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Abstract. The global avalanche characteristics criteria was first introduced by Zhou et al. (Inform. Sci.
180(2) (2010) 256-265). This article is concerned with some new bounds on global avalanche characteristics
of two q-ary functions. Based on the above result we obtain a bound on σf of f ∈ Bn,q in terms of σ′f`s of
the restricted functions on Zq

n−1, and construct a class of q-ary bent functions from 1-plateaued functions
having dijoint Walsh spectra.
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1 Introduction

Boolean have wide applications in several areas including coding theory, communication systems and cryptog-
raphy, particularly in stream ciphers and block ciphers. The design of conventional cryptographic systems relies
on two fundamental principles: confusion and diffusion, introduced by Shannon [12]. The strict avalanche cri-
teria (SAC) [1, 21] and propagation characteristics (PC) [7] have been studied to measure the local properties
of Boolean functions. These properties are closely related to diffusion. In order to study the global properties
of a Boolean function, an another criterion: global avalanche characteristics (GAC) has been introduced by
Zhang and Zheng [16]. Further, the lower/upper bounds on the two indicators: the sum-of-squares indicator σf
(22n ≤ σf ≤ 23n) and the absolute indicator 4f (0 ≤ 4f ≤ 2n) also derived in the same article [16]. The
lower bounds on these two indicators for balanced Boolean functions are studied in [14] by Son et al. In order
to measure the global avalanche characteristics between any two Boolean functions, a new criterion: the global
avalanche characteristics of two Boolean functions (including the sum-of-squares indicator σf,g and the absolute
indicator 4f,g) has been proposed by Zhou et al. [18]. The tight lower and the tight upper bounds on the two

indicators: 0 ≤ 4f,g ≤ 2n, (|Cf,g(0)|2 ≤ σf,g ≤ 23n) also derived in the same article.
A subclass of q-ary bent functions with optimal values of σf,g and 4f,g is identified in Maiorana-McFarland

class by Singh et al. [13, Thm. 4.4]. It is also demonstrated in the same article that σf,g = q2n if f is q-ary
bent, the general bounds for SSMI and MI are presented. The SSMI of a q-ary s-plateaued function f ∈ Bn,q is
q2n+s [?]. Even the study on the relationship among σg, σf and σf,g relationships of the sum-of-squares indicator
between a q-ary function and the decomposition q-ary functions, etc is still open problem. Thus, based on the
above discussion, the following questions raised:

a) What relationship exists among σf , σg and σf,g for any two q-ary functions f, g?
b) What is a bound on σf , and what is the link between σf and σf` (` ∈ Zq), where f = f0||f1|| . . . ||fq−1?
c) What is a construction method of balanced q-ary functions with good cryptographic properties ?

This article present some new bounds on the two indicators: σf,g and 4f,g. The relationship among σf,g, σf
and σg is also presented.Based on the above result we obtain a bound on σf of f ∈ Bn,q in terms of σ′f`s of the

restricted functions on Zq
n−1, and construct a class of q-ary bent functions from 1-plateaued functions having

dijoint Walsh spectra.



2 Basic definitions and notations

Let Zq denote the ring of integers modulo q. A q-ary function is a function from Zn
q to Zq and Bn,q denotes

the set of all such functions. Particularly, Bn,2 = Bn (for q = 2) denotes the set of classical Boolean functions
on n variables. The Walsh Hadamard transform (WHT) of f ∈ Bn,q is a complex-valued function Hf : Zn

q → C
defined as

Hf (u) =
1

qn/2

∑
x∈Zn

q

ξf(x)+〈x,u〉, (2.1)

where 〈x, u〉 denotes the usual inner product in Zn
q . It can be deduced that max{|Hf (u)| : u ∈ Zn

q } ≥ 1 for all
f ∈ Bn,q. The set of values {Hf (u) : u ∈ Zn

q } is referred to as the Walsh Hadamard spectrum (WHS) of the
function f , which satisfies the Parseval’s identity [6]:∑

u∈Zn
q

|Hf (u)|2 = qn. (2.2)

The q-ary functions with low absolute values of Walsh-Hadamard coefficients are of special interest in cryptogra-
phy and coding theory and have many applications in different type of cryptosystems [6, 8, 11]. Kumar et al. [6]
introduced the generalization of the notion classical bent Boolean function [8] and referred it as q-ary bent func-
tion. The q-ary function having “flat” WHS, in absolute, is said to be q-ary bent function. A function f ∈ Bn,q
is q-ary bent if |Hf (u)| = 1 for every u ∈ Zn

q [6, 15]. Alternatively, f is q-ary bent if and only if Cf (u) = 0 for all

u ∈ Zn
q \ {0} [6, 13]. A function f ∈ Bn,q is said to be q-ary m-plateaued if and and only if |Hf (u)| = {0, qm

2 }
for all u ∈ Zn

q . The q-ary bent functions can be constructed using q-ary m-plateaued functions [2, 3].
The sum

Cf,g(u) =
∑
x∈Zn

q

ζf(x)−g(x+u) (2.3)

is said to be cross-correlation between f, g ∈ Bn,q at u. In particular, for f = g the sum Cf,f (u) = Cf (u) is said
to be autocorrelation of f at u. Recently, two indicators: the sum-of-squares-modulus indicator (SSMI) σf,g and
the modulus indicator(MI) 4f,g between two q-ary functions f, g ∈ Bn,q [13] are defined by

σf,g =
∑
u∈Zn

q

|Cf,g(u)|2, and 4f,g = max
u∈Zn

q

|Cf,g(u)|. (2.4)

In particular, the SSMI σf and MI 4f of a function f ∈ Bn,q is defined by

σf =
∑
u∈Zn

q

|Cf (u)|2, and 4f = max
u∈Zn

q \{0}
|Cf (u)|. (2.5)

Further analysis their properties are also discussed in the same article.
In the following corollary, we summarise the properties discussed in [13, ?] which we use to deduce our results.

Corollary 1. [13] If f, g ∈ Bn,q, then

(a)
∑

e∈Zn
q
Cf,g(e) ξ<−e, y> = qnHf (y)Hg(y); and Cf,g(e) =

∑
y∈Zn

q
Hf (y)Hg(y) ξ<e, y>.

(b) Cf (e) =
∑

y∈Zn
q
|Hf (y)|2 ξ<e,y>; and

∑
e∈Zn

q
Cf (e) ξ<−e, y> = qn |Hf (y)|2.

Corollary 2. [?] If f, g ∈ Bn,q and v ∈ Zn
q , then

(a)
∑

a∈Zn
q
Cf (a)Cg(a)ξ〈a,v〉 = qn

∑
u∈Zn

q
| Hf (u) |2| Hg(u + v) |2 .

(b) σf,g = qn
∑

u∈Zn
q
| Hf (u) |2| Hg(u) |2; and σf = qn

∑
u∈Zn

q
| Hf (u) |4 .



3 The new Bounds on σf,g and δf,g

The proof of [20, Theorem 3.2] is obtained for q = 2 is very complicated. We provide an alternative proof of the
generalization of [20, Theorem 3.2] for q-ary functions in the following

Theorem 1. Let f, g ∈ Bn,q, then

σf,g ≤
√
σfσg. (3.1)

Proof. Let f, g ∈ Bn,q. Since the Cauchy-Schwarz inequality for any two vectors x = (x1, x2, . . . , xn),y =
(y1, y2, . . . , yn) ∈ Rn states that

n∑
i=1

xiyi ≤

(
n∑

i=1

x2i

) 1
2
(

n∑
i=1

x2i

) 1
2

(3.2)

Therefore,

σf,g =
∑
u∈Zn

q

|Hf (u)|2 |Hg(u)|2

≤

∑
u∈Zn

q

|Hf (u)|4
 1

2
∑
u∈Zn

q

|Hg(u)|4
 1

2

=
√
σfσg.

(3.3)

Further, the inequality
√
ab ≤ a+b

2 holds for any two positive real number a, b. Hence we have Corollary 3
below, is the generalization of Theorem 1 of [19] (obtained for q = 2).

Corollary 3. Let f, g ∈ Bn,q, then

0 ≤ σf,g ≤
σf + σg

2
. (3.4)

Let us define fv(xn−r, . . . , x1) = f(xn = vr, . . . , xn−r+1 = v1, xn−r, . . . , x1) for any v = (vr, . . . , v1). The
following results is obtained by Singh et al [13]

Lemma 1. [13, Lemma 3.1] If u ∈ Zr
q, w ∈ Zn−r

q and f ∈ Bn,q, then autocorrelation of f at uv is given by

Cf (uw) =
∑
v∈Zr

q

Cfv,fv⊕u(w),

where uw is the vector concatenation of u = (ur, . . . , u1) ∈ Zr
q and w = (wn−r, . . . , w1) ∈ Zn−r

q defined by
uw = (u,w) = (ur, . . . , u1, wn−r, . . . , w1).

In the following theorem, we provide a relationship among σf of f ∈ Bn,q and their restrictions (decomposition
q-ary functions) f` ∈ Bn−1,q, ` ∈ {0, 1, . . . , q − 1}.

Theorem 2. Let f` ∈ Bn−1,q (` = 0, 1, . . . , q − 1), and if a q-ary function f : Zq × Zn−1
q → Zq is expressed by

f = f0||f1|| . . . ||fq−1, i.e.,

f(x, xn) = fxn(x), for all x ∈ Zq
n, xn ∈ Zq. (3.5)

Then

σf = σf0 + σf1 + . . .+ σfq−1 + 4
∑

0=i<j<q

σfi,fj , (3.6)

whenever
∑

w∈Zn−1
q
Cfi,fj (w)Cfk,fl(w) = 0 for all i, j, k, l ∈ Zq such that i 6= k and j 6= l.



Proof. It is evident that σf,g =
∑

u∈Zn
q
|Cf,g(u)|2 =

∑
v∈Zn

q
Cf (v)Cg(v) for all f, g ∈ Bn,q, see [13, Cor. 4.6]. Let

f` ∈ Bn−1,q (` = 0, 1, . . . , q − 1) such that
∑

w∈Zn−1
q
Cfi,fj (w)Cfk,fl(w) = 0 for all i, j, k, l ∈ Zq such that i 6= k

and j 6= l, then

σf =
∑
u∈Zq

∑
w∈Zn−1

q

|Cf (uw)|2 =
∑
u∈Zq

∑
w∈Zn−1

q

∑
`∈Zq

Cf`,f`+u
(w)

∑
z∈Zq

Cfz,fz+u
(w)


=
∑
`∈Zq

∑
z∈Zq

 ∑
w∈Zn−1

q

Cf`(w)Cfz (w) +
∑
u 6=0

∑
w∈Zn−1

q

Cf`,f`+u
(w)Cfz,fz+u

(w)


=
∑
`∈Zq

∑
z∈Zq

σf`,fz +
∑
u6=0

∑
`∈Zq

∑
z∈Zq

 ∑
w∈Zn−1

q

Cf`,f`+u
(w)Cfz,fz+u

(w)


=

q−1∑
i=0

σfi + 2
∑

0=i<j<q

σfi,fj +
∑
u6=0

∑
`∈Zq

 ∑
w∈Zn−1

q

∣∣Cf`,f`+u
(w)

∣∣2
+
∑
u 6=0

∑
` 6=z,z∈Zq

 ∑
w∈Zn−1

q

Cf`,f`+u
(w)Cfz,fz+u(w)


=

q−1∑
i=0

σfi + 2
∑

0=i<j<q

σfi,fj +
∑
u6=0

∑
`∈Zq

σf`,f`+u

=

q−1∑
i=0

σfi + 4
∑

0=i<j<q

σfi,fj ,

(3.7)

which completes the proof.

It is to be noted that the smaller value of σf (i.e., for better GAC) of f correspond to low values of the
autocorrelation spectrum of f [16]. From Theorem 2 it is evident that the decomposition of q-ary function is
important to construct q-ary functions with good GAC. Two functions f, g ∈ Bn,q are said to be perfectly
uncorrelated if Cf,g(u) = 0 for all u ∈ Zn

q . Further, if Hf (u)Hg(u) = 0 for all u ∈ Zn
q for all u ∈ Zn

q , then f, g are
said to be q-ary functions with disjoint WHS. It can be seen that two functions with disjoint WHS are always
perfectly uncorrelated. These properties are widely used in binary case to construct highly nonlinear balance
Boolean functions with good GAC, see [10] and the references therein. The following results are consequence of
Theorem 2

Corollary 4. Let f be a q-ary function as defined in (3.5), then

1. σf = σf0 +σf1 + . . .+σfq−1 if and only if fi, fj are perfectly uncorrelated for all i 6= j, i, j ∈ {0, 1, . . . , q−1}.
2.
∑q−1

i=0 σfi ≤ σf ≤
∑q−1

i=0 σfi + 4
∑

0=i<j<q σfi,fj .

Thus, the concatenated function have minimum SSMI if their decomposition q-ary functions are pairwise
perfectly uncorrelated. The following are some constructions of q-ary functions smaller values for σf and 4f .

Lemma 2. Let ` be a non negative integer and z` ∈ Zm
q be any fixed vector. Define a q-ary function f` :

Zn−m
q × Zm

q → Zq by

f`(x,y) = g`(x) + 〈z`,y〉 for all x ∈ Zn−m
q ,y ∈ Zm

q , (3.8)

where gz`
∈ Bn−m,q. Then

(a) |Hf`(u,v)| = q
m
2 Hg`(u)δ0(z + v), where δ0(u) = 0 if u 6= 0 and δ0(0) = 1.



(b) Hf1(u,v)Hf2(u,v) = 0 for all (u,v) ∈ Zn−m
q × Zm

q , whenever z1 6= z2,

(c) σf` = q3mσg` ,

(d) If gz`
is a q-ary bent, then σf` = q2n+m and |Hf`(u,v)| = q

m
2 δ0(z + v), that is, f` is m-plateaued q-ary

function.

Proof. Let (u,v) ∈ Zn−m
q × Zm

q . Then,

Hf`(u,v) =
1

q
n
2

∑
(x,y)∈Zn−m

q ×Zm
q

ζf`(x,y)+〈u,x〉+〈v,y〉

=
1

q
n
2

∑
x∈Zn−m

q

ζg`(x)+〈u,x〉
∑

y∈Zm
q

ζ〈z`+v,y〉 = q
m
2 Hg`(u)δ0(v + z`)

(3.9)

Part (b) follows from the property δ0(x)δ0(y) = 0 if x 6= y and part (a).

Now, using (3.9), we have

σf` = qn
∑

(u,v)∈Zn−m
q ×Zm

q

|Hf`(u,v)|4

= qn
∑

u∈Zn−m
q

∑
v∈Zm

q

(
q

m
2

)4 |Hg`(u)|4 δ0(v + z`) = qn+2m
∑

u∈Zn−m
q

|Hg`(u)|4 = q3mσg` .

Further, if g` q-ary is bent, then σg` = q2(n−m) and |Hg`(u)| = 1 for all u. Hence part (d) follows from part
(a) and (c).

The following is the construction of (m−1)-plateaued q-ary function in n+ 1 variables by m-plateaued q-ary
function in n variables.

Construction 1. Let t = n+ 1, z` ∈ Zm
q for ` ∈ {0, 1, . . . , q − 1} such that zi 6= zj for all i 6= j. Define a q-ary

function f : Zn−m
q × Zm

q × Zq → Zq by

f(x,y, xt) = fxt
(x,y), (3.10)

where f` are q-ary m-plateaued functions as constructed in (3.8). Then f is (m− 1)-plateaued.

Theorem 3. Let f ∈ Bt,q as defined in Construction 1, then σf = q2t−(m−1), that is f is (m − 1)-plateaued
q-ary function.

Proof. Since Hfi(u,v)Hfj (u,v) = 0 for (u,v) ∈ Zn−m
q × Zm

q whenever i 6= j and i, j ∈ {0, 1, . . . , q − 1}. This
implies that Cfi,fj (u,v) = 0 for all (u,v) ∈ Zn−m

q × Zm
q , that is fi, fj are perfectly uncorrelated for all i 6= j.

Hence by using Corollary 4

σf = q2n+m+1 = q2t+(m−1), (3.11)

which completes the proof.

4 Conclusion

The article presents an upper bound on the two indicators: σf,g and 4f,g of two q-ary functions f and g. A
relationship among σf,g, σf and σg is also presented. Based on the above result we obtain a bound on σf of
f ∈ Bn,q in terms of σ′f`s of the restricted functions on Zq

n−1, and construct a class of q-ary bent functions from
1-plateaued functions having dijoint Walsh spectra.
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2. A. Çeşmelioğlu and W. Meidl, Bent functions of maximal degree, IEEE Trans. Inform. Theory, 58 (2) (2012), pp.
1186-1190.
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