
Multi-user collisions:
Applications to Discrete Logs, Even-Mansour and Prince

Pierre-Alain Fouque1,2 and Antoine Joux3,4 and Chrysanthi Mavromati5,6

1 Université Rennes 1, France
2 Institut Universitaire de France, France
pierre-alain.fouque@univ-rennes1.fr

3 CryptoExperts, France
4 Chaire de Cryptologie de la Fondation de l’UPMC – LIP6, France

antoine.joux@m4x.org
5 Sogeti/ESEC R&D Lab, France

6 Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM, France
chrysanthi.mavromati@sogeti.com

Abstract. In this paper, we investigate the multi-user setting both in public-key and in
secret-key cryptanalytic applications. In this setting, the adversary tries to recover keys
of many users in parallel more efficiently than with classical attacks, i.e., the number of
recovered keys multiplied by the time complexity to find a single key, by amortizing the cost
among several users. One possible scenario is to recover a single key in a large set of users
more efficiently than to recover a key in the classical model. Another possibility is, after some
shared precomputation, to be able to learn individual keys very efficiently. This latter model
is close to traditional time/memory tradeoff attacks with precomputation. With these goals
in mind, we introduce two new algorithmic ideas to improve collision-based attacks in the
multi-user setting. Both ideas are derived from the parallelizable collision search as proposed
by van Oorschot and Wiener. We recall that this collision search uses precomputed chains
obtained by iterating some basic function. In our cryptanalytic application, each pair of
merging chains can be used to correlate the key of two distinct users. The first idea is to
construct a graph, whose vertices are keys and whose edges are these correlations. When the
graph becomes connected, we simultaneously recover all the keys. Thanks to random graph
analysis techniques, we can show that the number of edges that are needed to make this
event occurs is small enough to obtain some improved attacks. The second idea modifies the
basic technique of van Oorschot and Wiener: instead of waiting for two chains to merge, we
now require that they become parallel.
We first show that, using the first idea alone, we can recover the discrete logs of L users in a
group of size N in time Õ(

√
NL), without any special restriction on the value of L. As a first

application of these two ideas put together, we show that in the multi-user Even-Mansour
scheme, all the keys of L = N1/3 users can be found with N1/3+ε queries for each user
(where N is the domain size). Finally, we consider the PRINCE block cipher (with 128-bit
keys and 64-bit blocks) and find the keys of 2 users among a set of 232 users in time 265. We
also describe a new generic attack in the classical model for PRINCE that is better than all
published attacks.

1 Introduction

The multi-user setting is a very interesting practical scenario, which is sometimes overlooked in
cryptography. Indeed, cryptosystems are designed to be used by many users, and usually cryptog-
raphers prove the security of their schemes in a single-user model except in some cases such as key
exchange, public-key encryption and signatures. At EUROCRYPT 2012, Menezes gave an enlight-
ening invited talk pointing out the discrepancy between security proofs for message authentication

2 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

code in the single-user and in the multi-user setting. He showed that there is a straightforward
reduction between the security proof for one user and the security proof for L users with a success
probability divided by L. Next, he recalled the key collision attack due to Biham [1] that matches
this bound and that can be applied on various deterministic MACs (CMAC, SIV, OCB, EME, . . .).
In this attack, the adversary asks the MAC tag of a single message M for L different users; we call
this the set of secret MACs. Then, for a subset W of size N/L of known keys (N is the key size),
he computes MAC(k,M) for all k ∈ W and builds the set of public MACs. If a collision occurs
between the public and secret sets, then we learn one of the L secret keys7. For MAC schemes with
an 80-bit security level, it is possible with time/memory tradeoff to make this reasonably practical
and derive a key recovery of a single key among a set of L = 220 users, using time and memory
240. Menezes thus insists that cryptographers have to consider this practical setting when devising
or analyzing cryptosystems.

In this paper, we are interested in collision-based attacks [17] in the multi-user setting. We
rely on the distinguished point technique to propose new attacks on the generic discrete logarithm
problem, on the Even-Mansour cipher and on PRINCE. Collision-based methods have been nicely
improved by van Oorschot and Wiener to become parallelizable using the distinguished point
technique of Rivest and Quisquater and Delescaille [16]. Here, we extend these methods and apply
them to cryptanalysis in the multi-user setting.

Our Contributions. From a cryptanalytic point of view, there are many ways to perform attacks
in the multi-user setting. In this paper, we are interested by several scenarios. The first option is to
recover all the users’ keys (or a large fraction thereof) in time less than the product of the number
of users by the time complexity to recover one key. Another direction is to improve Biham’s attack
and recover a single key in the multi-user setting with a reduced memory cost. Finally, we consider
time/memory attacks starting with a precomputation whose result can then be used later to recover
individual keys much faster.

Giant connected component. The multi-user setting for the discrete logarithm problem has been
studied by Kuhn and Struik in [13]. They show that it is possible to adapt the parallel version of
the Pollard rho technique with distinguished points to recover L keys in time

√
NL where N is the

size of the group as long as L � 4
√
N . In the parallel version of Pollard’s rho method described

by van Oorschot and Wiener (see App. D), we run random walks in parallel, stop them once a
distinguished point is reached and store this value for many starting points. We get a public set of
distinguished points for the walks that begin at ya = ga for which we know a and a secret set from a
user public key y for starting points ygb where b is known. Kuhn and Struik generalize this method
by using many secret sets, one for each user. Once a distinguished point appears twice in the public
and secret sets, the discrete logarithm of one user can be discovered, and consequently, we also
know the discrete log of all the distinguished points that were discovered during the random walks
for this user. Therefore, as the number of “known” points increase, the probability of a collision
between a secret point and a known one becomes higher.

Here, we show another method that works without any restriction on L and seems preferable.
Indeed, we do not have to wait until the first collision between a public point and a secret one
happens but we also consider collisions between secret points. More precisely, as soon as a collision
between the public walks and the secret walks happens, we learn many discrete logarithms, since
when two secret chains collide, we learn the difference between the discrete logarithm. We can then
construct a graph whose vertices are the users and we add an edge if we know the difference of the
discrete logarithm between these users. At some point, when the number of edges becomes slightly
larger than the users, a giant component emerge in our random graph and if the public user is in

7 Provided that the tag length is greater than the key length.

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 3

this component (with high probability in time 2L lnL), then the discrete logarithm of all users
will be known.

Lambda Method for two different Even-Mansour style functions. We were also able to apply similar
techniques on Even-Mansour with domain size N . Indeed, using some functions related to the
encryption scheme, we show that we can learn the Xor between the keys of two users. The previous
technique can also be used to recover the keys of all users. However, in this case, we get a new
problem: the two functions we iterate are no longer the same. Consequently, contrary to the DL
case, once a collision appears, the chains will no longer merge and we cannot use distinguished point
technique. To solve this issue, we tweak the two functions and define related functions that will no
longer merge but become parallel. We show that this parallel method is as efficient as the previous
one. For instance, we show an attack that partially solves an open problem of Dunkelman et al.
that asked to find a memoryless attack on Even-Mansour with D queries to the secret function and
T = N/D to the public function with D �

√
N . We propose an attack that matches these bounds

(D = N2/5, T = N3/5) but where the memory is N1/5 as an application of our lambda-method.
Furthermore, we also describe a multi-user attack which allows to learn all the keys in a set of
N1/3 users in data complexity N1/3+ε to each user and T = N1/3+ε time complexity by combining
the two algorithmic tools. This attack exhibits new tradeoff where the amortized data complexity
per user times the time complexity is reduced to N2/3+ε instead of N .

Application to Prince. PRINCE cipher [5] is a new block cipher recently introduced at ASI-
ACRYPT 2012 with blocklength 64 bits and keylength 128 bits. Its design has a α-reflection
property which is a related-key relation that transforms the decryption algorithm to the encryp-
tion process with a related-key. Here, we first propose generic attacks on the full number of rounds
while previous attacks can only break reduced-versions up to 8 rounds among the 12 rounds or
for specific value of α but not the one in the original cipher. Our attacks are similar to the one
on Even-Mansour but we have to take into account that in PRINCE, the internal permutation
uses a secret key. Our attacks make use both of the α-reflection property and of the specific key
scheduling of PRINCE. Our first attack allows to recover the keys of two users among a set of
232 users in time 265 and the second one allows to recover the keys of all users in time 232 after a
precomputation of time 296 and 264 in memory.

Organization of the paper. In section 2, we present our results on the discrete-log problem in
the multi-user setting and we use the properties of random graph in this setting. Then, we present
various results concerning the security of Even-Mansour: new time/memory/data tradeoffs, new
time/memory attack solving the open problem of Dunkelman et al. and in the multi-user setting. In
this part, we show how we can adapt the lambda-method when looking collisions for two different
functions based on the Even-Mansour idea. Finally, in the last section, we present various generic
attacks on the PRINCE block cipher, one in the multi-user setting and the other in the classical
model which outperforms the best known attacks.

2 Discrete Logarithms in the Multi-User Setting

In this section, we present a new algorithmic idea for performing time/memory attacks with distin-
guished points in the multi-users setting. Our technique allows to compute the discrete logarithms
of L public keys yi = gxi for i = 1, . . . , L in time Õ(

√
NL)8 for any value of L where N = |〈g〉|.

Starting from the parallel version of Pollard-rho method [17], we compute cL/2 chains consisting
of pseudo-random walks from yi (c/2 chains for each user by randomizing the starting point) until

8 In this notation, we hide logarithmic terms.

4 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

we discover a distinguished point di ∈ S0 where S0 denotes the set of distinguished points 9.
Then, all distinguished points found are sorted and each collision between the distinguished points
of different users di and dj reveals a linear relation between xi and xj . We also compute a few
chains starting from random points for which the discrete-log is known gx0 . Finally, we construct
the random graph where the edges are the public keys and we add an edge between yi and yj
if we have a collision between di and dj (this process can be described more formally using a
random graph process as it is recalled in appendix A). This edge is labelled with the linear relation
between xi and xj . Once we have computed a sufficient number of collisions, a small constant time
the number of users, then a giant component will appear with high probability. More precisely, in
a graph with L vertices and cL/2 randomly placed edges with c > 1, there is a giant component
whose size is almost exactly (1− t(c))L, (see [4] recalled in appendix A)

t(c) =
1

c

∞∑
k=1

kk−1(ce−c)k

k!
.

For c = 4, 1−t(c) = 0.98. The discrete-log of all the points in the component of the x0’s are known.
If we want to recover the discrete logarithm of all users with overwhelming probability, we need
2L lnL edges to connect all connected component according to the coupon collectors problem and
not cL/2, as it is recalled in theorem 2 (see appendix A).

Let ` the average length of the chains and S0 the set of distinguished points. The average
size of each chain is ` = N/|S0|. Assume we have computed i chains that do not collide, the
probability that the (i + 1)th chain collides with one of the previous is i` × `/N (according to
theorem 3 in appendix A for the expected number of collisions between two pseudo-random walks).
Consequently, the expected number of collisions Coll is

E[Coll] =

L−1∑
i=1

i`2

N
≈ L2

2
· `

2

N
=
L2

2
· (N/|S0|)2

N
=

L2N

2|S0|2
.

Since we want that the number of collision be larger than cL/2, then L2N/2|S0|2 ≥ cL/2, so
|S0| ≤

√
LN/c. Consequently, the overall cost is dominated by the computation of the chains, i.e.

L × N/|S0| which is about
√
cLN if |S0| =

√
LN/c. Finally, in order to have cL/2 edges in our

graph, we ask for each user to compute a small number of chains using a small number of random
input points of the form gxi+ri for known value of ri. The overall complexity of our attack is
Õ(
√
NL) for any value of L while Kuhn and Struik attack achieves the value

√
2LN for L� 4

√
N .

3 Even-Mansour in the Multi-User Setting

In this section, we describe new results concerning the security of the Even-Mansour scheme which
has recently been the subject of many papers [8, 14]. We recall the basic attacks and then, we
present a basic Time/Memory tradeoff for known plaintext attack with better on-line complexity
(§3.3) and a better Time/Memory tradeoff for adaptive queries (§3.4). For this attack, we introduce
our second algorithmic trick to discover collision for two different functions based on the Even-
Mansour construction. The main difficulty we have to solve is that when a lambda-like method is
used to recover collision, if two different functions are used, after the collision, the chain will no
longer merge. To this end, we adapt the lambda-method to have parallel chains when the collision
happens. Finally we show that in the multi-user setting (§3.5), the precomputation cost can be
amortized when many keys are looking in parallel. It is possible to balance all the complexities to
recover all the keys of N1/3 users with N1/3+ε adaptive queries to each user, a precomputation
time of N1/3+ε and the attack requires N1/3+ε in memory and N1/3+ε for the on-line time.

9 This algorithm can also be adapted to the Pollard-lambda algorithm [15].

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 5

3.1 Recent attacks on Even-Mansour

In [7], Daemen showed that the EM curve TD = N , is valid for a known plaintext attack at the
point (T = N/2, D = 2). He also gave a chosen-plaintext attack that matches the EM curve for
any value of D and T and in particular at the point (T = N1/2, D = N1/2). Later, Biryukov and
Wagner described a sliding attack that matches the EM curve for known-plaintext but only at the
point (T = N1/2, D = N1/2) (See appendix B). Recently, Dunkelman et al. introduce a new twist
on the sliding attack whose complexities match the whole curve for any value of D and T using a
known-plaintext attack which is exactly the result proved by Even and Mansour.

Slidex attack on the Two-Key Even-Mansour. The attack for the two-key EM scheme is a general-
ization of the advanced sliding attack of [3] where Dunkelman et al. introduce an additional degree
of freedom ∆ and is called the Slidex attack. The slide pair satisfies the property

P ⊕ P ′ = K1 ⊕∆.

For this plaintext pair, we have the following slide pair condition

Π(P)⊕ π(P ⊕∆) = Π(P ′)⊕ π(P ′ ⊕∆).

This allows to mount an attack for any value D ≤ N . First of all, the adversary calls D = 2d/2

times the EM scheme to get the known plaintext encryptions Pi, Π(Pi). Then, for each of 2n−d

arbitrary values for ∆ he stores the value i in a hash table indexed by Π(Pi) ⊕ π(Pi ⊕ ∆) and
searches for a slide pair in the hash table by checking the slide pair condition. Then each collision
between (Pi, Pj) with ∆k will give key candidates K1 = Pi⊕Pj⊕∆k and K2 = Π(Pi)⊕π(Pj⊕∆k).
This is a known-plaintext attack which works for any value D < N1/2. We will see later that one
problem with this attack is that it is not possible to use precomputation.

3.2 Simpler collision-based attack on the Single-Key Even-Mansour

In the single-key case a simpler attack achieves the same performance but the drawback of this
attack is that it is an adaptive attack (or chosen-plaintext attack) and no longer a known attack as
the security model of Even and Mansour. The basic idea is to apply the Davies-Meyer construction
to Π and to π. More precisely, write:

FΠ(x) = Π(x)⊕x and Fπ(x) = π(x)⊕x.

For any value of x, the equality FΠ(x) = Fπ(x⊕K) is satisfied. Moreover, any collision between
these two functions FΠ(x) = Fπ(y) indicates that x⊕y is a likely candidate for the key K.

With this idea in mind, the problem of attacking the single key Even-Mansour scheme is reduced
to the problem of finding a collision (or rather a few collisions) between FΠ and Fπ. The simplest
approach is simply to compute Fπ on T distinct random values and FΠ on D distinct random
values. When DT ≈ N , one expects to find the required collisions.

Moreover, this can be done in a more efficient way by using classical collision search algorithms
with reduced memory. Indeed, it is possible to use Floyd’s cycle finding algorithm to obtain such
a solution for the special case D = T = N1/2, without using memory. However, in this case the
attack is no longer a known-plaintext attack and becomes an adaptively chosen plaintext attack.

Dunkelman, Keller and Shamir ask the questions whether it is possible to generalize this and
to find memoryless attacks using D queries to Π and N/D to π where D � N1/2 ?

In the sequel, we partially answer this question, proposing attacks that use less than D � N1/2

data and memory lower than min(T,D).

6 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

3.3 Extending the simple attack

Dealing with two keys Even-Mansour. A first important remark is that the simple attack on Single-
Key EM can be extended to the two-key case. The idea is simply to replace the function π(x)⊕x
by another function with similar properties. A first requirement is that the chosen function need to
be expressed by two different formulas, one based on π and the other on Π. The other requirement
is that a collision on two evaluations, one of each type, should yield good candidates for the keys.

We now construct the required function and show that the simple attack on the single-key
variant can be extended to two keys. We first choose a random non-zero constant δ and let:

FΠ(x) = Π(x)⊕Π(x⊕δ) and Fπ(x) = π(x)⊕π(x⊕δ).

We remark that FΠ(x) = Fπ(x⊕K1) and that FΠ(x⊕δ) = Fπ(x⊕K1) are both satisfied. As a
consequence, every collision now suggests two distinct input keys K1 = x⊕y and K1 = x⊕y⊕δ.
Except for this detail, the attack remains unchanged. Note that once K1 has been found, recovering
K2 is a trivial matter.

Reducing the on-line time complexity. In this section, we focus on known-plaintext attacks and we
first show that the EM security model does not separate the on-line and off-line time complexi-
ties, as usually done in time/memory/data tradeoff. It is then possible to use time/memory/data
tradeoff for this blockcipher design as suggested in [2] by Biryukov and Shamir.

Let us separate the on-line time denoted by Ton and the off-line time denoted by P . Clearly,
the total time complexity T is Ton + P .

The main idea of this section is to use a different approach to find a collision between FΠ and
Fπ. More precisely, given a value of FΠ , we try to invert Fπ on this value. If we succeed, we clearly
obtain the desired collision. In order to inverse Fπ, we rely on Hellman’s algorithm. The T/M/D
tradeoff is

TonM
2D2 = N2 and D2 ≤ Ton ≤ N.

In order to fully use Hellman tradeoff with multiple tables, we can use the δ in the definition of
the function Fπ(x) = π(x)⊕ π(x⊕ δ) to define different and independent functions for each table.
These attacks are described in appendix C and achieves TonD � N while TD = N .

Using less data than memory. Despite its optimal efficiency in term of known-plaintext attack
matching the EM curve, the Slidex attack presents an important drawback. Indeed, the public
permutation π needs to be evaluated at points which depend on the result of the queries to the
keyed Even-Mansour construction Π. As a consequense, with this attack, it is not possible to
precompute the queries to π in order to improve the online time required to obtain the key to Π.

Our previous attack based on Hellman’s tables no longer requires adaptive queries, however,
it is less costly than the Slidex attack in term of on-line time complexity but more costly than
the simple collision-based attack (which uses adaptive chosen plaintext). The goal of the next
subsection is to present an attack on Π, which is based on classical collision search algorithms and
works by using queries to π and Π without any cross-dependencies. However, the queries to Π are
adaptive but this new attack is more flexible to perform time/memory tradeoff.

3.4 Time/Memory/Data tradeoff attack on the Single-Key Even-Mansour

Attacking Even-Mansour using distinguished points methods. In order to attack Even-Mansour
using a distinguished point method as it is recalled in appendix D, we would like to construct a set
of chains using the public permutation π and then find a collision with a chain obtained from the
keyed permutation Π. One difficulty is that chains computing from π and from Π can never merge
since they are based on different functions contrary to discrete-log section. We introduce here a

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 7

new idea to solve this dilemna when the functions are based on the Even-Mansour construction.
Let us define:

FΠ(x) = x⊕Π(x)⊕Π(x⊕δ) and Fπ(x) = x⊕π(x)⊕π(x⊕δ).

We remark that FΠ(x⊕K1) = Fπ(x)⊕K1. As a consequence, two chains based on FΠ and Fπ cannot
merge, but they may become parallel. Moreover, the detection of this good event is compatible
with the distinguished point method. Indeed, it suffices to define a distinguished point x as a point
with a value of π(x)⊕π(x⊕δ) in S0. Since this value is needed to compute the next element in
the chain, using this definition does not add any extra cost for distinguished point detection. The
important point, is that for a parallel chain based on FΠ , a point X = x⊕K1 corresponds to a
distinguished point x if and only if Π(X)⊕Π(X⊕δ) is in S0.

An important difference compared to the classical search for collisions is that we do not need
to backtrack to the beginning of the chains and identify where the chains merge. Indeed, seeing
parallel distinguished points suffices to get candidates values for K1.

Analysis of the attack. Since there is a clear symmetry between the keyed and unkeyed queries, we
may assume that the number of unkeyed queries T is larger than the number of keyed queries D.
Moreover, this is the most reasonable scenario, since keyed queries are usually the most constrained
resource. In this case, we need to choose the expected length ` of the chains we are going to construct
and the number BT of unkeyed chains that satisfy the following relations:

T = ` ·BT and N = BT · `2.

Thus, ` = N/T and BT = T 2/N . The required memory to store those chains is of size O(BT).

After terminating the computation of the unkeyed chains, we can turn to the keyed side. On
this side, we want to perform about D = N/T evaluations of the function. Since D = `, this means
that we compute a single keyed chain and expect it to (parallel) collide with an unkeyed chain.

We are interested in values for M such that M < D. Consequently, as M = T/D = N/D2, we
have N < D3. Let us consider N1/3 < D = Nα < N1/2. For example, if D = N2/5 and T = N3/5,
then M = N1/5 is much smaller than N2/5. This attack requires a number of data D � N1/2 and
despite this attack is not memoryless (as in the open problem), the memory is less than the data.

3.5 The multi-user setting

In the multi-user setting, we assume that L different users are all using the Even-Mansour scheme
based on the same public permutation π, with each user having its own key10, chosen uniformly
at random and independently from the keys of the other users.

Of course, the attack from Section 3.4 can be easily applied in this context. Depending on the
exact goal of the cryptanalysis, we have two main options:

1. If the goal is to recover the key of all users, the previous attack can be applied by repeating the
D key-dependent queries for each user, while amortizing the T unkeyed queries across users.
A typical case is to consider L = N1/3 users, to perform T = N2/3+ε unkeyed queries (N1/3+ε

chains of N1/3 queries, memory N1/3). For each new user, we need N1/3+ε key-dependent
queries. As a consequence, the amortized cost per user (up to constant factors c0 = 20) is
N1/3+ε queries of each type and the required memory also is N1/3.

2. If the goal of the cryptanalyst is to obtain at least one user key among all the users, it suffices
to split the D key-dependent queries arbitrarily across the users.

10 Or key-pair depending on whether we are considering the single or dual key scheme.

8 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

However, we show in this section that in the multi-user context, a much more efficient tradeoff
becomes possible, without precomputation in N2/3, by distributing the unkeyed queries among the
users by reusing the graph algorithmic idea of the section 2. We construct a graph whose vertices
are labelled by the users. Whenever we obtain a collision between the function FΠ

(i) of user i and
the function FΠ

(j) of user j, we add an edge between the corresponding vertices labelled with x⊕y
where FΠ

(i)(x) = FΠ
(j)(y) which is expected equal to K(i) ⊕K(j). Note that this indicates that

we know the exclusive-or of the first keys of the two users.
If we have L vertices and cL/2 randomly edges with c = 4, there is a giant component whose

size is 98% of the points, and with cL lnL, all the points are in the component with overwhelming
probability (see theorems 1 and 2 in appendix A). Consequently, we obtain the exclusive-or of the
first keys for an arbitrary pair of users. To conclude the attack, it suffices to find a single collision
between any of the users function FΠ of the large connected component and the unkeyed function
Fπ to reveal all the keys of these users.

Algorithm Description.

1. Create a constant number c/2 of chains for each user up to a distinguished point.
2. Sort the distinguished points.
3. Bring together the distinguished points into subsets, where we test whether the key candidate

is really the good one. It is indeed easy to check with a few more queries if the xor of two keys
is correct.

4. Construct the giant component and expect that the public user (the user with the unkeyed
function), lies in this giant component. To this end, we initially begin with the set of reachable
users containing only the public user. Then, we add to this set all the users that are in a group
where a reachable user is present. At some point, the reachable set is stable and we stop.

5. From the public user, we cross over the giant component and determine the keys of each user.

The first step requires cL`/2 data and time O(c`) on average per users where ` is the average
length of the chains. Then, remaining steps are performed in time linear in the number of users
L. Typical parameters are: for an arbitrary small positive constant c, we expect with N1/3 users,
c.N1/3 queries per user and N1/3 unkeyed queries, to recover almost all the N1/3 keys with over-
whelming probability. If we want to recover all users, we need to have L lnL = cN1/3 lnN = N1/3+ε

edges (instead of cL/2) to connect all components according to the coupon collector’s problem re-
called in theorem 2 in appendix.

Analysis of the attack. We want to use results from graph theory to prove the correctness of our
algorithm, this means that we have to prove that the assumptions of the giant component theorem
are satisfied. We have to show that we construct of a random graph according to the Erdös-Rényi
model of random graphs, in which each possible edge connecting pairs of a given set of L vertices
is present, independently of the other edges, with probability p. In this case, we know that with
this model of random graph, if the number of edges c.L/2 is larger than the number of vertices
L, there is with high probability a single giant component, with all other components having size
O(logL) according to [4] recalled in theorem 1 in appendix.

Consequently, we need to prove that we construct a random graph and that the edges are added
independently of each others. We will define an idealized version of the attack and we will show
that the attack works in this version. Then, we will prove that the idealized version and the attack
are equivalent using simulation argument.

In the idealized model, the simulator randomly chooses L keys K1, . . . ,KL uniformly at random.

Then it iterates the functions F
(i)
Π (x) = Ki⊕Fπ(x⊕Ki) until x`⊕Ki ∈ S0, where S0 is the set of

pairs containing a distinguished point di and an identificator of this point id(di). The identificators
are unique, which means that we do not have collision on them. Finally, the simulator reveals the

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 9

identificator of the point x` ⊕ Ki and the point x`. The value Ki cannot be recovered from the
information that the simulator returns.

To show that the attack works in this ideal model, we just have to see that if two users have
the same identificator, then x`⊕Ki = x`′ ⊕Kj and therefore x`⊕x`′ = Ki⊕Kj which is the same
information as in the real attack.

Now, we will prove that the simulator does not need to know F
(i)
Π and can simulate the in-

formation by only using the public random function Fπ and that the distribution of its outputs
is indistinguishable from the idealized model. The simulator generates at random L random keys
for the EM scheme. For each key, we will show that the pairs distinguished point/identificator can

be generated only using Fπ. Indeed, x` the `th iteration of F
(i)
Π with key Ki from the value x0

is the value Ki ⊕ x` and this value is also the result of the iteration of the public function Fπ
from the value x0⊕Ki. Consequently, to generate the pairs (distinguished point, identificator), the
simulator can compute (x` ⊕ Ki, id(x`)) without interacting with the users. As in this last case,
the pairs are generated at random without interacting and knowing the function and since the
function Fπ are random, the edges in the graph are added at random and independently of each
others and so that the graph is a random graph according to the Erdös-Rényi graph model.

Experimental results. We implement the previous attacks on an Even-Mansour cryptosystem using
the DES with a fixed key and n = 64. We simulate 222 users and for each user we create 8 chains (80
for the public user). We use distinguished points containing 21 zeroes and so the expected length is
221 on average. We bound the length of the chains to 224, this means that if we remove the chain if
we have not seen a distinguished point after 224 evaluations. In all, we have generated 33, 543, 077
chains (225 = 33, 554, 432, it misses the abandoned chains) and the number of groups containing
at least two parallel chains is 4, 109, 961. Experimentally, the size of the giant component contains
3, 788, 059 users (on the 4, 194, 304) and so we can deduce the keys of 90% of the users.

The time to generate the chains is 1600 sec using 4096 cores in parallel and the analysis of the
graph requires a few minutes on a standard PC.

4 Attacks on the Prince cipher in the Multi-User and Classical Setting

PRINCE is a lightweight block cipher published at ASIACRYPT 2012 [5]. It is based on the FX
construction [12] which is actually an Even-Mansour like construction. PRINCE has been the
interest of many cryptanalysts [10, 9, 6] and so far, the best known cryptanalysis reaches 8 rounds.

After a brief presentation of PRINCE, we will describe a generic attack in the multi-user
setting that allow to recover the key of a pair of users in a set of 232 users with complexity 264

computations. The identification of the pair of users uses the idea similar to the attack on Even-
Mansour, however details are different since PRINCE is not an Even-Mansour scheme since the
internal permutation uses a secret key. Finally, we present another generic attack in the classical
model that after a precomputation of 296 time and 264 in memory, allows to recover the key of
every user in time 232. These attacks work for all rounds.

4.1 Brief description of PRINCE

PRINCE [5] uses a 64-bit block and a 128-bit key which is split into two equal parts of 64 bits, i.e.
k = k0‖k1. In order to extend the key to 192 bits it uses the mapping k = (k0‖k1) → (k0‖k

′

0‖k1)
where k

′

0 is derived from k0 by using the following linear function:

k
′

0 = L′(k0), L′(k0) = (k0 ≫ 1)⊕ (k0 � 63),

where � denotes the right shift and ≫ the rotation of a 64-bit word. While subkeys k0 and k
′

0

are used as input and output whitening keys, the 64-bit key k1 is used for the 12-round internal

10 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

block cipher which is called PRINCEcore. For simplicity, we refer to it as the core of PRINCE or
simply the core function and we denote it by P core. So every plaintext P is transformed into the
corresponding ciphertext C by using the function Ek(P) = k

′

0 ⊕ P corek1
(P ⊕ k0) where P core uses

the key k1 (see fig.1).

m

k0

PRINCEcore

k1

c

k
′
0

Fig. 1. Structure of PRINCE

The core function consists of a key k1 addition, a round constant (RC0) addition, five forward
rounds, a middle round, five backward rounds and finally a round constant (RC11) and a key k1
addition. The full schedule of the core is shown in fig. 2.

k1 RC0

R1 R2 R3 R4 R5 S M
′ S−1 R−1

6 R−1
7 R−1

8 R−1
9 R−1

10

RC11 k1

S M

k1RCi k1 RCi

M−1 S−1

Fig. 2. Structure of the core of PRINCE

Each forward round of the core is composed by a 4-bit Sbox layer (S), a linear layer (64 × 64
matrix M), an addition of a round constant RCi for i ∈ {1, . . . , 5} and the addition of the key k1.
The linear M layer is defined as M = SR ◦M ′

where SR is the following permutation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −→ 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

The M
′

layer, which is only used in the middle rounds, can be seen as a mirror in the middle
of the core as the 5 backward rounds are defined as the inverse of the 5 forward rounds.

In every RCi-add step, a 64-bit round constant is XORed with the state. It should be noted
that for all 0 ≤ i ≤ 11, RCi ⊕ RC11−i = α = 0xc0ac29b7c97c50dd. From this, but also from the
fact that the matrix M

′
is an involution, we can perform the decryption function of PRINCE by

simply performing the encryption procedure with inverse order of keys k0 and k
′

0 and by using
the key k1 ⊕ α instead of k1. That means, that for any key (k0‖k

′

0‖k1), we have D(k0‖k
′
0‖k1)

(·) =

E(k
′
0‖k0‖k1⊕α)

(·). This property is called the α-reflection property of PRINCE.

4.2 Attack on PRINCE in the multi-user setting

In the multi-user setting, we assume that we have L different users which are all using the block

cipher PRINCE. Each user Ui with 0 ≤ i < L, chooses her key k(i) = k
(i)
0 ‖k

(i)
1 at random and

independently from all the other users. In order to attack PRINCE using the distinguished point
method, we first construct a set of chains for every user using the function of PRINCE. For this,
we use the function defined as follows:

F
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x) = x⊕ PRINCE
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x)⊕ PRINCE
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x⊕ δ)

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 11

where δ is an arbitrary but fixed non zero constant. The key k
′(i)
0 vanishes from the equation and

the function F thus takes the following form:

F
k
(i)
1

(x) = x⊕ P core
k
(i)
1

(x⊕ k(i)0)⊕ P core
k
(i)
1

(x⊕ k(i)0 ⊕ δ).

For every user Ui, we create one encryption (E) chain and one decryption (D) chain which are
both based on the function F defined above. E uses the encryption function of PRINCE whereas
D uses the decryption function. And so, for the user Ui, we define functions E and D as follows:

E
k
(i)
0 ,k

(i)
1

(x
(i)
j) = x

(i)
j+1 = x

(i)
j ⊕ P

core

k
(i)
1

(x
(i)
j ⊕ k

(i)
0)⊕ P core

k
(i)
1

(x
(i)
j ⊕ k

(i)
0 ⊕ δ)

D
k
′(i)
0 ,k

(i)
1 ⊕α

(y
(i)
j) = y

(i)
j+1 = y

(i)
j ⊕ P

core

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0)⊕ P core

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 ⊕ δ).

Let us define:

fE = P core
k
(i)
1

(x
(i)
j ⊕ k

(i)
0)⊕ P core

k
(i)
1

(x
(i)
j ⊕ k

(i)
0 ⊕ δ) and

fD = P core
k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0)⊕ P core

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 ⊕ δ).

We create encryption chains until fE reaches a distinguished point (resp. decryption chains until fD

reaches a distinguished point). We search for a collision between the encryption and the decryption
chain.

Let users U1 and U2. Whenever the chains E
k
(1)
0 ,k

(1)
1

(x(1)) and D
k
(2)
0 ,k

(2)
1 ⊕α

(y(2)) arrive at the

same distinguished point, we suspect that these two chains have become parallel. As the core of
PRINCE is only parametrized by the key k1, when we arrive at the same distinguished point we

obtain a probable collision between keys k
(1)
1 and k

(2)
1 ⊕ α used in P core. However, we must verify

that this is a real collision and not just a random incident. For this, we must verify that the next
points of fE and fD after reaching a distinguished point, are also equal. If we obtained a real
collision we know that:

k
(1)
1 ⊕ δ = k

(2)
1 ⊕ α⊕ δ.

This indicates that x(1)⊕y(2) is expected equal to k
(1)
0 ⊕k

′(2)
0 . It is obvious that since k

(1)
1 = k

(2)
1 ⊕α

we will also have k
(1)
1 ⊕ α = k

(2)
1 . This indicates that we also know k

′(1)
0 ⊕ k(2)0 .

Thus, we have:

k
(1)
0 ⊕ k

′(2)
0 = A and k

′(1)
0 ⊕ k(2)0 = B (∗).

Let {a63, . . . , a0} be the representation of the bits of k
(1)
0 and {b63, . . . , b0} the representation of

bits of k
(2)
0 . As, from the definition of PRINCE, k

′

0 = (k0 ≫ 1)⊕ (k0 � 63), we have that:

k
′(1)
0 = {a0, a63, . . . , a2, a1 ⊕ a63} and k

′(2)
0 = {b0, b63, . . . , b2, b1 ⊕ b63}.

From (∗), we construct the system:

{a63, . . . , a0} ⊕ {b0, b63, . . . , b2, b1 ⊕ b63} = {A63, . . . , A0}
{b63, . . . , b0} ⊕ {a0, a63, . . . , a2, a1 ⊕ a63} = {B63, . . . , B0}

As this is an inversible linear system, we can easily find k
(1)
0 and k

(2)
0 . Note that once k0 has

been found, recovering k1 can be done with an exhaustive search whose cost is 264.

12 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

Analysis of the attack. Once the computation of a chain is finished we have to store (x`−1, d, d+1)
where d is the distinguished point, x`−1 is the point before the chain reaches a distinguished point
and d+ 1 is the point after the chain reached a distinguished point. We need to store x`−1 as we
have to test if the found collision is useful and we also need to store d + 1 to test if it is a real
collision. If not, the search must continue.

As mentioned, PRINCE uses a 128-bit key which is split into two 64-bit parts, i.e. k = k0‖k1.

We expect to find a collision k
(i)
1 = k

(j)
1 between two different users i and j with high probability

when the number of users will be at least 232. The attack consists in identifying this pair of users
and recover all the key material for these users in a set of 232 users. For each one we create 2
chains (encryption and decryption chain). The cost per user is 232 operations. The total cost for
recovering the keys k0 of 2 users is approximately 264 operations. For recovering k1, the cost of the
exhaustive search is 264. So in total, we can deduce both k0 and k1 in 265 operations.

4.3 Attack in the classical model

We show in this section that a classic attack that also uses the distinguished points technique
can also be possible. For this, we will create encryption chains from the function E defined in
section 4.2.

Precalculation. In the first phase of the attack, we aim to create encryption chains for every possible

key k
(i)
1 with 0 ≤ i < 64. More specifically, for every possible k

(i)
1 , we set k

(i)
0 = 0 and we create

for every (i) a chain Si from the function E with length 232. We store all chains Si.

Attack. Now, our purpose is to find a collision with one of the chains created with the zero key k
(i)
0 .

For this, for a random starting point x0 and for keys k0 and k1 we will calculate an encryption chain
T from the function E . The chain T will collide with high probability with one of the chains Si.
As described in previous section 4.2, when we detect a collision between two distinguished points,

we know that the chains had become parallel and so we obtain k
(i)
0 ⊕ k0. As the key k

(i)
0 = 0, we

finally obtain the unknown k0.

Analysis of the attack. For the precalculation phase, for every 264 possible key we calculate a
chain with length 232 and so our complexity is equal to 296. As we need to store all chains, the
precalculation phase has also a cost of 264 in memory. However, once the first phase is over, the
attacker can perform the attack in only 232 operations as she has to calculate only one chain.
So, the total cost of the attack is 296 which is smaller than 2124 which is so far the best known
attack [6] on PRINCE.

5 Conclusion

In this paper, we have presented new tradeoffs for public-key and symmetric-key cryptosystems in
the multi-user setting. We have introduced some algorithmic tools for collision-based attacks using
the distinguished point technique. The first tool allows to look for the discrete-log of L users in
parallel using only a Õ(

√
L) penalty using random graph process behaviour. The second tool allows

to achieve key-recovery of Even-Mansour and related ciphers and is a novel lambda technique to
find collisions when two different functions are involved. For the Even-Mansour cipher, we show
new tradeoffs that solve an open problem due to Dunkelman et al. and we propose an analysis in
the multi-user setting. Finally, for the PRINCE cipher, we show generic attacks that outperform
the best published results. This last result could also be adapted to similar ciphers such as DESX
and would also improved on the best previous attack.

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 13

References

1. Eli Biham. How to decrypt or even substitute des-encrypted messages in 228 steps. Inf. Process. Lett.,
84(3):117–124, 2002.

2. Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In
Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages
1–13. Springer, 2000.

3. Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Preneel, editor, EUROCRYPT,
volume 1807 of Lecture Notes in Computer Science, pages 589–606. Springer, 2000.

4. Béla Bollobás. Random Graphs. Cambridge studies in advanced mathematics, 2nd edition, 2001.
5. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen,

Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S.
Thomsen, and Tolga Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Ap-
plications - Extended Abstract. In Wang and Sako [18], pages 208–225.

6. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-middle: Improved mitm
attacks. In Ran Canetti and Juan A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in
Computer Science, pages 222–240. Springer, 2013.

7. Joan Daemen. Limitations of the Even-Mansour Construction. In Hideki Imai, Ronald L. Rivest, and
Tsutomu Matsumoto, editors, ASIACRYPT, volume 739 of Lecture Notes in Computer Science, pages
495–498. Springer, 1991.

8. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography: The Even-Mansour
Scheme Revisited. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237
of Lecture Notes in Computer Science, pages 336–354. Springer, 2012.

9. Soleimany Hadi, Céline Blondeau, Xiaoli Yu, Wenling Wu, Kaisa Nyberg, Huiling Zhang, Lei Zhang,
and Yanfeng Wang. Reflection Cryptanalysis of PRINCE-like Ciphers. In Springer, editor, FSE 2013,
To appear, 2013.

10. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and Shuang Wu. Security Analysis of PRINCE.
In Springer 2013, editor, FSE 2013, To appear.

11. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall / CRC Cryptography and Network
Security Series, 2009.

12. Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an Analysis of
DESX). J. Cryptology, 14(1):17–35, 2001.

13. Fabian Kuhn and René Struik. Random Walks Revisited: Extensions of Pollard’s Rho Algorithm for
Computing Multiple Discrete Logarithms. In Serge Vaudenay and Amr M. Youssef, editors, Selected
Areas in Cryptography, volume 2259 of Lecture Notes in Computer Science, pages 212–229. Springer,
2001.

14. Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically Tight Security Analysis
of the Iterated Even-Mansour Cipher. In Wang and Sako [18], pages 278–295.

15. John M. Pollard. Kangaroos, Monopoly and Discrete Logarithms. J. Cryptology, 13(4):437–447, 2000.
16. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search. new results and

applications to des. In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 408–413. Springer, 1989.

17. Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Cryptanalytic Applica-
tions. J. Cryptology, 12(1):1–28, 1999.

18. Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT 2012 - 18th Inter-
national Conference on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science. Springer,
2012.

14 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

A Probabilistic Results

A.1 Random Graph Process

In this subsection, we recall the results on random graph processes that can be found in [4].
In the Erdős-Rényi graph model G{n, P (edge) = p} (0 < p < 1), all graphs have vertex set

V = {1, 2, . . . , n} in which edges are chosen independently and with probability p. In other words,
if G0 is a graph with vertex set V and it has m edges, then

P ({G0}) = P (G = G0) = pmqN−m,

where q = 1− p and N =
(
n
2

)
.

A random graph process on V = {1, 2, . . . , n} is a Markov chain G̃ = (Gt)
∞
0 , whose states are

graphs on V . The process starts from the empty graph and for 1 ≤ t ≤ N the graph Gt is obtained
from Gt−1 by adding an edge, all new edges begin equiprobable (we do not pick an edge that has
been already chosen).

First of all, we give the result on the giant component

Theorem 1. Let c > 1 be a constant, t = bcn/2c and ω(n) → ∞. Then, almost every Gt is
the union of the giant component, the small unicyclic components and the small tree components.
There are at most ω(n) vertices on the unicyclic components. The order of the giant component
L1(Gt) satisfies

|L1(Gt)− (1− t(c))n| ≤ ω(n)n1/2,

where

t(c) =
1

c

∞∑
k=1

kk−1

k!
(ce−c)k,

and for every fixed i ≥ 2 ∣∣∣Li(Gt)− (1/α)
(

log n− 5

2
log log n

)∣∣∣ ≤ ω(n),

where α = c− 1− log c.

If t = O(n log n), then the graph is almost certainly connected.

Theorem 2. For t = b2n lnnc, we have

Pr[Gt is not connected] < n−n/4.

We can find the expected value of t that makes the graph connected, and then apply tail bounds
to compute the probability for this happening for a particular t in the random graph process. First
notice that t ≥ n − 1 for a connected graph (a tree is a minimally-connected graph). As we add
edges, we watch the number of connected components of the graph. Initially, the graph has n
vertices and no edges, so there are n connected components. The first edge always connects two
points, and gives us n − 1 connected components. The second edge also reduces the number of
connected components to n − 2. The third may or may not reduce the number. We use epochs
to model the different phases of the process. Let Xk be the number of random edges added while
there are k connected components, until there are k − 1 connected components. We have shown
that Xn = 1 and Xn−1 = 1. If we define

X =

n∑
k=2

Xk,

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 15

then X counts the total number of edges that we add until the graph is connected. Our goal
is to compute E(X). Now, define pk to be the probability that an edge added while there are
k components reduces the number of components. We cannot compute pk exactly, but we can
provide a lower bound. Assume that v is one edpoint of the edge we are adding. Then, there are at
least k − 1 other vertices to which we can connect v and reduce the number of components (these
other vertices lie on the other components). In total there are n− 1 other vertices to which we can
connect v. So the probability that this edge reduces the number of components is ≥ (k−1)/(n−1).
But this bound holds for any choice of v, so it also bounds pk:

pk ≥
k − 1

n− 1
.

Now, observe that Xk is a geometric random variable with success probability pk. Its expected
value is 1/pk ≤ (n− 1)/(k − 1). So we have

E(X) =
n∑
k=2

E(Xk) ≤
n∑
k=2

n− 1

k − 1
= (n− 1)Hn−1,

where Hn−1 is the (n− 1)st harmonic number. In other words, an upper bound on E(X) is about
n lnn.

The final step is to apply tail bounds on the probability of t being much larger than its mean
using Chebyshev or Chernoff bounds.

Using Chernoff bound, we can show that for δ < 2e− 1

Pr[X > (1 + δ)E(X)] < exp(−E(X)δ2/4),

which in the special case of δ = 1 leads to

Pr[X > 2n lnn] < n−n/4.

A.2 Birthday Paradox with Girls and Boys

Theorem 3. Let two sequences of size n1 (resp. n2) where n1n2 = n, uniformly chosen at random
and independently in the set {1, 2, . . . , n}, then the expected number of collision is n1.n2/n.

B A survey of Existing Attacks on Even-Mansour

In this section, we recall previous attacks on the Even-Mansour cryptosystem and the open problem
of Dunkelman, Keller and Shamir as well as recast the attacks on Even-Mansour on collision-based
algorithms.

Daemen’s known-plaintext attack. The first attack uses two known plaintext/ciphertext pairs
(M0, C0) and (M1, C1). The adversary performs an exhaustive search on the value K1 and tests
whether π(M0 ⊕K)⊕ π(M1 ⊕K) is equal to C0 ⊕ C1. If this is the case then, K = K1 and since
the block length is equal to the key size we expect to have a constant number of candidates. On
average, this attack has a time complexity of T = N/2 where n = |K1| = |K2| and requires two
chosen plaintexts, D = 2.

16 Pierre-Alain Fouque and Antoine Joux and Chrysanthi Mavromati

Daemen’s chosen-plaintext attack. The second attack is a time/memory tradeoff of the previous
attack. The adversary asks the encryption of D chosen plaintexts pairs (Mi,M

′
i) such that Mi ⊕

M ′i = δ a fixed value and receives the corresponding ciphertext pair (Ci0, C
i
1). Then, he store in

a hash table the value Mi at the index Ci0 ⊕ Ci1. Finally, he computes for T values V the value
∆W = π(V) ⊕ π(V ⊕ δ) and check whether this value is the index of a value in the hash table.
According to the birthday paradox, on average we expect to have one collision with high probability
as soon as DT = O(N) between the values ∆W and the values Ci0 ⊕ Ci1. Such a collision gives
us a solution for the key K1 as K1 = Mi ⊕ V or K1 = Mi ⊕ V ⊕ δ. The memory complexity of
this attack is min(T,D). But, in practice we usually have D ≤ T since memory is a more scarce
resource than time.

Biryukov-Wagner Slide attack. About ten years later, Biryukov and Wagner discovered the slide
attack to break an arbitrarily number of rounds. Their technique can be adapted to the Even-
Mansour cipher using a twist in the classical attack. Their attack has a complexity in D = N1/2

known plaintexts and T = N1/2 called to π. The slide pair is a pair of messages (P, P ′) such that

P ⊕ P ′ = K1.

Then, it is easy to see that we have the following condition for the slide pair:

Π(P)⊕ π(P) = Π(P ′)⊕ π(P ′). (1)

The idea of the attack is that in a set of D = N1/2 plaintexts, we can construct N pairs and there
is at least one slide pair on average among them. Consequently, we can check the condition (1) by
searching a collision between the values Π(P) ⊕ π(P). A collision between the pair (Pi, Pj) will
give us the two key candidates K1 = Pi ⊕ Pj and K2 = Π(Pi) ⊕Π(Pj). The time complexity of
this attack is T = N1/2 and the memory requirement is M = N1/2.

C Time/Memory/Data Tradeoff on Even-Mansour

In a first step, let us explain this attack on the single-key Even-Mansour scheme. Given a message
x0 and D pairs (xi, Πk(xi))1≤i≤D, it is possible to generate D ciphertexts for the same message
x0 under different keys as follows: (δi, Πk⊕δi(x0)⊕ δi) where δi = x0 ⊕ xi. This allows us to build
D related-key encryptions of the same message x0 under the D keys k ⊕ δi.

In a precomputing phase, we can compute one Hellman table that covers a fraction N/D of the
keys using M = m rows and t columns. This table uses the fonction f(k) = Πk(x0) for message
x0 and the table contains keys for the EM scheme. To build this table, we only need the function
π. The memory complexity to store the first and last columns of the table is the number of rows
M while the offline computation is independent of the data and requires time P = N/D = mt to
compute the table. The on-line attack will go through all encryptions Πk⊕δi(x0) and for each of
these values, we will try to invert the encryption using the precomputed table. Consequently, the
on-line time complexity is Ton = Dt queries to π. One of the D related-keys will be in the table
and once a key K ′ is found for encryption Πk⊕δi(x0), it is easy to recover the original key K by
computing K = K ′ ⊕ δi. Since we also need to avoid collisions in the table which happen as soon
as mt2 ≈ N , then all the constraints we want to solve are

mt2 ≤ N,M = m,P = mt = N1−β = N/D, Ton = Dt, and T = P + Ton.

It is possible to optimize this attack using more tables so that the memory requirement is equal
to the data requirement. For instance, if we use t/D tables where each table covers mt keys such
that mt2 ≤ N , then we recover the Biryukov-Shamir tradeoff

TonM
2D2 = N2 for D2 ≤ Ton ≤ N,

Multi-user collisions: Applications to Discrete Logs, Even-Mansour and Prince 17

with M = (t/D)×m, Ton = (t/D)×Dt = t2, and P = mt× (t/D) = mt2/D.

To generate different independent functions, we can use functions fi(k) = Πk(xi⊕δ). The tricky
part of the proof of Hellman algorithm is to show that the tables are independent. For instance,
with t = N1/4, m = N1/2, then M = N1/4, Ton = N1/2, D = N1/4 and P = N3/4,

T ×D = N and Ton ×D = N3/4 � N with M = D.

This attack is as efficient than DKS attack since it is a known-plaintext attack however the on-line
time complexity is better. We can notice that the memory and data complexity are as low as N1/4,
whereas the on-line time is Ton = N1/2.

D A reminder of distinguished points methods

Given a function f on a set S of size N , distinguished points methods allow to find collisions in a
very flexible way. We first define a distinguished subset S0 in S, using any efficiently testable prop-
erty. The basic idea is, starting from a random point x0 in S to construct chains of computations
by evaluating the sequence xi+1 = f(xi) until we encounter a distinguished point, i.e. an element
of S0. The average length of such chains is ` = |S|/|S0|. Note that to avoid degenerate cases, it is
useful to abort the computation of chains which do not reach a distinguished point after c0 ·` steps,
where c0 > 1 is a fixed constant. Indeed, the proportion of points which satisfy the distinguishing
property is 1/`. Then, the length of the chains is ` on average. If we compute chains of length c0 · `,
then the proportion of chains that exceeds this value is (1 − 1/`)c0` ≈ exp(−c0). Values such as
c0 = 20 are often recommended [17]. Since the number of abandoned chains is 20 times larger than
the average, the proportion of work abandoned is approximately 20e−20 < 5 · 10−8.

Once the computation of a chain is finished, we store a summary of the chain (x0, `x0 , dx0)
containing the starting point x0, the number of iterations `x0

and the distinguished endpoint dx0
.

The most important property of chains is that two chains which pass through a common point
necessarily end at the same distinguished point. The converse is almost true, two chains that end
at the same distinguished point are merging at some point (and thus yield a collision) unless one
of the two chains is a subchain of the other.

When building chains, an essential safety measure is to avoid computing many times the same
thing. For example, it is useless to aim at computing chains of length larger than N1/2, because we
expect such chains to cycle. Even if we make chains shorter, this can become a problem. Typically,
when constructing B different chains of average length `, we should always ensure that B · `2 do
not grow beyond N [11]. Otherwise, we expect too many early mergings of the final chains into
their predecessors. Collision between 2-sets can be analyzed using theorem 3 in appendix.

