
Key-recovery Attacks on Various RO PUF Constructions via
Helper Data Manipulation

Jeroen Delvaux and Ingrid Verbauwhede

ESAT/COSIC and iMinds, KU Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

Email: {firstname.lastname}@esat.kuleuven.be

Abstract. Physically Unclonable Functions (PUFs) are security primitives that exploit the
unique manufacturing variations of an integrated circuit (IC). They are mainly used to generate
secret keys. Ring oscillator (RO) PUFs are among the most widely researched PUFs. In this work,
we claim various RO PUF constructions to be vulnerable against manipulation of their public
helper data. Partial/full key-recovery is a threat for the following constructions, in chronological
order. (1) Temperature-aware cooperative RO PUFs, proposed at HOST 2009. (2) The sequential
pairing algorithm, proposed at HOST 2010. (3) Group-based RO PUFs, proposed at DATE 2013.
(4) Or more general, all entropy distiller constructions proposed at DAC 2013.

Keywords: ring oscillator PUF, helper data, fuzzy extractor

1 Introduction

With the ubiquity of integrated circuits (ICs) in our everyday lives, cryptographic algorithms have
become an important building block. Hereby, one heavily relies on the ability to store secret infor-
mation. Traditionally, binary keys are stored in programmable on-chip non-volatile memory (NVM):
EEPROM and its successor Flash are the main technologies. However, an attacker can easily gain
physical access to the IC. Hardware attacks, either invasive or noninvasive, are thus a significant
threat. The NVM approach tends to be vulnerable [5], as the key is stored permanently in electrical
form. Additional circuitry to protect the key is usually complemented by practical drawbacks: costly,
bulky, battery powered, . . .

Physically Unclonable Functions (PUFs) have been proposed as a more secure alternative. Silicon
PUFs quantify the unique manufacturing variability of nanoscale structures. The secret is stored in
intrinsic physical features of an IC, resulting in some remarkable security advantages. First, PUFs
are often assumed to be resistant against invasive attacks. One can argue that invasion damages the
physical structure of an IC. Second, keys are inherently unique for each manufactured sample of an
IC and there is no need to explicitly program them. Third, the key is only generated and stored in
on-chip volatile memory (VM) whenever key-dependent operations have to be performed, as such
posing limits on the attacker’s time frame.

Ring oscillator (RO) PUFs are very popular, inter alia because they can be implemented on
FPGA. We describe their high-level architecture in section 2. Unfortunately, PUF bits by themselves
do not result in reproducible and uniformly distributed keys, as discussed in section 3. Helper data
constructions are therefore required: we describe several proposals in sections 4 and 5, applicable to RO
PUFs in particular. We claim them to be vulnerable against statistical attacks, hereby manipulating
the public helper data. Partial or even full key recovery might be possible, as discussed in section 6.
An extensive reflection of our findings is given in section 7. Section 8 concludes the work.

2 Ring Oscillator PUFs

RO PUFs quantify the manufacturing variability of identically laid-out oscillators. Each RO, consisting
of an odd number of inverters, will have a unique frequency f . Frequencies are typically measured
by counting rising or falling edges on a wire connecting two subsequent inverters. Figure 1 shows

the PUF architecture as originally proposed in [6]. One can distinguish four components: an array of
N ROs, multiplexers to access individual ROs, counters providing a frequency measurement and a
comparator.

. . .
N

...

. . .
2

. . .
1 cnt

≶

cnt

r

Fig. 1. RO PUF as originally proposed.

A pairwise frequency comparison (∆f ≶ 0) generates a single response bit r. There are N(N−1)/2
pairwise comparisons, although their response bits are interdependent. Consider the following minimal
example, given three ROs: ROA.f < ROB .f and ROB .f < ROC .f implicates ROA.f < ROC .f . The
total PUF entropy is only log2(N !) bit as there are N ! ways to sort the frequency values. We hereby
assume the ideal case, with all permutations equally likely.

For convenience, the ring oscillators are typically laid-out as a two-dimensional array on the IC.
Without loss of generality, we still label each RO with a univariate index i ∈ [1 N]. The multiplexer-
counter-comparator architecture might greatly vary. Consider the following two extreme cases, for
example: a dedicated counter per RO and a single counter accessing all ROs via a giant multiplexer.

3 Motivation for Helper Data Constructions

Unfortunately, PUF response bits are not directly usable as a secret key because of two issues: they
are not perfectly reproducible and non-uniformly distributed. We list the root causes and provide
examples for RO PUFs in particular. Helper data constructions are required to resolve the former
issues. Hereby, public helper bits are generated during a one-time post-manufacturing enrollment
phase. They are stored in (off-chip) NVM and assist with every key reconstruction. However: the
secrecy of the response bits should be preserved.

3.1 Reliability

Noise in CMOS transistors (and interconnect) is the main responsible for the reliability issue. We
consider noise as an unavoidable random time-dependent phenomenon. Instability of the environment,
mostly defined by the IC supply voltage and the outside temperature, worsens the problem. Note
that RO frequencies increase with both increasing supply voltage and decreasing temperature. The
larger the nominal frequency discrepancy |∆f | for a given pairwise comparison, the more reliable the
corresponding response bit.

3.2 Entropy

PUF response bits are non-uniformly distributed, reducing the entropy of the key. Bias is a major
concern hereby: the probability of a bit to be ‘1’ (or ‘0’) might not be equal to 50%. Correlations
between the bits are another symptom. Asymmetries in the PUF lay-out are one potential root cause.
Systematic manufacturing variations, which are spatially correlated, form another root cause. As
illustrated in figure 2, only random variations are desired. Furthermore, the occasional occurrence of
∆f = 0 (counter values are discrete) introduces bias given that either ‘1’ or ‘0’ has to be returned.

Fig. 2. Example frequency topology of a RO array [4]: f(x, y), for an IC-aligned xy-plane. The linear trend
corresponds with systematic variability. Only the random surface roughness is desired.

4 RO Pair Selection

There is a variety of methods to select pairs from a RO array. Their goal is to output many high-
entropy bits, possibly with an incentive towards reliability. We now discuss four approaches, in order
of increasing complexity.

4.1 Chain of Neighbors

Pairing neighboring ROs is perhaps the most intuitive approach. The reduced impact of spatial cor-
relations is the main advantage [3]. For disjunct pairs, bN/2c independent bits can be generated. By
sharing ROs across pairs, up to N − 1 independent bits can be generated.

4.2 1-out-of-k Masking

A 1-out-of-k masking scheme [6] is applied to a fixed set of RO pairs, such as a chain of neighbors.
The pairs are partitioned into groups, each containing k pairs. During enrollment, the pair which
maximizes |∆f | is selected within each group, favoring reliability as such. The corresponding indices
are saved in public helper NVM. Parameter k represents a trade-off between reliability and efficiency.

4.3 Sequential Pairing Algorithm

The sequential pairing algorithm [8] selects up to bN/2c disjunct pairs. The frequency discrepancy
|∆f | of every selected pair does exceed a given threshold ∆fth. Pairing information is again stored in
public helper NVM. Algorithm 1 provides simplified pseudocode. In the original proposal, one requires
frequency measurements at two environmental extremes.

4.4 Temperature-aware Cooperative

Temperature-aware cooperative RO PUFs [7] operate within a user-defined temperature range: T ∈
[Tmin, Tmax]. An on-chip temperature sensor is assumed to be available, posing limits on the appli-
cability. Furthermore, RO frequencies are assumed to be linearly dependent on the temperature.

Neighboring ROs are paired, without overlap, leading to a total of bN/2c pairs. A frequency
discrepancy threshold ∆fth is employed to assess their reliability. Pairs are classified in three groups,
as illustrated on figure 3. Good pairs obey |∆f(T)| > ∆fth within the whole operating range: they
generate one reliable bit each. Bad pairs obey |∆f(T)| ≤ ∆fth within the whole operating range: they
are discarded. Some pairs are stable except for an interval [Tl, Th] around their crossover point: they
cooperate to generate reliable bits, assisted by public helper data.

For every cooperating pair, one does store the values of Tl and Th in public helper NVM. Outside
the crossover interval, no help is required. Although one has to compensate for the crossover: the

Algorithm 1: Sequential Pairing (Simplified)

Input: Frequency measurements ROi.f with i ∈ [1 N]
Frequency discrepancy threshold ∆fth

Output: List of pairs {ROi, ROj}
Sort frequencies in descending order and store indices as vector π:
ROπ(1).f > ROπ(2).f > . . . > ROπ(N).f
i← 1

for j ← dN
2
e+ 1 to N do

if ROπ(i).f −ROπ(j).f > ∆fth then
Create pair {ROπ(i), ROπ(j)}
i← i+ 1

∆f

T

R
O
.f

good pair

T

R
O
.f

bad pair

T

R
O
.f

cooperating pair

Fig. 3. Temperature-aware cooperative RO PUF: classification of RO pairs. The outer dashed lines represent
the operating range: [Tmin, Tmax].

response bit is inverted if T > Th. Within the crossover interval, one does rely on another cooperating
pair with a nonintersecting crossover region. Its index is stored in public helper NVM as well.

Pairs cooperate in a masked manner, to prevent leakage of their response bits. Consider a first
cooperating pair, requesting help and having response bit rc1. A masking response bit rg1, originating
from a corresponding good pair, is assigned. A second cooperating pair, providing help and having
response bit rci, should satisfy the following constraint: rc1⊕ rg1 = rci. Note that rg1 and rci are both
stable within the crossover interval of the first cooperating pair, allowing for reconstruction.

However, we claim that the proposed masking scheme is not necessarily free from leakage. The
second cooperating pair should be selected at random and hence not with a deterministic procedure
that iterates over all candidates until the masking constraint is met. Otherwise, one exposes the
following information for all non-selected candidates: rcj 6= rci.

5 Group-based RO PUF

Group-based RO PUFs have first been introduced at HOST 2010 [8]. As the initial design had several
shortcomings, the authors redefined their construction at DATE 2013 [9]. For ease of understanding,
we make abstraction of the gradual development. In traditional designs, ROs are paired to generate
a response bit. The group-based approach is very different in this regard. ROs are partitioned into
groups, with their size not limited to two anymore.

The so-called entropy distiller, the main novelty, has been introduced in parallel at DAC 2013
too [10], although with more experimental evidence. Its use is not limited to the group-based approach.
Employment with the pair selection methods of section 4 is a possibility as well. We will consider both
use cases for our attacks.

The high-level architecture is represented by figure 4. We explicitly indicate the IC boundaries
and interfaces to clarify an attacker’s point of view. Like this, we also stress that all building blocks
do require an on-chip implementation. The resulting key is stored in on-chip VM, for as long as
needed. An application with key-dependent operations communicates with the user, either directly or
indirectly. We now discuss the building blocks separately.

RO
Array

Entropy
Distillation

Grouping
Algorithm

Kendall
Coding ECC

Entropy
Packing

Secret
Key

VM

Application
IC

NVM

Polynomial
coefficients

Group
information

ECC
Redundancy

Public Helper Data User (Attacker)

Fig. 4. Group-based RO PUF.

5.1 Entropy Distiller

The entropy distiller eliminates systematic manufacturing variations. They are modeled via polynomial
regression on the two-dimensional RO frequency map f(x, y). The residuals represent the desired
random variations. An expression for the polynomial of degree p is given below. Experiments in [10]
indicate p = 2 and p = 3 as good values, given an array of 16 × 32 ROs. Coefficients βi,j may be
determined in a least mean squares manner. They are stored as public helper data. A subtraction
procedure removes systematic variations for every regeneration of the key.

f(x, y) =

p∑
i=0

i∑
j=0

βi,jx
i−jyj .

5.2 Grouping Algorithm

The grouping algorithm partitions the ROs into groups G1, G2, . . . The partitioning is strict: every
RO is assigned to exactly one group. Within a group, every possible pair of ROs does exceed a
frequency discrepancy threshold ∆fth, favoring reliability. Response bits will be extracted for each
group independently. Algorithm 2 provides pseudocode for the grouping procedure. It optimizes the
available entropy of

∑
j log2(|Gj |!) bits: having few large groups is more beneficial than having many

small groups.

Algorithm 2: Grouping

Input: Frequency measurements ROi.f with i ∈ [1 N]
Frequency discrepancy threshold ∆fth

Output: Group assignments ROi.group
Sort frequencies in descending order and store indices as vector π:
ROπ(1).f > ROπ(2).f > . . . > ROπ(N).f
RO0.f ←∞
for i← 1 to N do

last(i)← 0

for i← 1 to N do
j ← 1
while ROlast(j).f −ROπ(i).f ≤ ∆fth do

j ← j + 1

ROπ(i).group← j
last(j)← π(i)

5.3 Kendall Coding

For every group Gj , there will be a particular order of the RO frequencies. A binary representation is
required. Table 1 illustrates two schemes, assuming there are four ROs (A, B, C and D) in the group

and hence 4! = 24 possible orders. The most compact representations do require dlog2(|Gj |!)e bit, as
illustrated for the second column.

Order Compact Kendall Order Compact Kendall
ABCD 00000 000000 CABD 01100 010100
ABDC 00001 000001 CADB 01101 010110
ACBD 00010 000100 CBAD 01110 110100
ACDB 00011 000110 CBDA 01111 111100
ADBC 00100 000011 CDAB 10000 011110
ADCB 00101 000111 CDBA 10001 111110
BACD 00110 100000 DABC 10010 001011
BADC 00111 100001 DACB 10011 001111
BCAD 01000 110000 DBAC 10100 101011
BCDA 01001 111000 DBCA 10101 111011
BDAC 01010 101001 DCAB 10110 011111
BDCA 01011 111001 DCBA 10111 111111

Table 1. Coding of oscillator frequency order.

However, to facilitate the subsequent error-correction step, a non-minimum length coding scheme
is proposed. One observes that errors mostly occur in form of a flip, e.g. BACD to BCAD. Using
Kendall coding, one bit is generated for every possible pair of ROs, requiring |Gj |(|Gj | − 1)/2 bits in
total. Error-correction requirements are relaxed in terms of error rate, as there is only one error per
flip. Unfortunately, the workload increases quadratically with the group size |Gj |.

5.4 Error-Correcting Code

Incoming bits are clustered in blocks, which are all error-corrected independently. An error-correcting
code (ECC) construction, able to correct t errors per block, is employed hereby. The first generated
instance of each block is considered as a reference. Public helper data allows regenerated instances to
be error-corrected, so that they are identical to the reference.

5.5 Entropy Packing

Kendall coding is noted to be non-uniform: many bit vectors are never used. To maintain entropy,
conversion to a compact coding scheme (as in table 1) is proposed. However, please note that the
problem is only fixed partially, since |Gj |! is not a power of two, given |Gj | > 2.

6 Attacks via Helper Data Manipulation

Before discussing the specifics for each RO PUF construction, we first describe the common statistical
framework of our attacks. PUF response bits are considered one by one (or in small groups). For each
iteration, two or more hypotheses Hi provide a statement about the bits of concern, of which exactly
one is correct. Every hypothesis corresponds with a specific manipulation of the public helper data.
We exploit differences in key regeneration failure rate to assess their correctness.

The attacks on constructions (1) and (2) are generally applicable. Furthermore, we make no as-
sumption about the application: an inability to reconstruct the key should affect the observable be-
havior of any useful application. The attacks on constructions (3) and (4) are case-specific, so we limit
ourselves to an illustration. Furthermore, they rely on maliciously reprogrammed keys, assuming their
reconstruction failures to be observable. However, this assumption is often (if not mostly) satisfied in
practice: consider for instance all applications where some form of encrypted data is presented to the
user.

For generality, we assume all constructions to employ an ECC as a final reliability measure, which is
actually a common practice. The absence of an ECC can be considered as the degenerate case t = 0. For
ease of explanation, we assume all bits to fit within a single ECC block. However, extension to multiple
blocks is fairly straightforward. The probability density function (PDF) of the numbers of errors (at
the ECC input) is particularly useful to quantify failure behavior. A binomial distribution might
provide an accurate model for large blocks, although our attacks do not depend on this assumption.

Figure 5 provides an illustration, in case of two hypothesesH0 andH1. The nominal PDF serves as a
reference: failures rarely occur in practice, assuming well-chosen ECC parameters. PDFs corresponding
to helper data hypotheses are slightly shifted with respect to each other and hence distinguishable.
The common offset originates from additional errors, intentionally and symmetrically introduced to
accelerate the attack.

t # errors

Failure

P
D

F

nominal H0 H1

Fig. 5. Distinguishing hypotheses by observing key generation failure rates.

6.1 RO PUF with Sequential Pairing

Key recovery is fairly straightforward for the sequential pairing algorithm. Consider two RO pairs,
resulting in response bits r1 and r2. We formulate two hypotheses as shown below. To distinguish
them, we swap the order of the two pairs in public helper NVM. If H0 is correct, the failure rate is not
modified. However, if H1 is correct, the failure rate does increase. Matching r1 with all other response
bits r2, r3, . . . rbN/2c, only two possible values remain for the secret key. For the final decision, the
performance of two corresponding sets of ECC helper data can be compared.

H0 : r1 = r2. H1 : r1 6= r2.

To accelerate the attack, more errors can be injected. For instance by swapping additional pairs,
accordingly for the helper data of H0 and H1. Initially, the additional pairs can be chosen at random.
After revealing some response bit relations however, one can select these pairs which will introduce a
pair of erroneous bits for sure.

6.2 Temperature-aware cooperative RO PUF

An attacker can retrieve the response bit relations for all cooperating pairs of a temperature-aware
cooperative RO PUF. Consider a first cooperating pair, having response bit rc1 and requesting as-
sistance. A second cooperating pair, having response bit rci, provides assistance. Consider another
cooperating pair, having response bit rcj . We formulate two hypotheses as shown below. Helper data
is modified so that rcj provides assistance, assuming reliability for the given temperature. If H0 is
correct, the failure rate is not modified. However, if H1 is correct, the failure rate does increase.
To accelerate the attack, more errors can be injected. For instance, via manipulation of the interval
boundaries Tl and Th.

H0 : rci = rcj . H1 : rci 6= rcj .

6.3 Group-based RO PUF

An attacker can retrieve the full key for group-based RO PUFs, due to the ability to directly reprogram
the key. By injecting steep polynomials into the entropy distiller, one can completely overshadow
random frequency variations. The attacker’s intended pattern can be superimposed onto the original
spatial correlation map hereby. Via repartitioning of the groups, one can force bits to be either ‘1’ or
‘0’. Also the remaining helper bits, which represent the ECC redundancy, are updated accordingly.

Consider the example of figure 6a, given an array of 4×10 ROs. The attacker injects strong gradients
in the horizontal direction via a quadratic surface, as represented by the grayscale. We repartition
the groups so that they all contain two ROs. The responses of G2 to G20 are fully determined by the
attacker. The response of G1 however, is fully determined by random frequency variations. Note that
one could employ a tilted plane as well, if G1 would cover a single column only.

(a) 5

2

4

3

9

8

7

6

13

12

11

10

17

16

15

14

20

19

18

2

13

12

11

1

17

16

15

10

20

19

18

14

9

8

7

6

5

1

4

3

(b) 4

3

2

4

3

2

1 1

(c) 40

21

20

1

39

22

19

2

38

23

18

3

37

24

17

4

36

25

16

5

35

26

15

6

34

27

14

7

33

28

13

8

32

29

12

9

31

30

11

10

Fig. 6. Attacking entropy distiller constructions. The extremum of the quadratic patterns is marked with a
triangle symbol. (a) Group based RO PUF. (b) 1-out-of-k masking. (c) neighbor pairing.

Suppose the ROs of G1 to belong to the same group for the original partitioning too. Then their
frequency order is of direct interest, as their corresponding response bit r1 does influence a subkey.
Consider the two hypotheses shown below. We compute a set of ECC helper data for both cases.
The failure rate is expected to be lower for the correct hypothesis. Injecting additional errors is
straightforward: we just compute the ECC redundancy given some inverted bit values.

H0 : r1 = 0. H1 : r1 = 1.

6.4 Entropy Distiller with RO Pairing

Entropy distillers can be employed with all RO pairing schemes of section 4. We limit ourselves to the
first two schemes, as there is a stand-alone attack for the latter two schemes. The attack methodology

is similar as before. Figure 6b provides an illustration for 1-out-of-k masking, using k = 5 and applied
to a non-overlapping chain of neighbors. Figure 6c provide an illustration for an overlapping chain of
neighbors. It might be very difficult to isolate a single response bit, as illustrated for figure 6c: four
response bits are fully determined by random variations. By increasing the number of hypotheses (24),
one can still perform the attack however.

7 Discussion

Former helper data constructions have all been proposed to solve reliability and entropy issues, as
discussed in section 3. However, a well-established standard solution is available as well: the so-called
fuzzy extractor [2]. We briefly discuss its architecture. Afterwards, we argue why helper data should
be considered as public always, implicating that an attacker has both read and write access. Finally,
we formulate best practices for both the users and developers of helper data schemes.

7.1 Fuzzy Extractor

Fuzzy extractors can be used with any PUF architecture: their use is not limited to RO PUFs. Their
definition is very generic, but typical implementations always rely on an ECC and a cryptographic
hash function, as shown in figure 7. Latter constructions deal with reliability and entropy respectively,
in a sequential manner.

RO
Array ECC

Hash
Function

Secret
Key

VM

IC ECC
Redundancy

NVM

Public Helper Data

Application

User (Attacker)

Fig. 7. RO PUF with fuzzy extractor.

7.2 Helper Data Considerations

In principle, programmable helper NVM can be implemented off-chip as well as on-chip. Therefore, we
have drawn it on the IC boundary in figures 4 and 7. In the off-chip case, an attacker has full control:
reading and modifying data is straightforward via the interface. However, also in the on-chip case,
memory contents should be considered as public. Remember that PUFs have been proposed as a more
secure alternative for on-chip NVM. Labelling on-chip helper NVM as private would undermine the
need for PUFs. A motivated attacker, able to afford expensive equipment, can still obtain read/write
access.

Furthermore, off-chip helper NVM is highly preferable because of three reasons. First, the overall
efficiency might decrease in the opposite case: on-chip NVM remains while the PUF and its post-
processing logic are extra. Second, on-chip NVM is expensive, as the standard CMOS manufacturing
flow is insufficient. Third, typical FPGA platforms, for which RO PUFs are particularly interesting,
do not contain on-chip NVM.

Secure and competitive PUF solutions do not pose read or write constraints on their helper data.
For the fuzzy extractor, solid theory has been developed. The ECC constructions of [2] result in a
rather limited entropy loss, which is compensated by the hash function, in addition to the initial
non-uniformity. An extension of the architecture to counter manipulation attacks is described in [1].
The RO PUF constructions under attack [7–10] do consider leakage as a threat. Manipulation is never
mentioned however, although their prototypes are all developed on FPGA platforms without on-chip
NVM (Xilinx Spartan-3 and Xilinx XC4010XL).

7.3 Best Practices

We encourage the use of fuzzy extractors, as solid helper data theory has been developed. Newly pro-
posed schemes should be compared to this common reference. If efficiency (area, speed, power/energy,
memory) and/or security (quality of the key, helper data leakage and manipulation, side-channels etc.)
is not expected to improve, there is little argumentation to promote their use.

However, a thorough comparison is generally lacking: we strive for better practices in this regard.
Sometimes the fuzzy extractor’s existence is not even mentioned, as for the group-based RO PUF and
the entropy distiller proposal for instance. Note that the former construction actually borrows its ECC
notion. We question the hardware efficiency of many proposals. Consider the collective overhead of
group-based RO PUFs for instance. Or consider temperature-aware cooperative RO PUFs, having ap-
plicability issues. Besides a temperature sensor, one does require an extension of the IC manufacturing
flow (see [7]: measuring RO frequencies, disconnecting bad RO pairs from power supply, etc.).

Furthermore, many proposals are rather vague about their use of helper data. The precise storage
format, parsing procedure and/or sanity checks are typically not specified. Although subtle differences
might impact security tremendously. We provide a few examples and strive again for better practices.
For the sequential pairing algorithm, pairs of RO indices are stored. However, there is no recommenda-
tion to store a pair’s indices in an either randomized or sorted order. Otherwise there is direct leakage
of the full key. The re-use of ROs across pairs should also be prohibited somehow. For group-based
PUFs, it is not clear whether grouping helper data is transferred three times or only once, with the
former case offering more opportunities for an attacker.

8 Conclusion and Further Work

Like any other PUF, RO PUFs do require helper data constructions in order to generate reproducible
and uniformly distributed keys. However, we showed various constructions to be vulnerable against
manipulation of their public helper data. By observing system failure rates, an attacker can retrieve
the key, or at least obtain some information about it. Actually, many more helper data constructions
have been proposed in literature, not necessarily limited to the RO PUF. We do not claim to have
studied them all and we advise to use them with great care. Instead, we encourage the use of fuzzy
extractors, the well-established reference solution. We strive for better practices when proposing new
helper data schemes. The following two items should be present: (1) an all-inclusive comparison with
the reference solution and (2) a very precise specification of its helper data use.

Acknowledgment

This work was supported in part by the European Commission through the ICT programme under
contract FP7-ICT-2011-317930 HINT. In addition, this work is supported by the Research Council of
KU Leuven: GOA TENSE (GOA/11/007), by the Flemish Government through FWO G.0550.12N and
the Hercules Foundation AKUL/11/19. Jeroen Delvaux is funded by IWT-Flanders grant no. 121552.
The authors would like to thank Dries Schellekens (ESAT/COSIC, KU Leuven) for his valuable
comments.

References

1. X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky and A. Smith, “Secure Remote Authentication Using Biometric
Data,” in Eurocrypt, pp. 147-163, May 2005.

2. Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from
Biometrics and Other Noisy Data,” SIAM J. Comput., vol. 38, no. 1, pp. 97-139, Mar. 2008.

3. A. Maiti and P. Schaumont, “Improving the Quality of a Physical Unclonable Function Using Configurable
Ring Oscillators,” in Field Programmable Logic and Applications, FPL 2009, pp. 703-707, Aug. 2009.

4. P. Sedcole and P.Y.K. Cheung, “Within-die delay variability in 90nm fpgas and beyond, in Field Pro-
grammable Technology, FPT 2006, pp. 97-104, Dec. 2006.

5. S. Skorobogatov, “Semi-invasive attacks - a new approach to hardware security analysis, Technical Report
UCAM-CL-TR-630, University of Cambridge, Computer Laboratory, Apr. 2005.

6. G.E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key genera-
tion,” in Design Automation Conference, DAC 2007, pp. 9-14, Jun. 2007.

7. C.E. Yin and G. Qu, “Temperature-aware cooperative ring oscillator PUF,” in Hardware-Oriented Security
and Trust, HOST 2009, pp. 36-42, Jul. 2009.

8. C.E. Yin and G. Qu, “Lisa: Maximizing RO PUF’s Secret Extraction,” in Hardware Oriented Security and
Trust, HOST 2010, pp. 100-105, Jun. 2010.

9. C.E. Yin, G. Qu and Q. Zhou, “Design and implementation of a group-based RO PUF,” in Design, Au-
tomation & Test in Europe, DATE 2013, pp. 416-421, Mar. 2013.

10. C.E. Yin and G. Qu, “Improving PUF security with regression-based distiller,” in Design Automation
Conference, DAC 2013, pp. 1-6, May 2013.

