
Kurosawa-Desmedt Key Encapsulation
Mechanism, Revisited

Kaoru Kurosawa1 and Le Trieu Phong2

1 Ibaraki University
2 NICT, Japan

Abstract. While the hybrid public key encryption scheme of Kurosawa
and Desmedt (CRYPTO 2004) is provably secure against chosen cipher-
text attacks (namely, IND-CCA-secure), its associated key encapsulation
mechanism (KEM) is not IND-CCA-secure (Herranz et al. 2006, Choi
et al. 2009). In this paper, we show a simple twist on the Kurosawa-
Desmedt KEM turning it into a scheme with IND-CCA security under
the decisional Diffie-Hellman assumption. Our KEM beats the standard-
ized version of Cramer-Shoup KEM in ISO/IEC 18033-2 by margins
of at least 20% in encapsulation speed, and 20% ∼ 60% in decapsu-
lation speed. Moreover, the public and secret key sizes in our schemes
are at least 160-bit smaller than those of the Cramer-Shoup KEM. We
then generalize the technique into hash proof systems, proposing several
KEM schemes with IND-CCA security under decision linear and deci-
sional composite residuosity assumptions respectively. All the KEMs are
in the standard model, and use standard, computationally secure sym-
metric building blocks.

Keywords: Kurosawa-Desmedt KEM, IND-CCA security, hash proof
systems, standard model.

1 Introduction

1.1 Background

Key Encapsulation Mechanism (KEM) is an asymmetric encryption technique
allows generating simultaneously a random key Ks together with its encryption
C, termed encapsulation. The key Ks then will be used for long data encryption,
while the encapsulation C is used for sharing Ks. In other words, KEM serves
as a delivery of secret keys used in symmetric encryption.

KEM implies public-key encryption (PKE). Indeed, it can be used to con-
struct hybrid PKE, namely PKE with unrestricted message space, when com-
bining with a data encapsulation mechanism (DEM) [13]. In practice, since the
DEM part is already highly efficient, one usually concerns about the perfor-
mance of the KEM part. Specific constructions of KEM are incorporated in the
standards ISO/IEC 18033-2 [1], ANSI X9.44 [5], and can be considered for e-
Government usage in the future [2]. KEM is widely yet implicitly used in the
TLS Handshake Protocol [23].

In 2004, Kurosawa and Desmedt [24], improved upon the seminal work of
Cramer and Shoup [12], published an efficient hybrid PKE, whose security proof
was refined in [15], resisting chosen ciphetext attacks (IND-CCA) under the de-
cisional Diffie-Hellman (DDH) assumption. Unlike Cramer-Shoup scheme, the
KEM part of the Kurosawa-Desmedt scheme is not IND-CCA secure, as shown
in 2006 in [11, 19]. In 2007, by creatively switching elements in the Kurosawa-
Desmedt KEM, Kiltz [22] presented an IND-CCA-secure KEM, and yet un-
der the less standard Gap Hashed Diffie-Hellman (GHDH) assumption. On the
other hand, sticking to the DDH assumption, Abe, Gennaro, Kurosawa [4], and
Hofheinz, Kiltz [20] showed the Kurosawa-Desmedt KEM only meets weakened
notions of CCA security.

While weakened IND-CCA security as defined in [4,20] can be converted into
IND-CCA security (see Section 1.4), there is still no direct security proof for any
variant of the Kurosawa-Desmedt KEM. A summarization of these discussions
is in Table 1.

Table 1. Classification of Kurosawa-Desmedt (KD) KEM and its variants.

Security (↓) Assumption (→) GHDH DDH

Weakened IND-CCA – [4], [20] (KD KEM)

IND-CCA [22] (dual KD KEM) This paper (with direct proof)

1.2 Our contributions

Our results can be categorized as follows.

Theoretical contribution. We show a slight twist on the insecure Kurosawa-
Desmedt KEM turning it into an IND-CCA-secure one. Formally, we propose a
variant of the Kurosawa-Desmedt KEM which can be proved IND-CCA-secure
under the DDH assumption. That is, we fulfill Table 1 with the most “desir-
able” KEM in terms of security assumption (namely, DDH) and security notion
(namely, IND-CCA).

The twist is simple. Details are discussed at length at the beginning of Section
3.1, but a high view is as follows. In the original Kurosawa-Desmedt KEM, the
encapsulation of a symmetric key v consists of group elements (u1, u2). In our
proposal, we do not return the whole v as the shared symmetric key, but split
it into two independent keys ks and ka. The key ks is then returned as the
shared key, while the key ka is internally used to authenticate the encapsulation
(u1, u2). This authentication step is important as it protects the KEM against
adversarial decapsulation queries, and is novel to this work in the sense that,
with the twist, previous security proof for hybrid PKE in [15] can be as is reused
for the KEM case, without any loss factor to the main complexity assumption.

Practical impact. The result is not only of theoretical interest. Indeed, com-
pared to the existing practice [1], namely the standardized ACE-KEM basing on

the same assumption in the standard model, we achieve more than 20% improve-
ment over encapsulation speed, and at least 20% improvement over decapsulation
speed in general. For specific choices of the base group such as prime-field NIST
elliptic curves, the speed improvement on decapsulation can go up to 60%. These
estimations are confirmed by experimental results in Section 3.2.

In sizes, the public and secret keys in our schemes are one group element, or
at least 160-bit, smaller than those of the ACE-KEM. The encapsulation length
is also slightly shorter. See Table 2 in Section 3.2 for details.

These improvements are significant, as frequently there are large amounts
of asymmetric decryption work (e.g., in SSL/TLS servers), or several public
and secret keys must be created and kept internally in memory (e.g., as in iOS
devices [7] where asymmetric encryption enables file access on the background
while the device is locked).

DLIN-based and DCR-based extensions. Our method can be extended to
hash proofs systems. When coupling with known constructions of hash proof
systems in the literature, we obtain KEMs under the decision linear (DLIN) and
decisional composite residuosity (DCR) assumptions, respectively.

1.3 Other usage of KEM beyond hybrid encryption

While original application of KEM is hybrid PKE, the ability to output a shared
symmetric key allows KEM to have other applications as well. For example, KEM
can be used to build schemes for identification [6] and authenticated key exchange
(AKE) [10,16,29]. In particular, Boyd et al. [10] showed that a one-round AKE
protocol can be constructed from IND-CCA secure KEM, and Fujioka et al. [16]
showed that a two-pass AKE protocol with weak perfect forward secrecy can
be constructed from IND-CCA secure KEM. This additionally illustrates why
KEM is preferable over PKE alone.

1.4 More related works

The proof given in [24] depends on some information theoretically secure compo-
nents, which affects the efficiency of the hybrid PKE scheme. The refined proof
in [15] weakens the components to computationally secure ones.

Already in [11, 19], it was remarked that, if one models the key derivation
function as a random oracle and is content with a much stronger assumption
than DDH, the Kurosawa-Desmedt KEM can be proved IND-CCA-secure.

Okamoto [26] presented a KEM derived from the Kurosawa-Desmedt hybrid
PKE. The KEM is IND-CCA-secure under the DDH assumption, and yet the-
oretically relies on an arguably non-standard primitive called pseudo-random
function with pairwise independent random sources.

We are informed by Takahiro Matsuda that constrained IND-CCA (CCCA)
security [20] can be converted into standard IND-CCA security as done in [8]
using essentially the same idea with this work. The transformation, while generic
and applied to the original Kurosawa-Desmedt KEM, however has a loss factor

of 4 in the security reduction. Our approach in this paper puts aside constrained
IND-CCA definition, giving a direct proof for the KEM and related schemes
from hash proof systems and yielding a theoretically better loss factor of 1 to
the main complexity assumptions (namely DDH, DLIN, and DCR).

In the same vein, LCCA-secure KEM as defined in [4] can be converted to
IND-CCA-secure Tag-KEM [4, Theorem 3] which in turn yields hybrid PKE.
The conversion again has a loss factor of 2 to the main complexity assumption.
The application of Tag-KEM beyond hybrid PKE is arguably less clear than
KEM.

The conversions from CCCA or LCCA security to CCA security, while generic,
are of theoretical interests, since proving that a concrete scheme is CCCA-secure
or LCCA-secure is apparently not easier than directly showing that scheme is
IND-CCA-secure.

2 Preliminaries

KEM. A KEM consists of key generation KG, encapsulation Encap, and decap-
sulation Decap algorithms. KG(1κ) with security parameter κ outputs public key
pk and secret key sk. The algorithm Encap(pk) returns a pair (C,K). Correctness
holds if Decap(sk, C) = K.

IND-CCA security of KEM. To define the security, consider the following
game with adversary A. First, (pk, sk) ← KG(1κ) and pk is given to A. In the
so-called find stage, A can query any C of its choice to oracle Decap(sk, ·).

ThenA invoke a challenge oracle. The oracle computes (C∗,K∗)← Encap(pk),

then takes K∗ randomly satisfying |K∗| = |K∗|, and chooses b
$←{0, 1}. The or-

acle returns challenge pair (C∗,K(b)) in which K(0) = K∗ and K(1) = K∗.
After that, in the guess stage, A can again access to the oracle Decap(sk, ·),

but is not allowed to query C∗ to the decapsulation oracle. Finally, A returns b′

as a guess of the hidden b.
The KEM is IND-CCA-secure if the advantage

Advind−cca
A (κ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
is negligible in κ for all poly-time adversary A.

Taking an element a randomly from a set A is notationally expressed by

a
$←A. Let κ be the security parameter. We requires following building blocks.

Concrete schemes can be found in [1, Section 6].

TCR. A target collision resistant hash function TCR : E(κ) → R(κ) is defined

as follows. Given a target x∗
$←E(κ), it is hard for all poly-time adversary A to

find x ∈ E(κ) satisfying TCR(x) = TCR(x∗). Formally, the advantage

AdvTCR
A (κ) = Pr[x← A(x∗) : x 6= x∗ ∧ TCR(x) = TCR(x∗)]

is negligible for all poly-time adversary A.

Fig. 1. Our IND-CCA-secure KEM under the DDH assumption.
KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2
$←G r

$← Zq Parse C = (u1, u2, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr1 , u2 ← gr2 α← TCR(u1, u2)

c← gx11 gx22 α← TCR(u1, u2) v ← ux1+αy11 ux2+αy22

d← gy11 gy22 v ← crdrα (ks, ka)← KDF(v)
pk ← (g1, g2, c, d) (ks, ka)← KDF(v) If t = MACka(u1, u2)
sk ← (x1, x2, y1, y2) t← MACka(u1, u2) return ks
Return (pk, sk) Return C = (u1, u2, t) and K = ks Else return ⊥

KDF. We assume that there exists a key derivation function KDF : K(κ) →
{0, 1}2n(κ) such that KDF(v) for random v ∈ K(κ) is computationally random
over {0, 1}2n(κ). Formally, the advantage

AdvKDF
D (κ) =

∣∣∣∣∣ Pr
v

$←K(κ)

[D(KDF(v)) = 1]− Pr
(k,k′)

$← {0,1}2n(κ)

[D(k, k′) = 1]

∣∣∣∣∣
is negligible for all poly-time distinguishers D.

MAC. A message authentication code MAC : {0, 1}n(κ)×E(κ)→ {0, 1}τ(κ) takes
inputs k ∈ {0, 1}n(κ) and x ∈ E(κ) to compute tag t = MACk(x). For random key

k
$←{0, 1}n(κ), the adversary A is given at most one pair (x∗, t∗ = MACk(x∗))

where x∗ is of A’s own choice. The adversary A then returns a pair (x, t). It is
required that the following advantage

AdvMAC
A (κ) = Pr[x 6= x∗ ∧ t = MACk(x)]

is negligible for all poly-time distinguishers A.

3 Kurosawa-Desmedt KEM, revisited

Let G = 〈g〉 be a group, generated by g, of prime public order 2κ < q < 2κ+1

for security parameter κ.
The DDH assumption on G asserts that, for all poly-time distinguishers D,

non-unit random elements g1, g2
$←G, and r 6= s

$← Zq, the advantage

Advddh
D (κ) =

∣∣∣Pr[D(g1, g2, g
r
1, g

r
2) = 1]− Pr[D(g1, g2, g

r
1, g

s
2) = 1]

∣∣∣
is negligible on parameter κ.

3.1 Our proposed KEM under DDH

The construction is depicted in Figure 1. In the construction, keys ks and ka are
of n-bit length. In Decap, if u1 6∈ G or u2 6∈ G then ⊥ is returned immediately

at the beginning. The description of symmetric building blocks TCR, KDF, and
MAC are in Section 2.

The main difference with the Kurosawa-Desmedt KEM is, in Encap(pk), the
element v is spitted in two keys (ks, ka) by KDF. Then, the key ka is used to
authenticate elements (u1, u2) inside Encap(pk), while the key ks is returned
as the shared symmetric key. The crucial point here is the authentication of
(u1, u2) by the MAC, which helps proving IND-CCA security of our proposal.
This technique, while simple, has been neglected in the literature.

Perhaps it is illustrative to see how our KEM resists against the chosen ci-
phertext attack in [11,19] that breaks the Kurosawa-Desmedt KEM. Recall that,
in the attack, the adversary first obtains the challenge encapsulation consisting
of (u∗1, u

∗
2). The adversary then queries the decapsulation oracle with query of

form ((u∗1)r, (u∗2)r) where r ∈ Zq is random of its own choice. In [11, 19], it is
showed that, by only two such queries, the encapsulated symmetric key can be
computed with overwhelming probability. In comparison, in our KEM, the tag t
is effective as a hedge against such malformed queries. When the adversary sub-
mits (u1, u2, t) = ((u∗1)r, (u∗2)r, t), the corresponding v can be proved randomly
distributed under the DDH assumption (in the proof, see Game4). This means
corresponding keys (ks, ka) = KDF(v) are randomly distributed. For the decap-
sulation not returning ⊥, the adversary had to come up with the tag t satisfying
t = MACka((u∗1)r, (u∗2)r), which is computationally hard since ka is random and
MAC is assumed secure.

Our use of MAC is different from the counterpart in the hybrid PKE [15] in its
input. In [15], MAC is used to authenticate a symmetrically encrypted plaintext
e. Namely, using our notations, in [15], e← SymmetricEncryptionks(plaintext)
and then t ← MACka(e). In contrast, in Figure 1, we take “early” MAC on
(u1, u2). Nevertheless, the resemblance between our KEM and the hybrid PKE
allows us to re-utilize the proof in the hybrid encryption case.

3.2 Comparison and implementation

Base group. There are primarily two choices for the group G so that DDH
assumption is believed holds true. The first choice is to take G as the order q,
multiplicative subgroup of Z∗p in which p = 1 (mod q) is a prime. The elements
in G are thus represented modulo p, and hence of |p| = 1024 bits (for 80-bit
security) or |p| = 3072 bits (for 128-bit security). See [13] for more details.

The second choice of G is to take elliptic curve groups of order q. This choice
reduces the length of element representation, since the length of q in bits can
be |q| = 160 (for 80-bit security), or |q| = 256 (for 128-bit security). See [25] for
specific curves.

Theoretical comparison In Table 2, we compare our KEMs with the ACE-
KEM in ISO/IEC 18033-2 [1], which refined the schemes in [12,13]. Both enjoys
a tight security reduction to the DDH assumption. Since the tag size |t| can be
128 in our KEMs, our encapsulation size is slightly shorter than ACE-KEM. The
public key in our KEMs is one group element shorter.

Table 2. Comparison of KEMs in standard model based on the DDH assumption.
Abbreviations in the table: me = multi-exponentiation, se = single-exponentiation,
gmc = group membership check, el = group element.

Scheme Assumption Encap [Encap]; [Decap] [pk, sk] size
length main costs of computation

ACE-KEM [1] DDH 3|q| [1 me, 3 se]; [0 me, 3 se, 1 gmc] [5 el, 4 el]

Ours, Figure 1 DDH 2|q|+ |t| [1 me, 2 se]; [1 me, 0 se, 2 gmc] [4 el, 4 el]

To compare computation costs, we consider ACE-KEM implemented a group
of prime order q. We use the result that one multi-exponentiation in that group
can be carried out in (1 + 2/ log2 log2 q) log2 q multiplications [9], therefore can
be counted as approximately 1.2 single exponentiation, which is confirmed by
experiments in Section C.

First, in groups where group membership checks are trivial, our KEM in
Figure 1 needs just one multi-exponentiation, thus beating the ACE-KEM at
dramatic margin of 60% in decapsulation speed. Examples of the groups include
NIST elliptic curves [25] defined over prime fields (P-192, P-224, P-256, P-384,
P-521) and binary fields (B-163, B-233, B-283, B-409, B-571).

Now assume that a group membership check is costly as one single exponen-
tiation, while more efficient methods (e.g., using the Legendre symbol) may be
available depending on the base group [13, Section 4.2]. Using abbreviations in
Table 2, we count: 1 me = 1.2 se, 1 gmc = 1 se.

Thus our encapsulation needs 3.2 (se), while that for ACE-KEM is 4.2 (se),
meaning more than 20% improvement in speed. For decapsulation, our schemes
in Figures 1 and 7 require 3.2 or 3 (se), while that of ACE-KEM is 4 (se), yielding
at least 20% improvement.

Our KEM decapsulation speed is even either faster or comparable with stan-
dardized PSEC-KEM and ECIES-KEM schemes whose security proofs are not
in the standard model. Interested readers can find more details in Section B.

Experimental comparison ISO/IEC 18033-2 comes with a reference im-
plementation, written by Anshuman Rawat and Victor Shoup (see website of
[1]). The implementation, among others, includes ACE-KEM, PSEC-KEM, and
ECIES-KEM. We add an implementation of our proposed KEM based on that
library. Timings of encryption and decryption are reported in Figure 2, in which
our scheme in Figure 1 is named “newkd”. The codes in [1] neither speed up
multi-exponentiation nor use Legendre symbol for group membership check. Our
code elaborates on these aspects by

– employing a square-and-multiply algorithm for multi-exponentiation (re-
called in Section C), and

– using Legendre symbol for group membership check in G ⊂ Z∗p where p is a
safe (aka, Sophie Germain) prime, namely p = 2q + 1 for a prime q.

Fig. 2. Average timings, taken over 10000 executions, over different base groups. Ex-
periment is done over a laptop (Intel 2.0GHz CPU, 8GB RAM) running Ubuntu 12.04
LTS. The C compiler is g++ 4.6.3 using NTL 6.0.0 and GMP 5.1.1 libraries.

7.5

5.6

3.7 3.6

5.3

2.1

3.7

1.8

0

1

2

3

4

5

6

7

8

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over elliptic curve P-192

enc

dec

12.2

9.2

6.1 5.9

8.9

3.4

6.1

3

0

2

4

6

8

10

12

14

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over elliptic curve B-163

enc

dec

35.4

26.2

16.4 16.8

25.1

9.9

16.1

8.3

0

5

10

15

20

25

30

35

40

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over modulo p group
(p is a safe prime)

enc

dec

5.5

4.1

2.9
2.7

5.1

4.3

2.6 2.6

0

1

2

3

4

5

6

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over modulo p group
(p is not a safe prime)

enc

dec

Over all groups, one can confirm by Figure 2 that our proposed “newkd”
is more efficient than ACE-KEM in both encapsulation and decapsulation. The
bar charts also fit above theoretical comparisons.

Whenever above speedup tricks are applicable, namely over NIST’s elliptic
curves or over G ⊂ Z∗p with safe prime p, one can confirm that our proposal’s
decapsulation is faster than PSEC-KEM, and is even comparable to ECIES-
KEM.

Over a subgroup G ⊂ Z∗p where p is not a safe prime, the decapsulation
speed of “newkd” decreases. Here, two group membership checks, performed by
two exponentiations, must be done since the Legendre symbol trick cannot be
applied.

3.3 Security proof

This subsection is devoted to prove the following theorem.

Theorem 1 The KEM in Figure 1 is IND-CCA-secure under the DDH assump-
tion.

The following proof is similar to [15], adjusted for our KEM.

Proof. We will proceed in games, each of which is a modification of the previous
one. Below, Pr[Xi] = Pr[b′ = b in Gamei].

Game0: This game is the IND-CCA attack game with an adversary A. Recall
that κ is the security parameter, and Advind−cca

A (κ) = |Pr[b′ = b]− 1
2 |.

The challenge is (C∗,K(b)) where C∗ = (u∗1, u
∗
2, t
∗). We denote by r∗, α∗,

v∗, k∗s , k
∗
a the corresponding intermediate quantities. The key K(b) is (k∗s , k

∗
a) or

random depending on the bit b.

Game1: The challenge oracle uses secrets (x1, y1, x2, y2) to compute v∗. Namely,

v∗ = (u∗1)x1+α∗y1(u∗2)x2+α∗y2

where u∗1 = gr
∗

1 , u∗2 = gr
∗

2 and α∗ = TCR(u∗1, u
∗
2).

Moreover, for any query (u1, u2, t) with (u1, u2) 6= (u∗1, u
∗
2) and TCR(u1, u2) =

TCR(u∗1, u
∗
2), the decapsulation oracle returns ⊥.

Then there exists a poly-time adversary A1 such that

|Pr[X0]− Pr[X1]| ≤ AdvTCR
A1

(κ) (1)

since the first change is notational, and the second one is based on the security
of TCR. More formally, A1 gets inputs (u∗1, u

∗
2), and simulates the environment

for A by generating the public and secret keys. A1 gives A the public key, and
answers A’s decapsulation queries using the secret key. In any decapsulation
query (u1, u2, t), if (u1, u2) 6= (u∗1, u

∗
2) and TCR(u1, u2) = TCR(u∗1, u

∗
2), then A1

stops the simulation and returns the pair (u1, u2) as its output. The running time
of A1 in the worst case is that of A plus time for doing arithmetic computations
in G and time for some symmetric operations, so is of polynomial time.

Game2: In this game, elements u∗1 and u∗2 are computed as follows: r∗1
$← Zq, u∗1 ←

g
r∗1
1 , and r∗2

$← Zq \ {r∗1}, u∗2 ← g
r∗2
2 . Then there is a poly-time adversary A2 such

that

|Pr[X1]− Pr[X2]| = Advddh
A2

(κ). (2)

The description of A2 is as follows. Its input is a tuple (g1, g2, u
∗
1, u
∗
2). A2 it-

self generates the secret key, and then coupling with generators g1, g2 of G, it
computes the public key. Since A2 holds the secret key, it can answer all decap-
sulation queries from A. The adversary A2 controls the hidden bit b, so that
it can compare that bit with A’s output bit b. In case b′ = b, A2 returns 1;
otherwise it returns 0. Any difference on the output b′ of A depending on tuple
(g1, g2, u

∗
1, u
∗
2) directly yields a difference on the probability A2 outputting 1, so

that above equation claim is justified. The running time of A2 in the worst case
is that of A plus time for doing arithmetic computations in G and time for some
symmetric operations, so is of polynomial time.

Game3: This game makes use of ω ∈ Z∗q satisfying g2 = gω1 . With ω, we can check
in poly-time whether logg1 u1 = logg2 u2 by simply verifying uω1 = u2. Denote
V = {(u1, u2) ∈ G2 : uω1 = u2}. In this game, any decapsulation query (u1, u2, t)

Fig. 3. Oracles in Game3 for the proof of Theorem 1.
Initialization of the game Decapsulation of adversarial query C = (u1, u2, t)

I1: ω
$← Z∗q , g2 ← gω1

I2: (x1, x2, y1, y2)
$← Z4

q

c← gx11 gx22 , d← gy11 gy22
I3: r∗1

$← Zq, u∗1 ← g
r∗1
1

r∗2
$← Zq \ {r∗1}, u∗2 ← g

r∗2
2

I4: α∗ ← TCR(u∗1, u
∗
2)

v∗ ← (u∗1)x1+α
∗y1(u∗2)x2+α

∗y2

I5: (k∗s , k
∗
a)← KDF(v∗)

1: α = TCR(u1, u2)
2: if (u1, u2) 6= (u∗1, u

∗
2) and α = α∗ then

3: return ⊥
4: end if
5: if (u1, u2) = (u∗1, u

∗
2) then

6: if t 6= MACk∗a(u∗1, u
∗
2) then return ⊥

7: else return k∗s
8: else if (u1, u2) 6∈ V then
9: α← TCR(u1, u2)

10: v ← ux1+αy11 ux2+αy22

11: (ks, ka)← KDF(v)
12: if t 6= MACka(u1, u2) then return ⊥
13: else return ⊥ {Rejection rule in Game3}
14: else
15: α← TCR(u1, u2)
16: v ← ux1+αy11 ux2+αy22

17: (ks, ka)← KDF(v)
18: if t 6= MACka(u1, u2) then return ⊥
19: else return ks
20: end if

with (u1, u2) 6∈ V is rejected. The initialization and decapsulation oracle in this
game are depicted in Figure 3.

Let Fi (i ≥ 3) be the event that a query is rejected at line 13 of the decapsu-
lation oracle in Gamei. Let Q be the bound on the total number of decapsulation
queries A makes, we have

|Pr[X2]− Pr[X3]| ≤ QPr[F3]. (3)

Game4: In this game, take v∗
$←G (at line I4) and v

$←G (at line 10 in the
decapsulation). This is because


logg1 c
logg1 d
logg1 v

∗

logg1 v

 =


1 0 ω 0
0 1 0 ω
r∗1 r

∗
1α
∗ r∗2ω r

∗
2ωα

∗

r1 r1α r2ω r2ωα


︸ ︷︷ ︸

M


x1

y1

x2

y2



and determinant det(M) = ω2(r∗2−r∗1)(r2−r1)(α−α∗) 6= 0 shows that (c, d, v∗, v)
are uniformly distributed as (x1, y1, x2, y2) are. We have

Pr[X3] = Pr[X4] (4)

Pr[F3] = Pr[F4]. (5)

Game5: At line I5, take (k∗s , k
∗
a)

$←{0, 1}2n. This is because v∗ is taken randomly
in the previous game. Then there exists an adversary A5 against KDF such that

|Pr[X4]− Pr[X5]| ≤ AdvKDF
A5

(κ). (6)

The description of A5 is as follows. Its input is a string in {0, 1}2n. It uses the
input for the keys (k∗s , k

∗
a) at line I5, while generating the secret key and public

key and others as in lines I1 to I4. Since A2 holds the trapdoor for membership
testing ω and the secret key, it can handle decapsulation queries as in Figure 3.
When A returns b′, the adversary A5 checks whether b′ equals its chosen bit b.
If b′ = b, A5 returns 1. The running time of A5 in the worst case is that of A
plus time for doing arithmetic computations in G and time for some symmetric
operations, so is of polynomial time.

Game6: At line 7 in the decapsulation, return ⊥. This is because (u1, u2) =
(u∗1, u

∗
2) with probability 1

q2 before the challenge phase. Moreover, after the chal-

lenge phase when (u∗1, u
∗
2, t
∗) was already announced, querying (u∗1, u

∗
2, t) with

t = MACk∗a(u∗1, u
∗
2) and t 6= t∗ to the oracle means the adversary can break the

MAC. We have

|Pr[X5]− Pr[X6]| ≤ Q
(

1

q2
+ AdvMAC

A6
(κ)

)
and Pr[X6] =

1

2
(7)

since (k∗s , k
∗
a) are perfectly random in this game.

The description of A6 is as follows. Its input is (u∗1, u
∗
2, t
∗) where t∗ =

MACk∗a(u∗1, u
∗
2) for random key k∗a. It generates the secret key and then sim-

ulates the environment for A. Whenever A queries (u1, u2, t) for decapsulation
in which t 6= t∗ and t = MACk∗a(u∗1, u

∗
2), the adversary A6 halts the simulation

and returns (u∗1, u
∗
2, t). The running time of A6 in the worst case is that of A

plus time for doing arithmetic computations in G and time for some symmetric
operations, so is of polynomial time.

Game5′ : Now we move back to consider Game4 again. This game is the same

as Game4, except that, (ks, ka)
$←{0, 1}2n at line 11. We have

|Pr[F4]− Pr[F5′]| ≤ AdvKDF
A′5 (κ). (8)

Since the MAC key has been turned random,

Pr[F5′] ≤ AdvMAC
A′′5 (κ) (9)

in which, as a recall, F5′ is the event that a query is rejected at line 13 of the
decapsulation oracle in this game. The descriptions of adversaries A′5 against
KDF and A′′5 against MAC are similar to those in Game5 and Game6.

By (5), (8), (9), we have

Pr[F3] = Pr[F4] ≤ Pr[F5′] + AdvKDF
A′5 (κ) ≤ AdvMAC

A′′5 (κ) + AdvKDF
A′5 (κ) (10)

and by (1), (2), (3), (4), (6), (7), and the bound (10),

Advind−cca
A (κ) ≤ AdvTCR

A1
(κ) + Advddh

A2
(κ) +Q

(
AdvMAC

A′′5 (κ) + AdvKDF
A′5 (κ)

)
+AdvKDF

A5
(κ) +Q

(
1

q2
+ AdvMAC

A6
(κ)

)
ending the proof. ut

4 Generalization to universal hash proof system

4.1 Hash proof system

The notion of hash proof systems was introduced by Cramer and Shoup [14]. Let
SK,PK, and K be sets of secret keys, public keys, and encapsulated symmetric
keys. Let E be the set of all “valid” and “invalid” encapsulation, and V ⊂ E be
the set of all “valid” ones. To illustrate the above notation, in the DDH-based
scheme, SK = G4, PK = G2, E = G2, K = G, V = {(gr1, gr2) : r ∈ Zq}.

The subset membership assumption says that V is indistinguishable from
E . If V = {(gr1, gr2) : r ∈ Zq} and E = G2 as above, this is exactly the DDH
assumption. Formally, the advantage

Advsm
D (κ) =

∣∣∣∣∣ Pr
U

$←E
[D(U) = 1]− Pr

U
$←V

[D(U) = 1]

∣∣∣∣∣
is negligible for all poly-time distinguishers D.

A function Λsk : E → K is projective if there exists a projection µ : SK → PK
such that pk = µ(sk) defines Λsk : V → K. Namely, for every E ∈ V, the value
K = Λsk(E) is uniquely determined by pk = µ(sk) and E. As an example, in
our scheme of Sect.3, Λsk

(
E = (u1, u2)

)
= ux1+αy1

1 ux2+αy2
2 where α = TCR(E).

A projective function Λsk is called computationally universal-2 [20] if for all
E,E′ 6∈ V with E 6= E′,(

pk,Λsk(E′),Λsk(E)
)

and
(
pk,Λsk(E′),K

)
are computationally indistinguishable, where sk

$←SK and K
$←K. Formally,

consider an adversary A = (Afind,Aguess) in the following experiment.

Experiment Expcu2
A (κ) :(

group,SK,PK,K, E ,V,Λ(·)(·), µ
)
← Param(1κ)

sk
$←SK, pk ← µ(sk), E′

$←E \ V,K ′ ← Λsk(E′)

(E ∈ E \ V, state)← AEvalsk(·)
find (pk,E′,K ′)

b
$←{0, 1},K(0)← Λsk(C),K(1)

$←SK
b′ ← Aguess(state,K(b))

If b′ = b then return 1 else return 0

Fig. 4. Our generic KEM from hash proof system (Param,Pub,Priv).

KG(1κ) : Encap(pk) : Decap(sk, C) :

Run Param to define Take random witness r Parse C = (E, t)(
group,SK,PK,K, E = E(r)

$←V v ← Priv(sk,E)
E ,V,Λ(·)(·), µ

)
v ← Pub(pk,E, r) (ks, ka)← KDF(v)

sk
$←SK (ks, ka)← KDF(v) If t = MACka(E)

pk ← µ(sk) t← MACka(E) return ks
Return (pk, sk) Return C = (E, t) and K = ks Else return ⊥

where the oracle Evalsk(F) returns Λsk(F) if F ∈ V and ⊥ otherwise. Compu-
tational universality requires that

Advcu2
A (κ) = Pr[Expcu2

A (κ) = 1]

is negligible for all poly-time A.

Hash proof system. A hash proof system HPS consists of three algorithms
(Param,Pub,Priv) described as follows. Algorithm Param(1κ) first generates the
description of group, SK, PK, K, E , V, Λ(·)(·), and µ : SK → PK. Algorithm
Pub(pk,E, r) returns K = Λsk(E) for E ∈ V, where the computation does not
use sk but makes use of r, a witness of the fact that E ∈ V. Algorithm Priv(sk,E)
returns Λsk(E).

4.2 IND-CCA-secure KEM from hash proof systems

The KEM is depicted in Figure 4. The descriptions of symmetric building blocks
KDF and MAC are in Section 2.

Theorem 2 The generic construction of KEM in Figure 4 is IND-CCA-secure.

Proof. We proceed in games as follows.

Game0: This game is the IND-CCA attack game with leakage. Without loss of
generality, assume that E∗, r∗ are generated at the beginning of the game.

Game1: Compute Pub(pk,E∗, r∗) in the challenge encapsulation as Priv(sk,E∗).
This change is only notational since Priv(sk,E∗) = Pub(pk,E∗, r∗) = Λsk(E∗)
so that Pr[X0] = Pr[X1].

Game2: Take E∗
$←C \ V. We have

|Pr[X1]− Pr[X2]| ≤ Advsm
A2

(κ) (11)

thanked to the subset membership problem. The running time of A2 in the
worst case is that of A plus time for doing some computations in the hash proof
systems and time for some symmetric operations, so is of polynomial time.

Game3: Any decapsulation query (E, t) with E 6= E∗ and E 6∈ V is answered
by ⊥. Let Q be the total number of decapsulation queries, we have

|Pr[X2]− Pr[X3]| ≤ QPr[F3] (12)

where F3 is the event that a query is rejected by the above rule. The initialization
and the decapsulation oracle are depicted in Figure 5, in which F3 happens
whenever line 8 of decapsulation is reached.

Fig. 5. Oracles in Game3 for the proof of Theorem 2.
Initialization of the game Decapsulation of adversarial query C = (E, t)

I1: ω
$← Trapdoors

I2: sk
$←SK, pk ← µ(sk)

I3: E∗
$←C \ V

I4: v∗ ← Priv(sk,E∗)
I5: (k∗s , k

∗
a)← KDF(v∗)

1: if E = E∗ then
2: if t 6= MACk∗a(E∗) then return ⊥
3: else return k∗s
4: else if E 6∈ V then
5: v ← Priv(sk,E)
6: (ks, ka)← KDF(v)
7: if t 6= MACka(E) then return ⊥
8: else return ⊥
9: else

10: v ← Priv(sk,E)
11: (ks, ka)← KDF(v)
12: if t 6= MACka(E) then return ⊥
13: else return ks
14: end if

Game4: In this game, take v∗
$←K (at line I4) and v

$←K (at line 5 in the
decapsulation). We have

|Pr[X3]− Pr[X4]| ≤ Advcu2
A4

(κ) (13)

|Pr[F3]− Pr[F4]| ≤ Advcu2
A′4 (κ) (14)

where event F4 happens whenever line 8 of decapsulation is reached in this
game. The reasons are that v = Λsk(E) is computationally random conditioned
on pk, v∗ = Λsk(E∗); and that v∗ = Λsk(E∗) is computationally random con-
ditioned on pk, v thanks to the computational universality of the hash proof
system.

Game5: At line I5, take (k∗s , k
∗
a)

$←{0, 1}2n. This is because v∗ is taken randomly
in the previous game. Then there exists an adversary A5 against KDF such that

|Pr[X4]− Pr[X5]| ≤ AdvKDF
A5

(κ). (15)

The description of A5 is the same as its counterpart in the proof of Theorem 1.

Game6: At line 3 in the decapsulation, return ⊥. This is because E = E∗ with
probability 1

|E| before the challenge phase. Moreover, after the challenge phase

when (E∗, t∗) was already announced, querying (E∗, t) with t = MACk∗a(E∗) and
t 6= t∗ to the oracle means the adversary can break the MAC. We have

|Pr[X5]− Pr[X6]| ≤ Q
(

1

|E|
+ AdvMAC

A6
(κ)

)
and Pr[X6] =

1

2
(16)

since (k∗s , k
∗
a) are perfectly random in this game.

The description ofA6 is as follows. Its input is (E∗, t∗) where t∗ = MACk∗a(E∗)
for random key k∗a. It generates the secret key and then simulates the environ-
ment for A. Whenever A queries (E, t) for decapsulation in which t 6= t∗ and
t = MACk∗a(E∗), the adversary A6 halts the simulation and returns (E∗, t).

Game5′ : Now we move back to consider Game4 again. This game is the same

as Game4, except that, (ks, ka)
$←{0, 1}2n at line 6. We have

|Pr[F4]− Pr[F5′]| ≤ AdvKDF
A′5 (κ). (17)

The description of A5 is the same as its counterpart in the proof of Theorem 1.
Since the MAC key ka has been turned random,

Pr[F5′] ≤ AdvMAC
A′′5 (κ) (18)

in which, as a recall, F5′ is the event that a query is rejected at line 8 of the
decapsulation oracle in this game. The descriptions of adversaries A′5 against
KDF and A′′5 against MAC are similar to those in Game5 and Game6.

By (14), (17), and (18),

Pr[F3] ≤ Advcu2
A′4 (κ) + AdvKDF

A′5 (κ) + AdvMAC
A′′5 (κ) (19)

Summing up (11), (12), (13), (15), (16), and (19),

Advind−cca
A (κ) ≤ Advsm

A2
(κ) +Q

(
Advcu2

A′4 (κ) + AdvKDF
A′5 (κ) + AdvMAC

A′′5 (κ)
)

+Advcu2
A4

(κ) + AdvKDF
A5

(κ) +Q

(
1

|E|
+ AdvMAC

A6
(κ)

)
ending the proof. ut

4.3 Instantiation under the DLIN assumption

We use the HPS based on the decisional linear assumption (DLIN) given by
[20]. In this HPS, SK = Z6

q, PK = G4, K = G. Also E = G3 and V =
{(gr11 , g

r2
2 , h

r1+r2) : r1, r2 ∈ Zq}, where g1, g2, h ∈ G. The DLIN assumption
asserts that E and V are indistinguishable. The projective function is

Λsk(u1, u2, u3) = ux1+αy1
1 ux2+αy2

2 uz+αz
′

3 ⇐⇒ Λsk(u1, u2, u3) = (c1d
α
1)r1(c2d

α
2)r2

using the same notations as in Figure 6. To check E ∈ E \ V in Figure 5, use
trapdoors logg1 h ∈ Zq and logg2 h ∈ Zq.

Fig. 6. Our DLIN-based KEM (above) and DCR-based KEM (below).

KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2, h
$←G r1, r2

$← Zq Parse C = (u1, u2, u3, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr11 , u2 ← gr22 α← TCR(u1, u2, u3)

(z, z′)
$← Z2

q u3 ← hr1+r2 v ← ux1+αy11 ux2+αy22 uz+αz
′

3

c1 ← gx11 hz, c2 ← gx22 hz α← TCR(u1, u2, u3) (ks, ka)← KDF(v)

d1 ← gy11 hz
′
, d2 ← gy22 hz

′
v ← (c1d

α
1)r1(c2d

α
2)r2 If t = MACka(u1, u2, u3)

pk ← (g1, g2, h, (ks, ka)← KDF(v) return ks
c1, d1, c2, d2) t← MACka(u1, u2, u3) Else

sk ← (x1, x2, y1, y2, z, z
′) Return C = (u1, u2, u3, t) return ⊥

Return (pk, sk) and K = ks

KG(1κ) : Encap(pk) : Decap(sk, C) :

g
$←G, g2 ← gN1 r

$←{0, . . . , N1/4} Parse C = (u, t)

(x, y)
$←SK u← gr2 mod N2

1 α← TCR(u)
c← gx2 mod N2

1 α← TCR(u) v ← ux+yα mod N1

d = gy2 mod N2
1 v ← (cdα)r mod N1 (ks, ka)← KDF(v)

pk = (N1, g2, c, d) (ks, ka)← KDF(v) If t = MACka(u)
sk ← (x, y) t← MACka(u) return ks
Return (pk, sk) Return C = (u, t) and K = ks Else return ⊥

Lemma 1 (Lemma 6.3 in [20]). The above hash proof system is computa-
tionally universal-2 if TCR is target collision resistant.

Our DLIN-based KEM appears in Figure 6. The symmetric building blocks
are TCR : G3 → Zq, KDF : G → {0, 1}2n, and MAC : {0, 1}n × G3 → {0, 1}τ .
Security requirements are given in Section 2.

Theorem 3 The construction of KEM in Figure 6 is IND-CCA-secure under
the DLIN assumption.

Proof. Directly from Lemma 1 and Theorem 2. ut

4.4 Instantiation under the DCR assumption

We use the HPS based on the decisional composite residuosity assumption
(DCR) given in [20]. Let p1 = 2p2 + 1 and q1 = 2q2 + 1 be primes, where
p2 and q2 are also primes. Let N1 = p1q1 and N2 = p2q2. Let G be the subgroup
of Z∗

N2
1

with order N1N2. Note that G is written as G = GN1 · GN2 where GNi
denotes a cyclic group of order Ni. Let g be a generator of G, so that g1 = gN2

is a generator of GN1 and g2 = gN1 is a generator of GN2 .
In this HPS, SK = {0, . . . , bN2

1 /2c}2, PK = G2
N2

, K = ZN1
. Also E = G and

V = {gr2 mod N2
1 : r ∈ {0, . . . , N1/4}}. The DCR assumption says that E and V

are indistinguishable. To check E ∈ E \ V in Figure 5, use trapdoor N2.
The projection function is, using the same notation as in Figure 6,

Λsk(u) = ux+yα mod N1 ⇐⇒ Λsk(u = gr2 mod N2
1) = (cdα)r mod N1.

Lemma 2 (By [14,20]). The above hash proof system is computationally uni-
versal 2 if TCR is target collision resistant.

Our DLIN-based KEM appears in Figure 6, which uses symmetric building
blocks TCR : ZN2

1
→ ZbN2

1 /2c, and KDF : ZN1
→ {0, 1}2n, and MAC : {0, 1}n ×

ZN2
1
→ {0, 1}τ .

Theorem 4 The construction of KEM in Figure 6 is IND-CCA-secure under
the DCR assumption.

Proof. Directly from Lemma 2 and Theorem 2.

References

1. International Organization for Standardization, Genève, Switzerland. ISO/IEC
18033-2:2006, Information technology — Security techniques — Encryption Al-
gorithms — Part 2: Asymmetric Ciphers, 2006. Final Committee Draft available
at http://shoup.net/iso/.

2. Cryptography Research and Evaluation Committees (CRYPTREC). Specifications
of ciphers in the Candidate Recommended Ciphers List, March, 2013. http://www.
cryptrec.go.jp/english/method.html.

3. M. Abdalla, M. Bellare, and P. Rogaway. DHIES: An encryption scheme based
on the Diffie-Hellman problem, 2001. http://cseweb.ucsd.edu/~mihir/papers/

dhies.html.
4. M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A new framework for

hybrid encryption. J. Cryptology, 21(1):97–130, 2008.
5. American National Standards Institute. ANSI X9.44-2007: Key Establishment

Using Integer Factorization Cryptography, 2007.
6. H. Anada and S. Arita. Identification schemes from key encapsulation mechanisms.

IEICE Transactions, 95-A(7):1136–1155, 2012.
7. Apple Inc. iOS Security, October 2012. https://www.apple.com/ipad/business/

docs/iOS_Security_Oct12.pdf.
8. J. Baek, D. Galindo, W. Susilo, and J. Zhou. Constructing strong KEM from weak

KEM (or how to revive the KEM/DEM framework). In R. Ostrovsky, R. D. Prisco,
and I. Visconti, editors, SCN, volume 5229 of Lecture Notes in Computer Science,
pages 358–374. Springer, 2008.

9. D. J. Bernstein. Pippenger’s exponentiation algorithm, 2002. http://cr.yp.to/

papers/pippenger.pdf.
10. C. Boyd, Y. Cliff, J. M. G. Nieto, and K. G. Paterson. One-round key exchange

in the standard model. IJACT, 1(3):181–199, 2009.
11. S. G. Choi, J. Herranz, D. Hofheinz, J. Y. Hwang, E. Kiltz, D. H. Lee, and M. Yung.

The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure. Inf.
Process. Lett., 109(16):897–901, 2009.

12. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO,
volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer, 1998.

13. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33:167–226, 2001.

14. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In L. R. Knudsen, editor, EUROCRYPT,
volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer, 2002.

15. Y. Desmedt, R. Gennaro, K. Kurosawa, and V. Shoup. A new and improved
paradigm for hybrid encryption secure against chosen-ciphertext attack. J. Cryp-
tology, 23(1):91–120, 2010.

16. A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Strongly secure authenti-
cated key exchange from factoring, codes, and lattices. In M. Fischlin, J. Buch-
mann, and M. Manulis, editors, Public Key Cryptography, volume 7293 of Lecture
Notes in Computer Science, pages 467–484. Springer, 2012.

17. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 537–554. Springer, 1999.

18. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptology, 26(1):80–101, 2013.

19. J. Herranz, D. Hofheinz, and E. Kiltz. The Kurosawa-Desmedt key encapsulation
is not chosen-ciphertext secure. IACR Cryptology ePrint Archive, 2006:207, 2006.

20. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsu-
lation. Cryptology ePrint Archive, Report 2007/288, 2007. http://eprint.iacr.
org/. Full version of a paper at CRYPTO 2007.

21. IEEE P1363a Committee. IEEE 1363a-2004: Standard Specifications For Pub-
lic Key Cryptography – Amendment 1: Additional Techniques, 2004. http:

//grouper.ieee.org/groups/1363/P1363a/.

22. E. Kiltz. Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-
Hellman. In T. Okamoto and X. Wang, editors, Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 282–297. Springer, 2007.

23. H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A
systematic analysis. In R. Canetti and J. A. Garay, editors, CRYPTO (1), volume
8042 of Lecture Notes in Computer Science, pages 429–448. Springer, 2013.

24. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In M. K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer
Science, pages 426–442. Springer, 2004.

25. National Institute of Standards and Technology. Recommended elliptic curves
for federal government use, 1999. http://csrc.nist.gov/groups/ST/toolkit/

documents/dss/NISTReCur.pdf.

26. T. Okamoto. Authenticated key exchange and key encapsulation in the standard
model. In K. Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture Notes in
Computer Science, pages 474–484. Springer, 2007. Revised version available at
http://eprint.iacr.org/2007/473.

27. PSEC-KEM website. http://info.isl.ntt.co.jp/crypt/eng/psec/contents.

html.

28. The Standards for Efficient Cryptography Group. SEC 1: Elliptic Curve Cryptog-
raphy, 2000. http://www.secg.org/secg_docs.htm.

29. K. Yoneyama. Compact authenticated key exchange from bounded CCA-secure
KEM. In G. Paul and S. Vaudenay, editors, INDOCRYPT, volume 8250 of Lecture
Notes in Computer Science, pages 161–178. Springer, 2013.

A A variant of our DDH-based KEM

Here we describe a variant of the KEM in Figure 1. The encapsulation is the
same, while key generation and decapsulation are different. In decapsulation,
one needs one group membership check that u1 ∈ G, which in turn ensures that
u2 ∈ G and v ∈ G.

Fig. 7. An optimization of the KEM in Figure 1.
KG(1κ) : Encap(pk) : Decap(sk, C) :

g1
$←G r

$← Zq Parse C = (u1, u2, t)

(x, y, ω)
$← Z3

q u1 ← gr1 , u2 ← gr2 If u2 6= uω1 : return ⊥
g2 ← gω1 α← TCR(u1, u2) α← TCR(u1, u2)

c← gx1 v ← crdrα v ← ux+αy1

d← gy1 (ks, ka)← KDF(v) (ks, ka)← KDF(v)
pk ← (g1, g2, c, d) t← MACka(u1, u2) If t = MACka(u1, u2)
sk ← (x, y, ω) Return C = (u1, u2, t) return ks
Return (pk, sk) and K = ks Else return ⊥

B Comparison with other KEMs in the random oracle
model

In this section, we compare our DDH-based KEMs with other standardized
schemes whose security were examined in the random oracle model. As will be
clear below, the decapsulation cost in our KEMs is comparable, or even lesser,
those in the KEMs.

ECIES-KEM. The scheme was originally developed by Abdalla, Bellare, and
Rogaway [3]. Other names are DHES and as DHAES. Versions of the scheme
are in ISO 18033-2 [1], IEEE 1363a [21], and SECG/SEC1 [28]. For comparison
in Table 3, we use the version in [1].

PSEC-KEM. The scheme [27] was originally developed at Nippon Telegraph
and Telephone corporation based on the work of Fujisaki and Okamoto [17]
(refined in [18]). The KEM appears in ISO/IEC 18033 [1], and in the Candidate
Recommended Ciphers List of CRYPTREC [2]. The one we use for comparison
on Table 3 is described in [1].

Comments on Table 3. On decapsulation efficiency, ignoring group member-
ship checks, then ECIES-KEM is the fastest with 1 (se), next comes ours in
Figure 1 with 1 (me) counted as 1.2 (se), then PSEC-KEM with 2 (se).

Concerning security assumption, one has to make choices between the compu-
tational Diffie-Hellman assumption (CDH) in PSEC-KEM, gap CDH in ECIES-
KEM (both in the random oracle model), or DDH in standard model in ours.

The seed length |seed| must be set up so that Q/2|seed| is negligible where
Q is the number of decapsulation queries, so that roughly the encapsulation in
PSEC-KEM is |q| bits lesser than ours.

Our encapsulation is a bit less efficient than both ECIES-KEM and PSEC-
KEM by 1 multi-exponentiation.

Table 3. Comparison between our KEMs, ECIES-KEM, PSEC-KEM. Abbreviations:
rom = random oracle model, std = standard model, others are identical to Table 2.

Scheme Assumption Encap [Encap]; [Decap] [pk, sk] size
and Model length main costs of computation

ECIES-KEM gapCDH, rom |q| [0 me, 2 se]; [0 me, 1 se, 1 gmc] [1 el, 1 el]
PSEC-KEM CDH, rom |q|+ |seed| [0 me, 2 se]; [0 me, 2 se, 1 gmc] [1 el, 1 el]

Figure 1 DDH, std 2|q|+ |t| [1 me, 2 se]; [1 me, 0 se, 2 gmc] [4 el, 4 el]
Figure 7 DDH, std 2|q|+ |t| [1 me, 2 se]; [0 me, 2 se, 1 gmc] [4 el, 3 el]

C A speedup algorithm for multi-exponentiation

Algorithm 1 is what we use for computing multi-exponentiation in our imple-
mentation, which is a special case of the Straus’s algorithm [9, Section 3]. Ex-
perimental results are depicted in Figure 8, in which “speedup” uses Algorithm
1, while “trivial” means computing Ux and V y separately and then multiplying
them together. For comparison purpose, timings for a single exponentiation are
also drawn in “single-exp”.

Algorithm 1 Multi-Exp(U, x, V, y) computes Z = UxV y over group G
Require: U, V ∈ G and positive integers x, y ∈ Z
Require: Binary representations x = xn · · ·x1 and y = yn · · · y1
1: W ← UV
2: Z ← 1
3: for i from n to 1 step −1
4: Z ← Z2

5: if (xi = 1 and yi = 0), Z ← Z · U
6: if (xi = 0 and yi = 1), Z ← Z · V
7: if (xi = 1 and yi = 1), Z ← Z ·W
8: Return Z

In Figure 8, perhaps it it worth noting that exponentiations in group G =
(Z∗p)2 ⊂ Z∗p where p = 2q + 1 is a safe prime is relatively expensive. The reason
is that G’s order is q, which is as large as p, so that the exponents x, y can be
of the same magnitude of 1024 bits in length.

In contrast, when p = νq+1 for ν > 2 and q is of 160 bits, exponents x, y are
of at most 160 bits in length, so that the computation becomes more efficient.

16.38

2.63
3.68

5.93

9.65

1.56 2.14
3.5

8.17

1.31 1.83
2.96

0

2

4

6

8

10

12

14

16

18

modp, safe prime modp, not safe prime P-192 B-163

m
ill

is
e

co
n

d
s

Timings of exponentiations

trivial multi-exp

speedup multi-exp

single-exp

Fig. 8. Average timings of trivial and speedup computation of exponentiations, taken
over 10000 executions, over various base groups. Experiment is done over a laptop
(Intel 2.0GHz CPU, 8GB RAM) running Ubuntu 12.04 LTS. The C compiler is g++

4.6.3 using NTL 6.0.0 and GMP 5.1.1 libraries.

