 0)( 1, 2, -1, -2, -2, -2, 0, 1, 5)

(-1, 1, 1, -1, 1, -1, 1, -2, 3)( 1, 1, 0, 1, -1, 1, 1, 0, 0)( 2, 2, 0, -1, -1, 1, 2, 2, 0)( 2, 1, -2, -2, -1, -1, 1, -1, 5)

( 4, 1, 3, -2, 3, 1, -2, 4, 0)( 1, 0, 0, -1, -1, -1, -1, 1, 3)( 0, 0, -2, 1, 2, 1, 2, 1, 0)( 0, 0, 0, 0, -1, 0, 0, 0, 1)

( 2, 2, 2, 1, 1, -3, 1, 1, 0)( 1, 1, 0, -2, 1, 2, 1, 2, 0)( 0, -1, 1, 1, 1, 1, 0, -1, 1)(-1, 1, 0, 1, 0, -1, 1, 1, 1)

( 1, -1, 1, -1, 1, 0, -1, 0, 2)( 1, -2, -1, -2, 2, -3, 1, -2, 7)( 1, 1, 0, -1, -1, 0, 1, 1, 1)( 1, 1, 1, -2, 1, 1, 1, 1, 0)

(-1, -1, 1, 0, 1, -1, -1, 1, 3)( 1, 1, 1, -1, 1, 0, 1, 0, 0)( 1, 1, 0, -1, 0, 1, 1, 1, 0)(-2, -1, -1, 2, -2, 0, -2, -1, 7)

( 1, 1, 0, -1, -1, -1, -1, 0, 3)( 1, -1, -1, 0, 1, 0, 1, 1, 1)( 0, -1, 1, 1, 0, 1, -1, -1, 2)( 3, 1, 1, -2, -2, -2, -2, 1, 5)

(-2, -1, 2, -1, -2, -2, 0, -1, 7)( 1, 1, 1, 0, -1, 0, -1, 0, 1)( 2, 0, 2, 1, -2, -1, -1, -2, 4)( 1, 0, 1, 0, -1, -1, -1, -1, 3)

(-2, 2, 1, 4, 1, -2, 2, 3, 0)(-1, -1, 1, 0, -1, -1, 0, -1, 4)( 1, 1, 0, 1, 0, -1, -1, -1, 2)( 1, -1, -1, 0, 1, -1, 1, 0, 2)

( 0, -1, -1, 1, 1, 0, 1, 0, 1)(-1, -1, -1, -1, -1, 1, 0, 0, 4)( 1, 0, -1, -1, -1, 0, 1, -1, 3)( 1, -2, 3, -2, 1, 4, 3, 4, 0)

( 1, 1, 0, -1, 1, 1, 0, 1, 0)( 1, 4, -1, -2, -4, -4, -3, -2, 12)( 0, 0, 0, 0, 0, 0, 0, 1, 0)( 0, -1, 1, 1, -1, 0, -1, -1, 3)

( 0, 1, 0, 0, 0, 0, 0, 0, 0)( 3, -1, 3, -1, 3, 2, -1, 2, 0)( 1, 1, 1, 1, -2, 1, 1, 1, 0)( 1, 0, 1, 1, -1, -1, 0, -1, 2)

( 0, -1, -1, -1, 1, -1, 0, -1, 4)( 2, -2, 1, -2, 1, -1, -1, -1, 5)( 1, -1, 3, -1, -2, -3, -3, -2, 9)( 1, 0, 1, -1, -1, -1, -1, 0, 3)

( 0, -1, -1, 1, -1, 0, -1, 1, 3)(-1, 0, 1, 2, 1, -1, 1, 2, 0)( 1, 0, 1, -1, 0, -1, -1, 1, 2)( 1, 0, 2, -1, -2, -2, -2, -1, 6)

( 1, 0, 1, -2, 1, 2, 1, 2, 0)( 0, -1, 0, 1, 1, 1, 1, 0, 0)( 1, -1, -1, 0, 1, 0, -1, -1, 3)( 0, -1, 0, 1, 1, 0, 1, 1, 0)

(-1, 1, -1, -1, 0, -1, -1, 0, 4)(-1, 0, 1, -1, 0, -1, 1, -1, 3)( 2, 1, 1, -1, -2, -1, -2, 0, 4)( 2, -1, 2, 1, 2, 2, -1, 0, 0)

( 1, 2, 2, 1, 0, -2, 0, 1, 0)( 1, 0, 0, 0, 0, 0, 0, 0, 0)( 1, 0, 1, 1, 0, 1, -1, -1, 1)( 2, -1, -3, -1, -3, 1, 2, -3, 8)

( 1, -1, 2, -2, 0, -2, -2, 1, 5)(-1, -1, 0, -1, 2, 3, 3, 3, 0)( 0, 1, 1, 1, 0, -1, 0, 1, 0)( 1, 1, 1, 0, -1, 0, 0, 1, 0)

( 1, 0, 1, -1, 1, 0, -1, 1, 1)(-2, 1, 2, 4, 1, -2, 2, 3, 0)( 1, -1, 4, -2, -3, -4, -4, -2, 12)( 1, 1, 0, 0, 1, 1, -1, 1, 0)

(-1, -1, -1, 0, -1, 1, -1, 0, 4)(-1, -3, 2, 1, -3, -2, -1, -3, 10)( 3, 3, 2, 3, 0, -1, -1, -1, 0)( 1, 1, 0, 0, -1, 1, 1, 1, 0)

( 0, 0, 0, 0, 0, 1, 0, 0, 0)( 0, -1, -1, 2, 2, 1, 2, 0, 0)( 4, 3, 1, -2, -2, 1, 3, 4, 0)( 0, 2, -1, -1, -2, -2, -2, -1, 7)

( 0, 1, 1, 2, 1, -2, 1, 1, 0)( 1, 1, 1, 1, 0, -1, 0, 0, 0)( 0, -1, -1, 2, 2, 0, 2, 1, 0)(-1, -1, 0, -1, -1, 0, 1, 0, 3)

( 1, 1, -1, 2, 0, 2, 2, -1, 0)( 1, 3, -1, -1, -3, -3, -2, -2, 9)( 1, -1, -1, 2, 1, 1, 1, -1, 1)( 0, -1, -1, -1, 0, -1, 1, -1, 4)

( 2, 2, 1, -1, -1, 0, 1, 2, 0)( 1, -2, 2, -3, -1, -3, -3, 1, 9)( 3, 4, 4, 1, -2, 0, -2, 1, 0)( 0, 1, 1, 0, 1, 0, 1, -1, 0)

( 2, 1, 1, 0, -2, 1, 1, 2, 0)( 0, -2, 0, 1, 2, 1, 2, 1, 0)( 1, -2, -1, -1, 2, -2, 0, -2, 6)(-2, 2, 0, -2, 1, -1, -1, -2, 6)

( 0, -1, -1, -1, 0, 1, -1, -1, 4)(-2, -1, -1, 1, -2, 1, -2, -1, 7)(-1, 2, -3, 1, -1, -2, -3, -3, 10)( 1, 2, -1, -1, 2, 2, 0, 2, 0)

(-3, -2, 2, -1, -2, -2, 1, -1, 8)( 0, -1, 1, 0, -1, -1, -1, -1, 4)( 1, -1, -1, 3, 2, 2, 2, -1, 0)( 1, -1, 0, 1, 1, 1, 0, -1, 1)

( 2, 3, -2, -4, -4, -4, -1, 1, 11)( 2, 0, 1, -2, -1, -2, -2, 1, 5)(-1, 1, -1, 0, 1, -1, -1, 0, 3)( 2, 3, 3, 2, 1, -4, 1, 1, 0)

(-1, 1, 0, -1, 1, 0, -1, -1, 3)(-1, 1, 1, 3, 1, -2, 1, 2, 0)( 0, 0, 0, 0, 0, 0, -1, 0, 1)(-2, 2, -1, -1, 0, -2, -2, -1, 7)

( 1, 1, 1, 0, 0, -1, 0, 1, 0)( 1, 1, 0, 0, -1, -1, -1, -1, 3)( 1, 2, -2, -3, -3, -3, -1, 1, 9)( 1, -2, 1, 1, 1, 1, 1, 1, 0)

(-3, 1, 1, 1, 2, 2, 2, 1, 0)( 1, 2, 2, 0, -1, 1, -1, 1, 0)( 1, -2, -3, -2, 1, -4, 3, -3, 10)(-1, 0, 1, -1, -1, 0, 1, -1, 3)

( 0, -1, 1, 2, 2, 2, 1, -1, 0)( 0, 1, 1, 1, 0, 0, -1, 1, 0)( 3, 2, 2, 2, -1, 0, -1, -1, 0)(-1, -1, -1, -1, 0, 1, -1, 0, 4)

( 2, 2, 2, -1, 3, -1, 3, -1, 0)(-1, 1, -1, 0, 0, -1, -1, -1, 4)( 2, 1, 1, 1, -1, 0, -1, -1, 1)( 2, 2, 0, 1, -1, -1, -2, -2, 4)

( 0, 0, 0, 1, 1, 1, 1, -1, 0)(-1, 0, 0, 0, 0, 0, 0, 0, 1)( 1, -1, 1, 1, 1, 2, -1, -1, 1)( 0, 0, 0, 0, 0, 0, 1, 0, 0)

(-1, -2, -2, -1, -1, 2, -1, 0, 6)( 1, 0, -1, 0, -1, 1, 1, -1, 2)( 0, -1, 1, -1, 0, 1, 1, 1, 1)( 0, -1, 1, -1, 1, 2, 2, 2, 0)

( 4, 3, 3, -1, -1, -1, -1, 3, 0)(-1, -1, -1, 1, -1, 0, -1, 0, 4)( 1, 1, -1, 0, 1, 1, 0, 1, 0)( 1, 1, 1, 1, 0, 0, 0, -1, 0)

(-1, -1, 0, -1, 0, 1, 1, 1, 2)( 1, 1, 0, -1, -1, -1, 0, 1, 2)(-2, 1, 2, 4, 2, -2, 1, 3, 0)(-2, -2, 1, -1, -2, -1, 1, 0, 6)

( 0, -1, 1, 1, -1, -1, 0, -1, 3)( 1, 1, 1, -1, 0, 0, 0, 1, 0)( 1, 2, 2, 1, -2, 0, 0, 1, 0)(-1, -1, 1, 0, -1, -1, 1, 0, 3)

( 3, 3, 2, -1, -1, -1, 0, 3, 0)(-1, 0, 0, 0, 1, 1, 1, 1, 0)( 3, 3, -1, -1, -1, 2, 3, 2, 0)( 2, -1, 2, 0, 2, 2, -1, 1, 0)

(-1, -1, 0, -1, 0, -1, 1, -1, 4)(-2, -1, 1, -1, -1, -1, 1, -1, 5)( 1, 1, -2, 0, 1, 2, 1, 2, 0)( 1, -1, -1, 0, -1, 0, -1, 1, 3)

( 0, 1, 0, -1, -1, -1, -1, -1, 4)( 2, 1, 1, 0, 1, 1, -2, 2, 0)(-2, 2, 1, 4, 2, -2, 1, 3, 0)( 1, -2, -2, -1, 1, -3, 2, -2, 7)

( 1, 0, 1, 0, 1, 1, -1, 1, 0)( 1, -2, -1, -1, 2, 0, -2, -2, 6)(-1, 0, 1, 1, 1, -1, 0, 1, 1)( 2, 1, 0, -2, -2, -2, -1, 1, 5)

( 1, -1, -2, -1, 0, -2, 2, -2, 6)(-1, 1, 1, -1, 0, 0, 0, -1, 2)( 1, 1, 1, 1, -1, 0, 0, 0, 0)( 1, -1, -1, -1, 1, -2, 1, -1, 4)

( 2, 1, 1, -2, 0, 1, 1, 2, 0)(-1, -1, 1, -1, -1, -1, 0, 0, 4)( 3, 2, 3, -1, 0, -1, -1, 3, 0)( 1, -1, 1, 0, 1, 1, 0, 1, 0)

( 1, -2, -2, 2, 1, 0, 1, -1, 3)( 1, -1, 0, 1, -1, -1, 1, -1, 3)(-1, 3, 3, -1, 2, 2, 2, -1, 0)(-1, 1, 0, 1, 1, -1, 0, 1, 1)

(-1, -2, 1, -1, 1, -2, -2, 2, 6)( 0, 1, -1, 1, -1, 1, 0, -1, 2)( 0, 1, -1, -1, 2, 2, 1, 2, 0)(-1, -1, 0, -1, 1, -1, -1, 1, 4)

( 0, 0, 0, 0, 1, 0, 0, 0, 0)( 1, -3, -2, -2, 3, -4, 1, -3, 10)( 2, 2, -1, 0, -1, 2, 2, 1, 0)( 1, -1, 2, -2, -1, -2, -2, 0, 6)

( 2, -1, 2, 2, 2, 3, -1, -1, 0)( 0, -2, -2, -2, -1, 2, -1, -1, 7)( 3, -2, -3, 1, 3, -1, -1, -3, 7)(-1, 1, 0, 2, 1, -1, 1, 2, 0)

( 0, 1, -1, -1, 1, 1, 0, 1, 1)( 1, 1, 0, 1, 0, 1, 1, -1, 0)( 1, -1, 1, -1, 0, -1, -1, 0, 3)( 1, -1, -1, 0, 2, 1, 2, 2, 0)

( 0, 0, 1, 0, 0, 0, 0, 0, 0)( 1, 0, -1, 1, 1, -1, -1, -1, 3)(-1, 1, 1, 2, 1, -1, 0, 2, 0)
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C Valid Cutting-off Inequalities Used in Analyzing
LBlock

S-box Valid cutting-off inequalities

S0 (-1, 2, -2, -1, 0, 0, -2, -1, 5), (0, 1, 0, 0, 1, -1, 1, 0, 0), (-1, -1, 1, -3, 3, -1, -2, 2, 5), (3, -1, -1, -1, 0, 3, 2, 1, 0), (-1,
1, 2, 0, -1, -1, 2, -2, 3), (0, -1, 0, 1, -1, 0, -1, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, 0, -1, -1, 0, -1, 5), (1, 2,
-2, 1, 0, 0, 1, 2, 0), (1, 2, 3, -2, 1, 0, -1, 3, 0), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, -1, -1, -2, 6), (-1, -1, 1, 0,
-1, 1, -1, -1, 4), (1, 0, 1, 1, 0, -1, -1, -1, 2), (1, -1, 1, -1, 2, 2, 0, 1, 0), (-1, 2, 2, 1, 0, 0, 2, -1, 0), (0, -1, -1, 1, 1, 1,
0, -1, 2), (-1, 1, 0, 0, -1, 1, 1, -1, 2), (2, 3, 1, 1, 0, -3, 1, 1, 0), (1, -1, -1, 0, 1, -1, -1, 1, 3), (2, -1, -1, 0, -1, 1, 1, 1,
1), (3, 1, 2, 1, -3, -1, 1, 3, 0), (2, -1, -1, 1, -2, 1, 0, 1, 2), (1, -1, 1, -1, 0, 1, 0, -1, 2), (1, 1, 2, 2, 0, 1, 1, -2, 0), (-1,
-1, -1, -2, 2, 1, 0, 1, 3)

S1 (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3,
-1, -1, -1, 0, 3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2,
1, 0, 0, 2, 1, 0), (-1, -1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0,
-1, -2, -1, 6), (2, 0, 1, 1, -2, -1, 1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0,
1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1,
1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2, 0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0),
(3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)

S2 (2, 1, 1, 1, 1, -3, 2, 0, 0), (-1, 2, -2, -1, -2, 0, -1, 0, 5), (0, 1, 0, 0, 1, 1, 0, -1, 0), (-1, -1, 1, -3, -2, 3, 2, -1, 5), (3,
-1, -1, -1, 2, 0, 1, 3, 0), (-1, 4, 5, 3, 5, -1, -2, -1, 0), (0, -1, 0, 1, -1, -1, 1, 0, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (-1, -1,
-1, 0, 0, -1, -1, -1, 5), (1, 2, -2, 1, 1, 0, 2, 0, 0), (1, -2, 1, -2, 1, 3, 2, 4, 0), (1, 1, -2, -2, -1, 0, -2, -1, 6), (-1, 0, 0, 0,
1, 1, 1, 0, 0), (2, 0, 1, 1, -1, -2, 1, -1, 2), (0, -1, 1, 1, -1, 1, -1, -1, 3), (0, 1, 1, -1, -1, 0, 1, 0, 1), (-1, -1, -1, 0, 0, 1,
-1, 1, 3), (0, -1, 1, -1, -1, -1, -1, 1, 4), (1, -1, -1, 1, 0, 0, -1, 1, 2), (-1, 1, 0, 0, 1, -1, -1, 1, 2), (3, 2, -1, 3, -1, 0, 3,
-1, 0), (1, 2, 1, 1, 1, 0, 0, -2, 0), (-1, 2, 1, -2, 1, 3, 2, 0, 0), (-1, 1, 2, 0, 2, -1, -2, -1, 3), (3, 1, 2, 2, 1, -4, 2, 1, 0),
(-1, -1, 1, 1, -1, -1, 0, 1, 3), (3, -1, -1, 0, 2, -1, 2, 2, 0)

S3 (2, 1, 1, 1, 0, 1, -3, 2, 0), (-1, 2, -2, -1, 0, -2, 0, -1, 5), (0, 1, 0, 0, -1, 1, 1, 0, 0), (-1, -1, 1, -3, -1, -2, 3, 2, 5), (3,
-1, -1, -1, 3, 2, 0, 1, 0), (-1, 1, 2, 0, -1, 2, -1, -2, 3), (0, -1, 0, 1, 0, -1, -1, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1,
-1, 0, -1, 0, -1, -1, 5), (1, 2, -2, 1, 0, 1, 0, 2, 0), (1, 2, 2, -1, 0, -1, 0, 2, 0), (1, 1, -2, -2, -1, -1, 0, -2, 6), (-1, 0, 0, 0,
0, 1, 1, 1, 0), (1, 0, 1, 1, -1, -1, 0, -1, 2), (1, -1, -1, 1, 1, 0, 0, -1, 2), (1, -1, 1, -1, 2, 0, 2, 1, 0), (-1, 0, 1, 0, 1, 1, 1,
0, 0), (-1, 0, -1, 0, 1, -1, 1, -1, 3), (-1, 1, -1, 0, 1, 0, -1, -1, 3), (0, -1, 1, -1, 1, -1, -1, -1, 4), (3, 2, -1, 3, -1, -1, 0, 3,
0), (1, 2, -1, 1, -1, 1, 0, 1, 0), (3, 1, 2, 0, -1, 1, -2, 2, 0), (-1, -1, 1, 1, 1, -1, -1, 0, 3), (1, 1, 2, 2, 1, 1, 0, -2, 0), (2,
-1, -1, 0, 1, 1, -1, 1, 1), (0, -1, 1, 1, -1, -1, 1, -1, 3)

S4 (2, 1, 1, 1, 1, -3, 0, 2, 0), (-1, 2, -2, -1, -2, 0, 0, -1, 5), (0, 1, 0, 0, 1, 1, -1, 0, 0), (-1, -1, 1, -3, -2, 3, -1, 2, 5), (3,
-1, -1, -1, 2, 0, 3, 1, 0), (-1, 4, 5, 3, 5, -1, -1, -2, 0), (0, -1, 0, 1, -1, -1, 0, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1,
-1, 0, 0, -1, -1, -1, 5), (1, 2, -2, 1, 1, 0, 0, 2, 0), (1, -1, 1, -1, -1, 2, 1, 1, 1), (1, 1, -2, -2, -1, 0, -1, -2, 6), (-1, 0, 0,
0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0, 1, 1, -1, 3), (1, 0, 1, 1, -1, 0, -1, -1, 2), (1, -1, -1, 1, 0, 0, 1, -1, 2), (-1, 1, 0, 0, 1,
-1, 1, -1, 2), (2, 2, 3, -1, -1, 0, -1, 3, 0), (-1, -1, 1, 0, -1, -1, 1, -1, 4), (3, -1, -1, 0, 2, -1, 2, 2, 0), (-1, 1, 1, -1, 1, 2,
0, 1, 0), (1, -1, 0, 0, 1, 0, 1, 0, 0), (1, -1, 1, -1, 0, 0, 1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (2, 3, 1, 1, 1, 0, -3, 1,
0), (1, 0, -1, 1, -1, 0, -1, 1, 2), (0, 1, 2, -2, -1, 1, 0, 2, 1)

S5 (2, 1, 1, 1, -3, 1, 0, 2, 0), (-1, 2, -2, -1, 0, -2, 0, -1, 5), (0, 1, 0, 0, 1, 1, -1, 0, 0), (-1, -1, 1, -3, 3, -2, -1, 2, 5), (3,
-1, -1, -1, 0, 2, 3, 1, 0), (-1, 1, 2, 0, -1, 2, -1, -2, 3), (0, -1, 0, 1, -1, -1, 0, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1,
-1, 0, -1, 0, -1, -1, 5), (1, 2, -2, 1, 0, 1, 0, 2, 0), (1, -1, 1, -1, 2, -1, 1, 1, 1), (-1, 0, 0, 0, 1, 1, 0, 1, 0), (1, 1, -2, -2,
0, -1, -1, -2, 6), (0, 1, 1, -1, 0, -1, 0, 1, 1), (-1, 0, 1, 0, 1, 1, 1, 0, 0), (1, 0, 1, 1, 0, -1, -1, -1, 2), (1, -1, -1, 1, 0, 0,
1, -1, 2), (-1, 1, -1, 0, -1, 0, 1, -1, 3), (0, -1, 1, -1, -1, -1, 1, -1, 4), (-1, -1, -1, 0, 1, 0, 1, -1, 3), (2, -1, -1, 0, -1, 1,
1, 1, 1), (1, -1, -1, 0, 1, -1, -1, 1, 3), (1, 1, 0, 0, 0, 1, -1, 0, 0), (5, 2, 4, 1, -4, 1, -2, 4, 0), (1, 1, 2, 2, 0, 1, 1, -2, 0),
(-1, -1, 1, 1, -1, -1, 1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3)

S6 (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3,
-1, -1, -1, 0, 3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2,
1, 0, 0, 2, 1, 0), (-1, -1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0,
-1, -2, -1, 6), (2, 0, 1, 1, -2, -1, 1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0,
1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1,
1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2, 0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0),
(3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)

S7 (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3,
-1, -1, -1, 0, 3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2,
1, 0, 0, 2, 1, 0), (-1, -1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0,
-1, -2, -1, 6), (2, 0, 1, 1, -2, -1, 1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0,
1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1,
1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2, 0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0),
(3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)

S8 (2, 1, 1, 1, 0, -3, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, -1, 1, 0, 1, 0), (-1, -1, 1, -3, -1, 3, 2, -2, 5), (3,
-1, -1, -1, 3, 0, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, 0, -1, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2,
1, 0, 0, 2, 1, 0), (-1, -1, -1, 0, -1, -1, -1, 0, 5), (1, 1, 2, -1, -1, 0, 2, -1, 1), (1, 1, -2, -2, -1, 0, -2, -1, 6), (-1, 0, 0, 0,
0, 1, 1, 1, 0), (3, 2, 3, 3, -1, 0, -1, -1, 0), (1, -1, -1, 1, 1, 0, -1, 0, 2), (1, -1, 1, -1, 1, 2, 1, -1, 1), (-1, -1, -1, 0, 1, 1,
-1, 0, 3), (-1, 1, 0, 0, 1, -1, -1, 1, 2), (0, -1, 1, -1, 1, -1, -1, -1, 4), (-1, 2, 1, -2, 0, 3, 2, 1, 0), (3, 2, -1, 3, -1, 0, 3,
-1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (2, 3, 1, 1, -3, 0, 1, 1, 0), (3, 1, 2, 2, 1, -4, 2, 1,
0), (-1, -1, 1, 1, 1, -1, 0, -1, 3), (-1, 1, 0, -1, 0, 0, 1, -1, 2)

S9 (2, 1, 1, 1, 1, 2, 0, -3, 0), (-1, 2, -2, -1, -2, -1, 0, 0, 5), (0, 1, 0, 0, 1, 0, -1, 1, 0), (-1, -1, 1, -3, -2, 2, -1, 3, 5), (3,
-1, -1, -1, 2, 1, 3, 0, 0), (-1, 4, 5, 3, 5, -2, -1, -1, 0), (0, -1, 0, 1, -1, 1, 0, -1, 2), (0, -1, 0, 0, 1, 0, 1, 1, 0), (-1, -1,
-1, 0, 0, -1, -1, -1, 5), (1, 2, -2, 1, 1, 2, 0, 0, 0), (1, -1, 1, -1, -1, 1, 1, 2, 1), (1, 1, -2, -2, -1, -2, -1, 0, 6), (-1, 0, 0,
0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0, -1, 1, 1, 3), (-1, 1, 0, 0, 1, -1, 1, -1, 2), (1, -1, -1, 1, 0, -1, 1, 0, 2), (-1, 1, 0, -1, -1,
1, 0, 0, 2), (6, 2, 3, 3, -1, 3, -1, -4, 0), (0, -1, 1, 1, -1, -1, -1, 1, 3), (0, -1, 1, -1, -1, -1, 1, -1, 4), (1, -1, 0, 0, 1, 0, 1,
0, 0), (2, 3, 1, 1, 1, 1, -3, 0, 0), (1, 0, -1, 1, -1, 1, -1, 0, 2), (3, -1, -1, -1, 2, 1, 2, -1, 1), (-1, 0, 1, -1, 1, 1, 1, 2, 0),
(-1, 1, 2, 0, 2, -2, -1, -1, 3), (-1, -1, 1, 1, -1, 0, 1, -1, 3)


