
Revocable quantum timed-release encryption

Dominique Unruh

September 19, 2013

Abstract. Timed-release encryption is a kind of encryption scheme that a recipient can decrypt
only after a specified amount of time T (assuming that we have a moderately precise estimate of
his computing power). A revocable timed-release encryption is one where, before the time T is over,
the sender can “give back” the timed-release encryption, provably loosing all access to the data.
We show that revocable timed-release encryption without trusted parties is possible using quantum
cryptography (while trivially impossible classically).

Along the way, we develop two proof techniques in the quantum random oracle model that we believe
may have applications also for other protocols.

Finally, we also develop another new primitive, unknown recipient encryption, which allows us to
send a message to an unknown/unspecified recipient over an insecure network in such a way that at
most one recipient will get the message.
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1 Introduction

We present and construct revocable timed-release encryption schemes (based on quantum cryptography).
To explain what revocable timed-release encryption is, we first recall the notion of timed-release encryp-
tion (also known as a time-lock puzzle); we only consider the setting without trusted parties in this paper.
A timed-release encryption (TRE) for time T is an algorithm that takes a message m and “encrypts” it
in such a way that the message cannot be decrypted in time T but can be decrypted in time T 1 ą T .
(Here T 1 should be as close as possible to T , preferably off by only an additive offset.)

The crucial point here is that the recipient can open the encryption without any interaction with
the sender. (E.g., [Riv99] publishes a secret message that is supposed not to be openable before 2034.)
Example use cases could be: messages for posterity [RSW96]; data that should be provided to a recipient
at a given time, even if the sender goes offline; A sells some information to B that should be revealed
only later, but B wants to be sure that A cannot withdraw this information any more;1 exchange of

1In this case, zero-knowledge proofs could be used to show that the TRE indeed contains the right plaintext.



secrets where none of the parties should be able to abort depending on the data received by the other;
fair contract signing [BN00]; electronic auctions [BN00]; mortgage payments [RSW96]; concurrent zero-
knowledge protocols [BN00]; . . .

Physically, one can imagine TRE as follows: The message m is put in a strongbox with a timer that
opens automatically after time T 1. The recipient cannot get the message in time T because the strongbox
will not be open by then.

It turns out, however, that a physical TRE is more powerful than a digital one. Consider the following
example setting: Person P goes to a meeting with a criminal organization. As a safe guard, he leaves
compromising information m with his friend F , to be released if P does not resurface after one day.
(WikiLeaks/Assange seems to have done something similar [Pal10].) As P assumes F to be curious, P
puts m in a physical TRE, to be opened only after one day. If P returns before the day is over, P asks
the TRE back. If F hands the TRE over to P , P will be sure that F did not and will not read m. (Of
course, F may refuse to hand back the TRE, but F cannot get m without P noticing.)

This works fine with physical TRE, but as soon as P uses a digital TRE, F can cheat. F just copies
the TRE before handing it back an continues decrypting. After one day, F will have m, without P
noticing.

So physical TREs are “revocable”. The recipient can give back the encryption before the time T has
passed. And the sender can check that this revocation was performed honestly. In the latter case, the
sender will be sure that the recipient does not learn anything. Obviously, a digital TRE can never have
that property, because it can be copied before revocation.

However, if we use quantum information in our TRE, things are different. Quantum information
cannot, in general, be copied. So it is conceivable that a quantum TRE is revocable.

1.1 Example applications

We sketch a few more possible applications of revocable TREs. Some of them are far beyond the reach of
current technology (because they need reliable storage of quantum states for a long time). In some cases,
however, TREs with very short time T are used, this might be within the reach of current technology.
The applications are not worked out in detail (some are just first ideas), and we do not claim that they
are necessarily the best options in their respective setting, but they illustrate that revocable TREs could
be a versatile tool worth investigating further.

Deposits. A client has to provide a deposit for some service (e.g., car rental). The dealer should be
able to cash in the deposit if the client does not return. Solution: The client produces a T -revocable
TRE containing a signed transaction that empowers the dealer to withdraw the deposit. When the client
returns the car within time T , the client can make sure the dealer did not keep the deposit.2

Such deposits might also be part of a cryptographic protocol where deposits are revoked or redeemed
automatically depending on whether a party is caught cheating (to produce an incentive against cheating).
In this case, the time T might well be in the range of seconds or minutes, which could be within the
reach of near future quantum memory [KSH`13].

Data retention with verifiable deletion. Various countries have laws requiring the retention of
telecommunication data, but mandate the deletion of the data after a certain period (e.g., [Eur06]).
Using revocable TREs, clients could provide their data within revocable TREs (together with a proof of
correctness, cf. footnote 2). At the end of the prescribed period, the TRE is revoked, unless it is needed
for law-enforcement. This way, the clients can verify that their data is indeed erased from the storage.

Unknown recipient encryption. An extension of revocable TREs is “unknown recipient encryption”
(URE) which allows a sender to encrypt a message m in such a way that any recipient but at most
one recipient can decrypt it. That is, the sender can send a message to an unknown recipient, and that
recipient can, after decrypting, be sure that only he got the message, even if the ciphertext was transferred
over an insecure channel. Think, e.g., of a client connecting to a server in an anonymous fashion, e.g.,

2One challenge: The client needs to convince the dealer that the TRE indeed contains a signature on a transaction. I.e.,
we need a way to prove that a TRE V contains a given value (and the running time of this proof should not depend on T ).
At least for our constructions (see below), this could be achieved as follows: The client produces a commitment c on the
content of the classical inner TRE V0 and proves that c contains the right content (using a SNARK [BCCT12] so that
the verification time does not depend on T ). Then client and dealer perform a quantum two-party computation [DNS12]
with inputs c, V , and opening information for c, and with dealer outputs V and b where b is a bit indicating whether the
message in V satisfies P .
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through (a quantum variant of) TOR [DMS04], and receiving some data m. Since the connection is
anonymous and the client has thus no credentials to authenticate with the server, we cannot avoid that
the data gets “stolen” by someone else. However, with unknown recipient encryption, it is possible to
make sure that the client will detect if someone else got his data. This application shows that revocable
TREs can be the basis for other unexpected cryptographic primitives. Again, the time T may be small
in some applications, thus in the reach of the near future. We stress that URE is non-interactive, so
this works even if no bidirectional communication is possible. (More details in Appendix I.) It could be
used for a cryptographic dead letter box where a “spy” deposits secret information, and the recipient can
verify that no-one found it.

A variant of this is “one-shot” quantum key distribution: Only a single message is sent from Alice to
Bob, and as long as Bob receives that message within time T , he can be sure no-one else got the key.
(This is easily implemented by encrypting the key with a URE.)

1.2 Our contribution

Definitions. We give formal definitions of TREs and revocable TREs (Section 2). These definitions
come in two flavors: T -hiding (no information is leaked before time T ) and T -one-way (before time T ,
the plaintext cannot be guessed completely).)

One-way revocable TREs. Then we construct one-way revocable TREs (Section 3). Although one-
wayness is too weak a property for almost all purposes, the construction and its proof are useful as a warm-
up for the hiding construction, and also useful on their own for the random oracle based constructions
(see below). The construction itself is very simple: To encrypt a message m, a quantum state |Ψy is
constructed that encodes m in a random BB84 basis B.3 Then B is encrypted in a (non-revocable)
T -hiding TRE V0. The resulting TRE p|Ψy, V0q is sent to the recipient. Revocation is straightforward:
the recipient sends |Ψy back to the sender, who checks that |Ψy still encodes m in basis B. Intuitively,
|Ψy cannot be reliably copied without knowledge of basis B, hence before time T the recipient cannot
copy |Ψy and thus looses access to |Ψy and thus to m upon revocation.

The proof of this fact is not as easy as one might think at the first glance (“use the fact that B is
unknown before time T , and then use that a state |Ψy cannot be cloned without knowledge of the basis”)
because information-theoretical and complexity-theoretic reasoning need to be mixed carefully.

The resulting scheme even enjoys everlasting security (cf., e.g., [MQU07, DFSS05, ABB`07, CM97,
Rab03]): after successful revocation, the adversary cannot break the TRE even given unlimited compu-
tation.

We hope that the ideas in the proof benefit not only the construction of revocable TREs, but might
also be useful in other contexts where it is necessary to prove uncloneability of quantum-data based on
cryptographic and not information-theoretical secrecy (quantum-money perhaps?).

Revocably hiding TREs. The next step is to construct revocably hiding TREs (Section 4). The
construction described before is not hiding, because if the adversary guesses a few bits of B correctly,
he will learn some bits of m while still passing revocation. A natural idea would be to use privacy
amplification: the sender picks a universal hash function F and includes it in the TRE V0. The actual
plaintext is XORed with F pmq and transmitted. Surprisingly, we cannot prove this construction secure,
see the beginning of Section 4 for a discussion. Instead, we prove a construction that is based on CSS
codes. The resulting scheme uses the same technological assumptions as the one-way revocable one:
sending and measuring of individual qubits, quantum memory. Unfortunately, the reduction in this case
is not very efficient; as a consequence the underlying non-revocable TRE needs to be exponentially hard,
at least if we want to encrypt messages of superlogarithmic length. Notice that the random oracle based
solutions described below do not have this drawback.

Like the previous scheme, this scheme enjoys everlasting security.

Random oracle transformations. We develop two transformations of TREs in the quantum random
oracle model. The first transformation takes a revocably one-way TRE and transforms it into a revocably
hiding one (by sending m ‘ Hpkq and putting k into the revocably one-way TRE; Section 5.1). This
gives a simpler and more efficient alternative to the complex construction for revocably hiding TREs
described above, though at the cost of using the random-oracle model and loosing everlasting security.

3I.e., each bit of m is randomly encoded either in the computational or the diagonal basis.
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The second transformation allows us to assume without loss of generality that the adversary performs
no oracle queries before receiving the TRE, simplifying other security proof (Section 5.2).

For both transformations we prove general lemmas that allow us to use analogous transformations
also on schemes unrelated to TREs (e.g., to make an encryption scheme semantically secure). We believe
these to be of independent interest, because the quantum random oracle model is notoriously difficult to
use, and many existing classical constructions are not known to work in the quantum case.

Classical TREs. Unfortunately, only very few constructions of classical TRE are known. Rivest,
Shamir, and Wagner [RSW96] present a construction based on RSA; it is obviously not secure in the quan-
tum setting [Sho94]. Other constructions are iterated hashing (to sendm, we sendHpHpHp. . . prq . . . qqq‘
m) and preimage search (to decrypt, one needs to invert Hpkq where k P t1, . . . , T u); with suitable am-
plification this becomes a TRE [Unr06]). Preimage search is not a good TRE because it breaks down if
the adversary can compute in parallel. This leaves iterated hashing.4 We prove that (a slight variation
of) iterated hashing is hiding even against quantum adversaries and thus suitable for plugging into our
constructions of revocable TREs (Section 5.3). (Note, however, that the hardness of iterated hashing
could also be used as a very reasonable assumption on its own. The random oracle model is thus not
strictly necessary here, it just provides additional justification for that assumption.)

We leave it as an open problem to identify more practical candidates for iterated hashing, perhaps
following the ideas of [RSW96] but not based on RSA or other quantum-easy problems.

Unknown recipient encryption. In Appendix I, we formalize the notion and security of unknown
recipient encryption (URE, see Section 1.1 above) and give a construction based on our revocably hiding
time-vault construction, that we prove to be secure (even with everlasting security).

1.3 Preliminaries

For the necessary background in quantum computing, see, e.g., [NC10].
Let ωpxq denote the Hamming weight of x. By rq ` nsq we denote the set of all size-q subsets of

t1, . . . , q ` nu. I.e., S P rq ` nsq iff S Ď t1, . . . , q ` nu and |S| “ q. By ‘ we mean bitwise XOR (or
equivalently, addition in GFp2qn). Given a linear code C, let CK be the dual code (CK :“ tx : @y P
C. x, y orthogonalu).

Let X,Y, Z denote the Pauli operators. Let |βijy denote the four Bell states, namely |β00y :“
1?
2
|00y ` 1?

2
|11y and |βfey “ pZfXe b Iq|β00y “ pI b XeZf q|β00y. In slight abuse of notation, we

call |β00y an EPR pair (originally, [EPR35] used |β11y). And a state consisting of EPR pairs we call an
EPR state. H denotes the Hadamard gate, and In the identity on C2n (short I if n is clear from the
context). Let |myB denote m P t0, 1un encoded in basis B P t0, 1un, where 0 stands for the computational
and 1 for the diagonal basis.

Given an operator A and a bitstring x P t0, 1un, we write Ax for Ax1 b¨ ¨ ¨bAxn . E.g., Xx|yy “ |x‘yy,
and HB|xy “ |xyB.

Given f, e P t0, 1un, we write |Ăfey for |βf1e1y b ¨ ¨ ¨ b |βfneny, except for the order of qubits: the
first qubits of all EPR pairs, followed by the last qubits of all EPR pairs. In other words, |Ć0n0ny “ř

xPt0,1un|wy|wy and |Ăfey “ pZfXe b Iq|Ć0n0ny.
Let ‖¨‖ be the Euclidean norm (i.e., ‖|Ψy‖2 “ |xΨ|Ψy|) and let ~¨~ denote the corresponding operator

norm (i.e., ~A~ :“ supx‰0‖Ax‖{‖x‖).
By TDpρ1, ρ2q we denote the trace distance between density operators ρ1, ρ2. We write short

TDp|Ψ1y, |Ψ2yq for TDp|Ψ1yxΨ1|, |Ψ2yxΨ2|q.
Whenever we speak about algorithms, we mean quantum algorithms. (In particular, adversaries are

always assumed to be quantum.)

4Iterated hashing has the downside that producing the TRE takes as long as decrypting it. However, this long compu-
tation can be moved into a precomputation phase that is independent of the message m, making this TRE suitable at least
for some applications. [MMV11] present a sophisticated variant of iterated hashing that circumvents this problem; their
construction, however, does not allow the sender to predict the recipient’s output and is thus not suitable for sending a
message into the future.
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2 Defining revocable TREs

Timing models. Before we can define the security of TREs, we need to discuss the timing model
we use to measure the adversary’s complexity. In most situations, we wish that an adversary cannot
gain any advantage by parallelizing. This is because if we wish to construct a TRE that should not be
decrypted before 1 day has passed, we need to know how much computation time may pass in that time.
While it is reasonable to assume some upper bounds on the sequential speed of the hardware available
to the attacker, we may not know how many parallel instances of this hardware the attacker uses. Thus
our timing model should preferably count parallel, not sequential time. (“Solving the puzzle should be
like having a baby: two women can’t have a baby in 4.5 months.” [RSW96])

Instead of fixing a concrete timing model, we will keep our definitions and results generic in the timing
model that is used (except when stated explicitly). We will only sometimes assume that if performing
operations X1 takes time T1 and operations X2 take time T2, then performing T1 and T2 takes time at
most X1 ` X2. (This should be satisfied by most reasonable timing models such as circuit size, circuit
depth, execution steps of a RAM machine, etc.)

We will also need the notion of sequential polynomial time. This is the notion of polynomial time
usually employed in cryptography that counts all executions steps, no matter whether they are in parallel
or sequential. We will not need a more fine grained notion such as “in sequential time T ” for some
concrete T . Thus sequential polynomial time is more or less independent of the machine model, but
for concreteness we specify that an algorithm is sequential-polynomial-time if it can be implemented by
a probabilistic polynomial-time Turing machine. To understand why we need the notion of sequential
polynomial time, consider the following example TRE: TREpmq :“ pk, encpHT pkq,mqq with k $Ð t0, 1uη.
One might assume that m cannot be learned by T -time adversaries (with respect to parallel time),
because HT pkq can only be computed by T sequential applications of H . But this is not correct: using
brute-force, we can compute m from encpHT pkq,mq using 2η parallel decryptions. Of course, such an
attack is not practical. Indeed, TRE seems hiding with respect to T -(parallel)-time adversaries that are
at the same time sequential-polynomial-time. So the right notion of an adversary against a TRE is one
that is both T -time and sequential-polynomial-time.

Non-revocable TREs. First, we define the security properties a normal (non-revocable) TRE should
have. We are not aware of a suitable formal definition in the literature.

Hofheinz and Unruh [HU05] formally define what they call time-lock puzzles, but those are intended
for proofs of computational power and not for encrypting messages and thus do not formalize anything
resembling our hiding property. Also, their definition can only express asymptotic hardness of the puzzle
and does not take into account parallel time. Mahmoody, Moran, and Vadhan [MMV11] also define
time-lock puzzles. They take into account parallel execution time and can express time in a more fine-
grained way. However, their definition is not suitable for encrypting messages. Also, they do not exclude
adversaries that use exponential parallelism; this excludes many sensible puzzles, for example those that
use encryption as a building block.5 Dwork and Naor [DN93] give an informal definition of “proofs of
work”, but again this does not deal with encryption of messages, and parallel time is (intentionally) not
considered. Note that all the above definitions are well-suited for the applications they were specified
for, which was not the sending of messages into the future.

We first define what a TRE (secure or not) is:

Definition 1 (Timed-release encryption) A timed-release encryption (TRE) with message space M
consists of two algorithms:

• Encryption. A probabilistic sequential polynomial-time algorithm TRE that takes as input a mes-
sage m P M (and the security parameter which in the following will be left implicit) and outputs V
(the TRE itself).

• Decryption. A probabilistic sequential-polynomial-time algorithm that, upon input V (as constructed
by TRE), outputs m with overwhelming probability.

Roughly speaking, a timed-release encryption TRE is T -hiding if within time T , one cannot learn
anything about the message, i.e., for any m0,m1, TREpm0q and TREpm1q are indistinguishable for a
T -time, sequential-polynomial-time adversary A1. (See the discussion above why we additionally need

5E.g., the timed-release encryption TRE from the discussion of sequential-polynomial-time above would not be secure
according to their definition.
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sequential-polynomial-time.) Furthermore, we allow the adversary an arbitrary (sequential-polynomial-
time) precomputation A0 before he receives the TRE, this accounts for the fact that we cannot well
bound the amount of time the adversary has invested before we produced the TRE.

Definition 2 (Hiding timed-release encryption) A timed-release encryption TRE with message
space M is T -hiding if for algorithms A0, A1 such that A0 is sequential-polynomial-time and A1 is
sequential-polynomial-time6 and T -time we have that

∣

∣Prrb1 “ 1 : pm0,m1q Ð A0pq, V Ð TREpm0q, b1 Ð A1pV qs
´Prrb1 “ 1 : pm0,m1q Ð A0pq, V Ð TREpm1q, b1 Ð A1pV qs ∣∣

is negligible. (We assume that A0 always outputs m0,m1 P M , and we allow A0, A1 to keep state between
activations.7)

We also define one-wayness of TREs. T -one-wayness only requires that in time T , the adversary
cannot guess the uniformly random message m completely. This is quite a weak property, but we need
it for intermediate results in some constructions.

Definition 3 (One-way TRE) A timed-release encryption TRE with message space M is T -one-way,
if for any quantum adversary pA0, A1q where A1 is sequential-polynomial-time and T -time and A0 is
sequential-polynomial-time, we have that

Prrm “ m1 : A0pq,m $Ð M,V Ð TREpmq,m1 Ð A1pV qs
is negligible. (We allow A0, A1 to keep state between activations.)

Revocable TREs. We now define what revocable TREs are. A revocable TRE differs from a TRE
only by the additional revocation protocol that is supposed to convince the sender that the recipient
cannot decrypt the TRE any more.

Definition 4 (Revocable TREs) A revocable timed-release encryption consists of a timed-release en-
cryption TRE and a two-party sequential-polynomial-time protocol, the revocation protocol, between
sender and recipient of the TRE. (The sender may keep state during the computation of the TRE that
is used in the revocation protocol.)

For any m P M (where m may depend on the security parameter), it holds:
• Let V Ð TREpmq. Run the revocation protocol where the recipient gets V as input. Then, with

overwhelming probability, the sender accepts the revocation (i.e., outputs 1).

We now define the revocable hiding property. A TRE is revocably T -hiding if an adversary
cannot both successfully pass the revocation protocol within time T and learn something about
the message m contain in the TRE. When formalizing this, we have to be careful. A defini-
tion like: “conditioned on revocation succeeding, p0 :“ Prradversary outputs 1 given TREpm0qs and
p1 :“ Prradversary outputs 1 given TREpm1qs are close (|p0 ´ p1| is negligible)” does not work: if
Prrrevocation succeedss is very small, |p0 ´ p1| can become large even if the adversary rarely suc-
ceeds in distinguishing. (Consider, e.g., an adversary that intentionally fails revocation except in the
very rare case that he guesses an encryption key that allows to decrypt the TRE immediately.) Also,
a definition like “ |p0 ´ p1| ¨ Prrrevocation succeedss” is problematic: Does Prrrevocation succeedss re-
fer to an execution with TREpm0q or TREpm1q?. Instead, we will require “ |p0 ´ p1| is negligible
with pi :“ Prradversary outputs 1 and revocation succeeds given TREpmiqs”. This definition avoids
the complications of a conditional probability and additionally has implies as side effect that also
Prrrevocation succeeds given TREpm0qs and Prrrevocation succeeds given TREpm1qs are close.

Furthermore, the discussion concerning sequential-polynomial-time and precomputation from Defini-
tion 2 applies here as well.

Definition 5 (Revocably hiding timed-release encryption) Given a revocable timed-release en-
cryption TRE with message space M , and an adversary pA0, A1, A2q (that is assumed to be able to
keep state between activations of A0, A1, A2) consider the following game Gpbq for b P t0, 1u:

6We add sequential-polynomial-time here, because with respect to some time-measures, T -time might not imply
sequential-polynomial-time. E.g., if T -time refers to parallel time, then NP is easy even for relatively small T .

7If M is infinite, we might also wish to add the condition that |m0| “ |m1|, otherwise constructing hiding TRE for
such M is trivially impossible.
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• pm0,m1q Ð A0pq.
• V Ð TREpmbq.
• Run the revocation protocol of TRE, where the sender is honest, and the recipient is A1pV q. Let
ok be the output of the sender (i.e., ok “ 1 if the sender accepts).

• b1 Ð A2pq.
A timed-release encryption TRE with message space M is T -revocably hiding, if for any adversary
pA0, A1, A2q where A1 is sequential-polynomial-time and T -time and A0, A2 are sequential-polynomial-
time we have that the advantage

∣

∣Prrb1 “ 1 ^ ok “ 1 : Gp0qs ´ Prrb1 “ 1 ^ ok “ 1 : Gp1qs∣∣

is negligible.

Note that although revocably hiding seems to be a stronger property than hiding, we are not aware
of any proof that a T -revocably hiding TRE is also T -hiding. (It might be that it is possible to extract
the message m in time ! T , but only at the cost of making a later revocation impossible. This would
contradict T -hiding but not T -revocably hiding.) Therefore we always need to show that our revocable
TREs are both T -hiding and T -revocably hiding.

Again, we define the weaker property of revocable one-wayness which only requires the adversary to
guess the message m. We need this weaker property for intermediate constructions. Like for hiding, we
stress that revocable one-wayness does not seem to imply one-wayness.

Definition 6 (Revocably one-way TRE) Given a revocable timed-release encryption TRE with mes-
sage space M , and an adversary pA0, A1, A2q (that is assumed to be able to keep state between activations
of A0, A1, A2) consider the following game G:

• Run A0pq.
• Pick m

$Ð M , run V Ð TREpmq.
• Run the revocation protocol of TRE, where the sender is honest, and the recipient is A1pV q. Let
ok be the output of the sender (i.e., ok “ 1 if the sender accepts).

• m1 Ð A2pq.
A timed-release encryption TRE with message space M is T -revocably one-way, if for any quantum
adversary pA0, A1, A2q where A1 is sequential-polynomial-time and T -time and A0, A2 are sequential-
polynomial-time, we have that

Prrm “ m1 ^ ok “ 1 : Gs
is negligible.

3 Constructing revocably one-way TREs

In this section, we present our construction RTREow for revocably one-way TREs. Although one-wayness
is too weak a property, this serves as a warm-up for our considerably more involved revocably hiding
TREs (Section 4), and also as a building block in our random-oracle based construction (Section 5.1).

The following protocol is like we sketched in the introduction, except that we added a one-time pad p.
That one-time pad has no effect on the revocable one-wayness, but we introduce because it makes the
protocol (non-revocably) hiding at little extra cost (Theorem 2).

Definition 7 (Revocably one-way TRE RTREow)
• Let n be an integer.
• Let TRE0 be a T -hiding TRE with message space t0, 1u2n.

We construct a revocable TRE RTREow with message space t0, 1un.
Encryption of m P t0, 1un:

• Pick p,B
$Ð t0, 1un.

• Construct the state |Ψy :“ |m‘ pyB. (Recall that |xyB is x encoded in basis B, see page 4.)
• Compute V0 Ð TRE0pB, pq.
• Send V0 and |Ψy.

Decryption is performed as follows:
• Decrypt V0, this gives B, p.
• Measure |Ψy in basis B; call the outcome γ.

7



• Return m :“ γ ‘ p.
The revocation protocol is the following:

• The recipient sends |Ψy back to the sender.
• The sender measures |Ψy in basis B; call the outcome γ.
• If γ “ m‘ p, revocation succeeds (sender outputs 1).

Naive proof approach. (In the following discussions, for clarity we omit all occurrences of the one-
time pad p.) At a first glance, it seems the security of this protocol should be straightforward to prove:
We know that without knowledge of the basis B, one cannot clone the state |Ψy, not even approximately.8

We also know that until time T , the adversary does not know anything about B (since TRE0 is T -hiding).
Hence the adversary cannot reliably clone |Ψy before time T . But the adversary would need to do so to
pass revocation and still keep a state that allows him to measure m later (when he learns B).

Unfortunately, this argument is not sound. It would be correct if TRE0 were implemented using a
trusted third party (i.e., if B is sent to the adversary after time T ).9 However, the adversary has access
to V0 “ TRE0pBq when trying to clone |Ψy. From the information-theoretical point of view, this is the
same as having access to B. Thus the no-cloning theorem and its variants cannot be applied because
they rely on the fact that B is information-theoretically hidden.

One might want to save the argument in the following way: Although V0 “ TRE0pBq information-
theoretically contains B, it is indistinguishable from V̂0 “ TRE0pB̂q which does not contain B but
an independently chosen B̂. And if the adversary is given V̂0 instead of V0, we can use information-
theoretical arguments to show that he cannot learn m. But although this argument would work if TRE0

were hiding against polynomial-time adversaries (e.g., if TRE0 were a commitment scheme). But TRE0

is only hiding for T -time adversaries! This only guarantees that all observable events that happen with
V0 before time T also happen with V̂0 before time T and vice versa. In particular, since with V̂0, the
adversary cannot learn m before time T , he cannot learn m before time T with V0. But although with
V̂0, after successful revocation, the adversary provably cannot ever learn m, it is might be possible that
with V0, he can learn m right after time T has passed.

Indeed, it is not obvious how to exclude that there is some “encrypted-cloning” procedure that, given
|Ψy “ |myB and TRE0pBq, without disturbing |Ψy, produces a state |Ψ1y that for a T -time distinguisher
looks like a random state, but still |Ψ1y can be transformed into |Ψy by in time " T . Such an “encrypted-
cloning” would be sufficient for breaking RTREow . (Of course, it is a direct corollary from our security
proof that such encrypted-cloning is impossible.)10

Proof idea. As we have seen in the preceding discussion, we can prove that the property “the adversary
cannot learn m ever” holds when sending V̂0 “ TRE0pB̂q for an independent B̂ instead of V0 “ TRE0pBq.
But we cannot prove that this property carries over to the V0-setting because it cannot be tested in
time T . Examples for properties that do carry over would be “the adversary cannot learn m in time
T ” or “revocation succeeds” or “when measured in basis B, the adversary’s revocation-message does not
yield outcome m”. But we would like to have a property like “the entropy of m is large (or revocation
fails)”. That property cannot be tested in time T , so it does not carry over. Yet, we can use a trick to
still guarantee that this property holds in the V0-setting.

For this, we first modify the protocol in an (information-theoretically) indistinguishable way: Nor-
mally, we would pick m at random and send |Ψy :“ |myB to the adversary. Instead, we initialize two
n-bit quantum registers X,Y with EPR pairs and send X to the adversary. The value m is computed by

8This fact also underlies the security of BB84-style QKD protocols [BB84].
9Again, this is implicit in proofs for BB84-style QKD protocols: there the adversary gets a state |Ψy “ |myB from Alice

(key m encoded in a secret base B), which he has to give back to Bob unchanged (because otherwise Alice and Bob will
detect tampering). And he wishes to, at the same time, keep information to later be able to compute the key m when
given B.

10To illustrate that “encrypted-cloning” is not a far fetched idea, consider the following quite similar revocable TRE: Let
EKp|Ψyq denote the quantum one-time pad encryption of |Ψy P C2

n
using key K P t0, 1u2n, i.e., EKp|Ψyq “ ZK1XK2 |Ψy

with K “ K1}K2 [AMTW00]. RTREpmq :“ pEKp|myBq, B,TRE0pKqq. For revocation, the sender sends EKp|myBq back,
and the recipient checks if it is the right state. Again, if K is unknown, it is not possible to clone EKp|myBq as it is
effectively a random state even given B. But we can break RTRE as follows:

The recipient measures |Φy :“ EKp|myBq in basis B. Using XH “ HZ and ZH “ HX, we have |Φy “

ZK1XK2HB |my “ HBXK1˚BZK1˚B̄ZK2˚BXK2˚B̄ |my “ ˘|m ‘ pK2 ˚ B̄q ‘ pK1 ˚ BqyB where ˚ is the bit-wise prod-
uct and B̄ the complement of B. Thus the measurement of |Φy in basis B does not disturb |Φy, and the recipient learns
m‘pK1 ˚Bq‘pK2 ˚B̄q. He can then send back the undisturbed state |Φy and pass revocation. After decrypting TRE0pKq,
he can compute m, and reconstruct the state |Φy “ EKp|myBq using known K,m,B. Thus he performed an “encrypted
cloning” of |Φy before decrypting TRE0pKq.
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measuring Y in basis B. Now we can formulate a new property: “after revocation but before measuring
m, XY are still EPR pairs (up to some errors) or revocation fails”. This property can be shown to hold
in the V̂0-setting using standard information-theoretical tools. And the property tested in time T , all
we have to do is a measurement in the Bell basis. Thus the property also holds in the V0-setting. And
finally, due to the monogamy of entanglement ([CKW00]; but we need a custom variant of it) we have
that this property implies “the entropy of m is high (or revocation fails)”.

We have still to be careful in the details, of course. E.g., the revocation check itself contains a
measurement in basis B which would destroy the EPR state XY ; this can be fixed by only measuring
whether the revocation check would succeeds, without actually measuring m.

Theorem 1 (RTREow is revocably one-way) Let δowT be the time to compute the following things: a
measurement whether two n-qubit registers are equal in a given basis B (defined as P“

B on page 9 below),
a measurement whether two n-qubit registers are in an EPR state up to t phase flips and t bit flips (for
a given t; defined as PEPR

t on page 10 below), and one NOT- and one AND-gate.
Assume that the protocol parameter n is superlogarithmic.
The protocol RTREow from Definition 7 is pT ´ δowT q-revocably one-way, even if adversary A2 is

unlimited (i.e., after revocation, security holds information-theoretically).
A concrete security bound is given at the end of the proof in Appendix B, page 25.

Proof sketch. We now proceed to a more detailed proof sketch. The full proof is given in Appendix B.
Our proof proceeds as a sequence of games. Game 1 is the game from Definition 6 (with the definition

of RTREow inlined), it thus suffices to show that Prrm “ m1 ^ ok “ 1 : Game 1s is negligible. We
highlight changes between games in blue.

Game 1 (Original game)

• Run A0pq. m $Ð t0, 1un, p $Ð t0, 1un, B $Ð t0, 1un. V0 Ð TRE0pB, pq. X Ð |m ‘ pyB.
• Run A1pX,V0q. (We pass the quantum register X to A1 which means that A1 has read-write access

to it.)
• Measure X in basis B; outcome γ. If m‘ p “ γ, ok :“ 1, else ok :“ 0. m1 Ð A2pq.

First, we use the laws of ‘ to get rid of the one-time-pad p which is irrelevant for the revocable one-
wayness and only a hindrance in the present proof. The probability Prrm “ m1 ^ ok “ 1s does not
change.

Game 2 (One-time-pad removed)

• Run A0pq. m $Ð t0, 1un, p $Ð t0, 1un, B $Ð t0, 1un. V0 Ð TRE0pB, pq. X Ð |myB.
• Run A1pX,V0q. Measure X in basis B; outcome γ. If m “ γ, ok :“ 1, else ok :“ 0. m1 Ð A2pq ‘ p.

Now we introduce EPR pairs into the protocol as explained in the proof idea. Producing EPR pairs XY
and measuring Y in basis B with outcome m is equivalent to picking m at random and initializing X
with |myB. Hence the new game is equivalent and Prrm “ m1 ^ ok “ 1s does not change.

Game 3 (Using EPR pairs)

• Run A0pq. m $Ð t0, 1un, p $Ð t0, 1un, B $Ð t0, 1un. V0 Ð TRE0pB, pq.
• Initialize XY as |Ć0n0ny. Run A1pX,V0q. Measure X in basis B; outcome γ.
• Measure Y in basis B, outcome m. If m “ γ, ok :“ 1, else ok :“ 0. m1 Ð A2pq ‘ p.

Unfortunately, we cannot yet argue that the state ofXY after a successful revocation is still an EPR state:
Since we measure X and Y in basis B in order to perform the revocation check, XY will never contain an
EPR state after that measurement. So we replace those measurements and the test m “ γ with a direct
measurement whether X and Y would give the same outcome when both measured in basis B. I.e., apply
the measurement operator P“

B :“ ř
xPt0,1un|x, xyBxx, x|B. We show that again Prrm “ m1 ^ ok “ 1s

does not change.

Game 4 (Changed revocation test)

• Run A0pq. p $Ð t0, 1un, B $Ð t0, 1un. V0 Ð TRE0pB, pq. Initialize XY as |Ć0n0ny.
• Run A1pX,V0q. Measure XY using P“

B ; outcome ok . Measure X in basis B; outcome γ.
• Measure Y in basis B, outcome m. If m “ γ, ok :“ 1. Else ok :“ 0. m1 Ð A2pq ‘ p.
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Now we come to the crucial step of our proof. As explained in the proof idea, the property P :“ “the
adversary cannot learn m ever (unless revocation fails)” (formally: “not pm “ m1 ^ ok “ 1q”) does not
carry over between a setting where we use TRE0pB, pq and one where we use TRE0pB̂, pq. Instead, we
want to use the property “after revocation but before measuring m, XY are still EPR pairs (up to some
errors) or revocation fails”. We model this using a measurement operator PEPR

t :“ ř
f,e|

ĂfeyxĂfe| where

the sum ranges over all f, e P t0, 1un with ωpfq, ωpeq ď t. (Remember that |Ăfey stands for an EPR state
with phase flips f and bit flips e, see page 4.) Here t is an arbitrary integer, but for best results we
choose t :“ ?

n. That is, PEPR
t tests whether two n-qubit registers form an EPR state (up to t phase

flips and t bit flips). If we measure XY using PEPR
t and call the outcome isEPR, property P can be

written “not pisEPR “ 0 ^ ok “ 1q”. This is reflected in the following game:

Game 5 (Testing the state)

• Run A0pq. p $Ð t0, 1un, B $Ð t0, 1un. V0 Ð TRE0pB, pq. Initialize XY as |Ć0n0ny.
• Run A1pX,V0q. Measure XY using P“

B ; outcome ok .
• Measure XY using PEPR

t ; outcome isEPR.
• Measure Y in basis B, outcome m. m1 Ð A2pq ‘ p.

It is well-known that if XY form an EPR state, then the adversary’s state cannot contain any information
about the outcome of measuring X (monogamy of entanglement). In the present case the situation is
made more complicated because of the possibility of errors in the EPR state, because we do not know
whether the state is really a t-error EPR state or whether the measurement PEPR

t just got lucky on a
somewhat different state, and because of the additional condition ok “ 1. Still, we can prove

Prrm1 “ m ^ ok “ 1 : Game 4s ď
a
PrrisEPR “ 0 ^ ok “ 1 : Game 5s ` 2´npn ` 1q2t.

In particular it is now sufficient to show that PrrisEPR “ 0 ^ ok “ 1s is negligible in Game 5.

Game 5 runs in time T . Thus, we can replace TREpB, pq by TREpB̂, pq for random B without
changing more than negligibly any property computed during the game. In particular, PrrisEPR “
0 ^ ok “ 1s changes only by a negligible amount.

Game 6 (Using fake TRE)

• Run A0pq. p $Ð t0, 1un, B $Ð t0, 1un. B̂ Ð t0, 1un. V0 Ð TRE0pB̂, pq.
• Initialize XY as |Ć0n0ny. Run A1pX,V0q. B $Ð t0, 1un.
• Measure XY using P“

B ; outcome ok . Measure XY using PEPR
t ; outcome isEPR.

Finally, we can show that it is not possible to create a state that passes the equality test P“
B for

random B without already being close to an EPR state (with t bit/phase flips). That is, we show that
PrrisEPR “ 0 ^ ok “ 1s ď 2´t´1 which is negligible. This proves the revocable onewayness of RTREow .
l

Since revocable one-wayness does not imply (non-revocable) one-wayness, we show the hiding property
in an additional theorem. Due to the presence of the one-time pad p, the proof is unsurprising.

Theorem 2 (RTREow is hiding) The protocol RTREow from Definition 7 is T -hiding. (A concrete
security bound is given in Appendix B, page 26.)

4 Revocably hiding TREs

We now turn to the problem of constructing revocably hiding TREs. The construction from the previous
section is revocably one-way, but it is certainly not revocably hiding because the adversary might be
lucky enough to guess a few bits of the basis B, measure the corresponding bits of the message m without
modifying the state, and successfully pass revocation. So some bits of m will be necessarily leak. The
most natural approach for dealing with partial leakage (at least in the case of QKD) is to use privacy
amplification. That is, we pick a function F from a suitable family of functions (say, universal hash
functions with suitable parameters), and then to send m, we encrypt a random x using the revocably
one-way TRE, and additionally transmit F pxq ‘m. If x has sufficiently high min-entropy, F pxq will look
random, and thus F pxq ‘m will not leak anything about m. Additionally, we need to transmit F to the
recipient, in a way that the adversary does not have access to it when measuring the quantum state. Thus,
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we have to include F in the classical TRE. So, altogether, we would send pm ‘ F pxq,TRE0pB, fqq and
|myB. In fact, this scheme might be secure, we do not have an attack. Yet, when it comes to proving its
security, we face difficulties: In the proof of RTREow , to use the hiding property of TRE0, we identified
a property that can be checked in time T , and that guarantees that m cannot be guessed. (Namely, we
used that the registers XY contain EPR pairs up to some errors which implies that the adversary cannot
predict the outcome m of measuring Y .) In the present case, we would need more. We need a property
P that guarantees that F pxq is indistinguishable from random given the adversary’s state when x is the
outcome of measuring Y . Note that here it is not sufficient to just use that x has high min-entropy
and that F is a strong randomness extractor; at the point when we test the property P , F is already
fixed and thus not random. Instead, we have to find a measurable property P 1 that guarantees: For the
particular value F chosen in the game, F pxq is indistinguishable from randomness. (And additionally,
we need that P 1 holds with overwhelming probability when TRE0pB, fq is replaced by a fake TRE not
containing B, f .) We were not able to identify such a property.11

Using CSS codes. This discussion shows that, when we try to use privacy amplification, we encounter
the challenge how to transmit the hash function F . Yet, in the context of QKD, there is a second
approach for ensuring that the final key does not leak any information: Instead of first exchanging a
raw key and then applying privacy amplification to it, Shor and Preskill [SP00] present a protocol where
Alice and Bob first create shared EPR pairs with a low number of errors. In our language: Alice and
Bob share a superposition of states |Ăfey with ωpfq, ωpeq ď t. Then they use the fact that, roughly

speaking, |Ć0n0ny is an encoding of |Ą0ℓ0ℓy for some ℓ ă n using a random CSS code correcting t bit/phase
error. (Calderbank-Shor-Steane codes [CS96, Ste96], see Appendix C.) So if Alice and Bob apply error

correction and decoding to |Ăfey, they get the state |Ą0ℓ0ℓy. Then, if Alice and Bob measure that state,
they get identical and uniformly distributed keys, and the adversary has no information. Furthermore,
the resulting protocol can be seen to be equivalent to one that does not need quantum codes (and thus
quantum computers) but only transmits and measures individual qubits (BB84-style). It turns out that
we can apply the same basic idea to revocably hiding TREs.

For understanding the following proof sketch, it is not necessary to understand details of CSS codes.
It is only important to know that for any CSS code C, there is a family of disjoint codes Cu,v such thatŤ

u,v Cu,v forms an orthonormal basis of Ct0,1un

.
Consider the following protocol (simplified):

Definition 8 (Simplified protocol RTRE1
hid) Let C be a CSS code on t0, 1un that encodes plaintexts

from a set t0, 1um and that corrects t phase and bit flips. Let q be a parameter.
• Encryption: Create q ` n EPR pairs in registers X,Y . Pick a set Q “ ti1, . . . , iqu P rq ` nsq of

qubit pair indices and a basis B P t0, 1uq, and designate the qubit pairs in XY selected by Q as
“test bits” in basis B. (The remaining pairs in XY will considered as an encoding of EPR pairs
using C.) Send X together with the description of C and a hiding TRE TRE0pQq to the recipient.
The plaintext contained in the TRE is x where x results from: Consider the bits of Y that are not
in Q as a codeword from one of the codes Cu,v. Measure what u, v are (this is possible since the
Cu,v are orthogonal). Decode the code word. Measure the result in the computational basis.

• Decryption: Decrypt TRE0pQq. Considering the bits of X that are not in Q as a codeword from
Cu,v and decode and measure as in the encryption.

• Revocation: Send back X. The sender measures the bit pairs from XY selected by Q using bases
B, yielding r, r1. If r “ r1, revocation succeeds.

Note that this simplified protocol is a “randomized” TRE which does not allow us to encrypt an
arbitrary message, but instead chooses the message x. The obvious approach to transform it to a normal

11To illustrate the difficulty of identifying such a property: Call a function F s-good if F pxq is uniformly random if
all bits xi with si “ 0 are uniformly random (and independent). In other words, F tolerates leakage of the bits with
si “ 1. For suitable families of functions F , and for s with low Hamming weight, a random F will be s-good with high

probability. Furthermore, when using a fake TRE0, XY is in state |Ăfey with s :“ pf _ eq of low Hamming weight with
overwhelming probability after successful revocation (this we showed in the security proof for RTREow ). In this case, all
bits of Y with si “ 0 will be “untampered” and we expect that F pxq is uniformly random for s-good F (when x is the

outcome of measuring Y ). So we are tempted to choose P 1 as: “XY is in a superposition of states |Ăfey such that the
chosen F is pf _ eq-good”. This property holds with overwhelming property using a fake TRE0. But unfortunately, this
fails to guarantee that fpxq is random. E.g., if F pabq “ a ‘ b, then F is 10-good and 01-good. Thus a superposition of

| Ć10 00y and | Ć01 00y satisfies property P 1 for that F . But 1?
2
| Ć10 00y ` 1?

2
| Ć01 00y “ 1?

2
|0000y ´ 1?

2
|1111y, so x P t00, 11u

with probability 1 and thus F pxq “ 0 always. So P 1 fails to guarantee that F pxq is random.
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TRE for encrypting a given message m is to send m‘ x in addition to the TRE. This is indeed what we
do, but there are some difficulties that we discuss below.

In the revocation, why do we not simply measure whether XY consists of EPR pairs instead of
comparing in a random basis? If we do that, our protocol cannot be transformed into a protocol without
entanglement (paragraph “entanglement-free protocol” below). And why do we test only a subset Q of
the qubit pairs? Otherwise our proof would break down: we use in the analysis of Game 7 that the parts
of XY that contain the codeword from Cu,v form EPR pairs. This would not hold if we would measure
those parts in basis B.

Proof sketch. Now we can prove that this protocol is revocably hiding. Again, we use a sequence of
games (the numbering is chosen to match the numbering in the full proof for the unsimplified protocol
in Appendix D). The first game represents the definition of revocably hiding.

Game 4 (Revocable hiding property of RTRE1
hid)

(a) The game is parametric in b P t0, 1u.
(b) pm0,m1q Ð A0pq. Pick B, Q. Initialize XY as | Č0q`n0q`ny.
(c) Measure from Y the parameters u, v of the CSS code Cu,v.

(d) V0
$Ð TRE0pBq. Run A1pX,V0, u, vq. (We pass the quantum register X to A1 which means that A1

has read-write access to it.)
(e) Measure the Q-parts of X and Y in basis B; if the outcomes are equal, ok :“ 1.
(f) Measure the result of decoding the non-Q-part of Y ; outcome x.
(g) b1 Ð A2px‘mbq.

Note that since we analyze a “randomized” TRE, we did not encrypt the message mb chosen by the
adversary, but instead gave x ‘ mb to the adversary after getting the random plaintext x of the TRE.
Notice also that we give x‘mb to the adversary A2 and not to A1 as would be more natural. We discuss
reasons and solutions for this in the paragraph “early key revelation” below.

We need to show that µ :“ ∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 4p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 4p1qs∣∣ is
negligible. Here Game 4p0q denotes Game 4 with parameter b :“ 0 and analogously for b :“ 1.

As in the security proof for RTREow , we then transform the game into one where we test a property
that will imply that the adversary does not learn anything about x after revocation, i.e., that µ is
negligible. Since the plaintext x is the result of decoding Y using code Cu,v, a suitable property is:
“When decoding Y using code Cu,v and error correcting and decoding X using code Cu,v, then we get

the state |Ą0ℓ0ℓy.”
Game 6 (Testing the state)
(a) The game is parametric in b P t0, 1u.
(b) pm0,m1q Ð A0pq. Pick B, Q. Initialize XY as | Č0q`n0q`ny.
(c) Measure from Y the parameters u, v of the CSS code Cu,v.

(d) V0
$Ð TRE0pBq. Run A1pX,V0, u, vq.

(e) Measure the Q-parts of X and Y in basis B; if the outcomes are equal, ok :“ 1.
(f) Decode Y and error-correct and decode X (bits not in Q only), measure if the resulting state of XY

(excluding Q-bits) is |Ą0ℓ0ℓy. If so, isEPR :“ 1.
(g) Measure the result of decoding the non-Q-part of Y ; outcome x.
(h) b1 Ð A2px‘mbq.

We can now prove the following bound (Lemma 24 in Appendix D).

µ ď ?
ε for ε :“ Prrok “ 1 ^ isEPR “ 0 : Game 6s (1)

The proof of this bound is roughly the following (we ignore the condition ok “ 1): A state that
passes the test in step (f) with probability 1 ´ ε will have trace distance

?
ε from a state that, when

decoded and error corrected, is |Ą0ℓ0ℓy. Notice that before step (f), the state in Game 4 and Game 6
is the same. This means that if in Game 4, before step (f), we were to additionally error correct and

decode X , we would have |Ą0ℓ0ℓy in XY at that point (up to trace distance
?
ε). Thus by monogamy of

entanglement, the adversary cannot have any information about the outcome x of measuring Y (except
with probability

?
ε). Since applying error correction and decoding to X has no effect (X is not used

any more afterwards), the same holds for the unmodified Game 4. Equation (1) follows.
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Now, in Game 6, the steps after computing TRE0 take time T because we removed A2 from the game.
(We ignore the additive overhead from decoding and error correction in this proof sketch.) Thus we can
replace TRE0pQq by a fake TRE without changing the probability of Prrok “ 1 ^ isEPR “ 0s by more
than a negligible amount.

Game 7 (Using fake TRE) Like Game 6, but using V0 Ð TRE0pQ̂q with independent Q̂.

Finally, we show that Prrok “ 1 ^ isEPR “ 0 : Game 7s is negligible as follows: B and Q are
not used before step (e). That is, in step (e), we measure a random subset of the qubit pairs in XY

in a random basis. Except with negligible probability, the only states that pass this test are EPR
states with up to t bit/phase flips. I.e., after throwing away the test bits, we have a superposition of
states |Ăfey with ωpfq, ωpeq ď t. Since |Ăfey “ pZfXe b Iq| Č0n`q0n`qy, and | Č0n`q0n`qy is an encoding of

|Ą0ℓ0ℓy, error correction on X removes the effect of ZfXe, and then decoding leads to the state |Ą0ℓ0ℓy.
That is, isEPR “ 1 holds with overwhelming probability when revocation succeeds (ok “ 1). Thus
Prrok “ 1 ^ isEPR “ 0 : Game 7s is negligible.

Combining all results, we have that µ is negligible. This shows the security of RTRE1
hid . l

Entanglement-free protocol. The protocol RTRE1
hid requires Alice to prepare EPR pairs and apply

the decoding operation of CSS codes. While our protocol may not be feasible with current technology
anyway due to the required quantum memory, we wish to reduce the technological requirements as much
as possible. Fortunately, CSS codes have the nice property that decoding with subsequent measurement
in the computational basis is equivalent to a sequence of individual qubit measurements. Using these
properties, we can rewrite Alice so that she only sends and measures individual qubits in BB84 bases, and
Bob stores and measures individual qubits in BB84 bases (i.e., like in RTREow ). See the final protocol
description (Definition 9) below for details. In the full proof, this change means that we have to add
further games in front of the sequence (Games 2 and 3) to rewrite the entanglement-free operations into
EPR-pair based ones.

Early key revelation. One big problem remains: the security definition used in Game 4 gives mb ‘x

to A2, and not to A1 (we call this late key revelation). The effect of this is that RTRE1
hid is only secure if

the plaintext x is not used before time T . This limitation, of course, contradicts the purpose of TREs and
needs to be removed. We need early key revelation where the adversary A1 is given mb ‘x. The problem
is that when A1 is executed, we do not know x yet. If we were to measure x earlier, the measurement of
isEPR in Game 6 would fail since measuring x would destroy the EPR pairs in XY . Our solution is to
reduce security with early key revelation to security with late key revelation. This is done by guessing
what x will be when invoking A1. If that guess turns out incorrect in the end, we abort the game.
Unfortunately, this reduction multiplies the advantage of the adversary by a factor of 2|x| “ 2ℓ; the effect
is that our final protocol will need an underlying scheme TRE0 with security exponential in ℓ. (In the
full proof, this reduction is performed in the step between Games 1 and 2.)

Non-revocable hiding. Finally, we also need to show that the protocol is hiding (not just revocably
hiding). As in the case of RTREow , we do this by simply adding a one-time-pad p to the protocol.

The final protocol. We can now state the precise protocol and its security:

Definition 9 (The protocol)
• Let C1, C2 be a CSS code with parameters n, k1, k2, t. (See Appendix C.)
• Let q be an integer.
• Let TRE0 be a TRE with message space t0, 1uq ˆ rq`nsq ˆC1{C2. (Recall, rq`nsq refers to q-size

subsets of t1, . . . , q ` nu, see page 4. C1{C2 denotes the quotient of codes.)
We construct a revocable TRE RTREhid with message space C1{C2 (isomorphic to t0, 1uℓ with ℓ :“
k1 ´ k2). We encrypt a message m P C1{C2 as follows:

• Pick uniformly B P t0, 1uq, Q P rq`nsq, p P C1{C2. u P t0, 1un{C1, r P t0, 1uq, x P C1{C2, w P C2.

• Construct the state |Ψy :“ U
:
QpHB b Inqp|ry b |x‘ w ‘ uyq.
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Here UQ denotes the unitary that permutes the qubits in Q into the first half of the system.
(I.e., UQ|x1 . . . xq`ny “ |xa1

. . . xaq
xb1 . . . xbny with Q “: ta1, . . . , aqu and t1, . . . , q ` nuzQ “:

tb1, . . . , bnu; the relative order of the ai and of the bi does not matter.)12

• Compute V0 Ð TRE0pB,Q, r, pq.
• The TRE consists of pV0, u,m‘ x‘ pq and |Ψy.

Decryption is performed as follows:
• Decrypt V0, this gives B,Q, r, p.
• Apply UQ to |Ψy and measure the last n qubits in the computational basis; call the outcome γ.13

• Return m :“ pγ ‘ uq mod C2.
The revocation protocol is the following:

• The recipient sends |Ψy back to the sender.
• The sender applies pHB b InqUQ to |Ψy and measures the first q qubits, call the outcome r1.14

• If r “ r1, revocation succeeds (sender outputs 1).

Notice that in this protocol (and in contrast to the simplified description above), we have included
B, r in the TRE V0, even though they are not needed by the recipient. In fact, the protocol would still
work (and be secure with almost unmodified proof) if we did not include these values. However, when
constructing unknown recipient encryption in Appendix I, the inclusion of B, r will turn out to be useful.

Theorem 3 (RTREhid is revocably hiding) Let δhidT be the time to compute the following things: q
controlled Hadamard gates, applying an already computed permutation to n ` q qubits, a q-qubit mea-
surement in the computational basis (called MR in the proof), a comparison of two q-qubit strings, the
error-correction/decoding operations UEC

uv , Udec
uv from Appendix C, a measurement whether two n-qubit

registers are in the state
ř

xPC1{C2
|xy|xy (called PEPR

C1{C2
in the proof), one AND-gate, and one NOT-gate.

Assume that TRE0 is T -hiding with p2´2pk1´k2q ¨ negligibleq-security.15 Assume that tq{pq ` nq ´
4pk1 ´ k2q ln 2 is superlogarithmic.

Then the TRE from Definition 9 is pT ´ δhidT q-revocably hiding even if A2 is unlimited (i.e., after
revocation, security holds information-theoretically).

A concrete security bound is given at the end of the proof, page 39, equation (20).

The full proof is given in Appendix D.

On the parameter choice. Concerning the choice of parameters in this theorem: we would like
ℓ :“ k1 ´ k2 to be as large as possible because it is the bitlength of the messages of this TRE. But if
TRE0 is only T -hiding with negligible-security, then we have to choose ℓ to be logarithmic.

If TRE0 is T -hiding with exponential security, by rescaling the security parameter we can get p2´2ℓ ¨
negligibleq-security for any message length ℓ. Note that for given ℓ, the codes C1, C2 can always be
chosen to match the other constraints: First, fix some t ě 8ℓ ln 2 ` γ where γ is superlogarithmic. Then
fix an efficiently correctable CSS code C 1

1, C2 with parameters n, k1
1, k2, t under the only constraint that

k1
1 ´ k2 ě ℓ (i.e., it must correct at least t errors and encode words of length ℓ; notice that we are free

in our choice of n, k1
1, k2 here). Then pick an arbitrary code C1 with C 1

1 Ě C1 Ě C2 and |C1| “ 2ℓ`k2 .
This is possible since k1

1 ě ℓ` k2. Note that C1 still efficiently corrects t errors since it is a subset of C 1
1.

So C1, C2 is a CSS code with parameters n, k1, k2, t such that ℓ “ k1 ´ k2. Then we set q :“ n and have
that tq{pq ` nq ´ 4pk1 ´ k2q ln 2 “ γ{2 is superlogarithmic. (Of course, this way of choosing parameters
is not optimal, it just shows that choosing suitable C1, C2 is always possible. For really fine tuning the
parameters, one best uses the precise bounds from (20) in the proof.)

Theorem 4 (RTREhid is hiding) The protocol RTREhid from Definition 9 is T -hiding.

The proof is completely analogous to that of Theorem 2.

12Notice that, since U
:
Q

is just a reordering of qubits, and HB is a sequence of Hadamards applied to a known basis state,

the state |Ψy can also directly be produced by encoding individual qubits in the computational or diagonal basis, which is
technologically simpler.

13Since UQ is just a reordering of qubits, this just corresponds to measuring a subset of the qubits in the computational
basis.

14Since UQ is just a reordering of the qubits, this is equivalent to measuring a subset of the qubits in the bases specified
by B.

15I.e., in Definition 5, we require that the advantage is not only negligible, but actually ď 2´2pk1´k2qµ for some negligi-
ble µ.
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5 TREs in the random oracle model

We present constructions and transformations of TREs in the random oracle model. (We use the quantum
random oracle that can be accessed in superposition, cf. [BDF`11].)

The results in this section will be formulated with respect to two different timing models. In the
sequential oracle-query timing model, one oracle query is one time step. I.e., if we say an adversary runs
in time T , this means he performs at most T random oracle queries. In the parallel oracle-query timing
model, an arbitrary number of parallel oracle-queries can be performed in one time step. However, in
time T , at most T oracle queries that depend on each other may be performed.16 More formally, if the
oracle is H , the adversary can query Hpx1q, . . . , Hpxqq for arbitrarily large q and arbitrary x1, . . . , xn
in each time step. (Of course, if the adversary is additionally sequential-polynomial-time, then q will be
polynomially bounded.)

Security in those timing models implies security in timing models that count actual (sequen-
tial/parallel) computation steps because in each step, at most one oracle call can be made.

5.1 One-way to hiding

In the previous section, we have seen how to construct revocably hiding TREs. However, the construction
was relatively complex and came with an exponential security loss in the reduction. As an alternative,
we present a transformation takes a TRE that is (revocably) one-way and transforms it into one that is
(revocably) hiding in the random oracle model. The basic idea is straightforward: we encrypt a key k in
a one-way TRE, and use Hpkq as a one-time-pad to encrypt the message:

Theorem 5 (Hiding TREs (details in Theorem 10)) Let H be a random oracle and let TRE be a
(revocable or non-revocable) TRE (not using H).

Then the TRE TRE1 encrypts m as follows: Run k
$Ð t0, 1un, V 1 Ð TREpkq, and then return

V :“ pV 1,m‘ Hpkqq. (Decryption is analogous, and revocation is unchanged from TRE.)
Then, if TRE is T -oneway and T -revocably one-way then TRE1 is T -revocably hiding. And if TRE

is T -oneway then TRE1 is T -hiding. (The same holds “without offline-queries”; see Section 5.2 below.)
This holds both for the parallel and the sequential oracle-query timing model.17

Notice that we assume that TRE does not access H . Otherwise simple counterexamples can be
constructed. (E.g., TREpkq could include Hpkq in the TRE V 1.) However, TRE may access another
random oracle, say G, and TRE1 then uses both G and H .

In a classical setting, this theorem would be straightforward to prove (using lazy sampling of the
random oracle). Yet, in the quantum setting, we need a new technique for dealing with this. The
following lemma allows us to prove the security of TRE1, but it is not restricted to TREs. Instead, it
gives a generic reduction from a hiding-style property (semantic security) to a one-wayness-style property
(unpredictability) that should be applicable to many other protocols, too.

Lemma 1 (One-way to hiding (details in Lemma 31)) Let H : t0, 1un Ñ t0, 1um be a random
oracle. Consider an algorithm A that makes at most q oracle queries. Let BHpxq do the following: pick

i
$Ð t1, . . . , qu and y

$Ð t0, 1um, run AHpx, yq until (just before) the i-th query, measure the argument of
the query in the computational basis, output the outcome. Let

P 1
A :“ Prrb1 “ 1 : x Ð t0, 1un, b1 Ð AHpx,Hpxqqs
P 2
A :“ Prrb1 “ 1 : x Ð t0, 1un, y $Ð t0, 1um, b1 Ð AHpx, yqs

PB :“ Prrx “ x1 : x Ð t0, 1un, x1 Ð BHpxqs

Then |P 1
A ´ P 2

A| ď 2q
?
PB .

To show Theorem 5 using this lemma, we assume an adversary pA0, A1, A2q against the revocable
hiding property of TRE1, and we have to show that Prrb1 “ 1 ^ ok “ 1s is almost independent of the
parameter b in the following game:

Game 1 (Revocably hiding of TRE1)

(a) H
$Ð pt0, 1un Ñ t0, 1umq. k $Ð t0, 1un.

16In [MMV11], this is called “T levels of adaptivity”.
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(b) pm0,m1q Ð AH
0 pq. V 1 Ð TREpkq. m :“ mb ‘ Hpkq. Run the revocation protocol of TRE, with

AH
1 pV 1,mq as recipient. Let ok be the honest sender’s output. If ok “ 1, b1 Ð AH

2 pq, else b1 :“ 0.

Let A be the algorithm that on input pk, hq performs step (b) from this game, but using h instead of
Hpkq in m :“ mb ‘Hpkq. Then P 1

A from Lemma 1 is the probability of b1 “ 1^ ok “ 1 in Game 1. And
P 2
A is independent of b since mb ‘ h hides b for random h. Thus, to show that P 1

A is almost independent
of b (and thus TRE1 revocably hiding), it is sufficient to show that |P 1

A ´P 2
A| is negligible. By Lemma 1,

it is in turn sufficient to show that PB is negligible. Also, by construction of B, PB is Prrk1 “ k^ok “ 1s
in the following game (in this proof sketch, we ignore the possibility that B aborts already during the
execution of A0 or A1, these cases are handled similarly):

Game 2 (Measure query)

(a) H
$Ð pt0, 1un Ñ t0, 1umq. k $Ð t0, 1un. pm0,m1q Ð AH

0 pq. V 1 Ð TREpkq.
(b) i

$Ð t1, . . . ,#queriesu. h $Ð t0, 1um. m :“ mb ‘ h.
(c) Run the revocation protocol with AH

1 pV 1,mq, outcome ok . If ok “ 1, run AH
2 pq until the i-th query

and measure the argument k1 to that query. Otherwise set k1 :“ K.

Notice that this is the revocable one-wayness game for TRE (where step (b) is part of the adversary).
Thus Prrk1 “ k ^ ok “ 1s is negligible, so PB and hence |P 1

A ´ P 2
A| is negligible, and thus TRE1 is

revocably hiding.
Full proofs of Lemma 1 and Theorem 5 are given in Appendix E.

5.2 Precomputation

We will now develop a second transformation for TREs in the random oracle model. The security
definition for TREs permit the adversary to run an arbitrary (sequential-polynomial-time) computation
before receiving the TRE. In particular, we do not have a good upper bound on the number of oracle
queries performed in this precomputation phase (“offline queries”). This can make proofs harder because
even if the adversary runs in time T , this does not allow us to conclude that only T oracle queries will be
performed. Our transformation will allow us to transform a TRE that is only secure when the adversary
makes no offline queries (such as the one presented in Section 5.3 below) into a TRE that is secure
without this restriction.

We call a TRE T -hiding without offline-queries if Definition 2 holds for adversaries were A0 makes no
random oracle queries. Analogously we define T -revocably hiding without offline-queries and T -one-way
without offline-queries.

To transform a TRE that is secure without offline-queries into a fully secure one, the idea is to make
sure that the offline-queries are useless for the adversary. We do this by using only a part Hpa}¨q of the
random oracle where a is chosen randomly with the TRE. Intuitively, since during the offline-phase, the
adversary does not know a, none of his offline-queries will be of the form Hpa}¨q, thus they are useless.

Theorem 6 (TREs with offline-queries (details in Theorem 11)) Let G and H be random ora-
cles and ℓ superlogarithmic. Let TRE be a revocable TRE using G. Let TRE1 be the result of replacing in
TRE all oracle queries Gpxq by queries Hpa}xq, where a is chosen by the encryption algorithm of TRE1

and is included in the message send to the recipient.
If TRE is T -revocably hiding without offline-queries then TRE1 is T -revocably hiding (and analogously

for T -hiding).
This holds both for the parallel and the sequential oracle-query timing model.17

To prove this, we develop a general lemma for this kind of transformations. (In the classical setting
this is simple using the lazy sampling proof technique, but that is not available in the quantum setting.)

Lemma 2 (Removing offline queries (details in Lemma 32)) Let H : t0, 1uℓ`n Ñ t0, 1um and
G : t0, 1un Ñ t0, 1um be random oracles. Let A,B be oracle algorithms (which can share state), and
assume that A makes at most q oracle queries to H, while B makes an arbitrary number of queries to H.

Let B̃paq be the algorithm that results from Bpaq by the following change: Whenever B makes an
oracle query Hpã}xq, B̃ instead queries Hpã}xq if ã ‰ a and Gpxq if ã “ a.

Consider the following two games:

Game A: a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, AHpq, b1 Ð BHpaq.

17For other timing models, the reduction described in the proof may incur a overhead, leading to a smaller T for TRE
1.
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Game B: a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,

AHpq, b1 Ð B̃G,Hpaq.
Then

∣

∣Prrb1 “ 1 : Game As ´ Prrb1 “ 1 : Game Bs∣∣ ď q2´ℓ{2`1.

This lemma can now immediately be used to show: If a cryptographic scheme S̃ using a random
oracle G is secure assuming the adversary never queries G during precomputation, then S, which queries
Hpa}xq instead of Gpxq for some random a, is secure even if the adversary queries H even during
precomputation. Namely, if we let AH encode the adversary’s precomputation, and BHpaq the actual
security game for S, then Game A encodes the security of S. And Game B encodes the security of S̃
because in B̃G,H , all queries that S makes to H are replaced by queries to G, i.e., we have effectively
replaced S by S̃. Thus Lemma 2 allows to reduce the security of S to that of S̃.

Applying this generic proof plan to TREs, we get Theorem 6. But we stress that Lemma 2 is not
limited to TREs, it can be used whenever we wish to exclude queries during an offline-phase (e.g., to get
tighter bounds in a reduction).

Full proofs are given in Appendix F.

5.3 Iterated hashing

In all constructions so far we assumed that we already have a (non-revocable) TRE. In the classical
setting, only two constructions of TREs are known. The one from [RSW96] can be broken by factoring,
this leaves only repeated hashing as a candidate for the quantum setting. We prove that the following
construction to be one-way without offline queries:

Definition 10 (Iterated hashing (details in Definition 11)) Let n and T be polynomially-bounded
integers (depending on the security parameter), and assume that n is superlogarithmic. Let H : t0, 1un Ñ
t0, 1un denote the random oracle. The timed-release encryption TREih with message space t0, 1un en-
crypts m as V :“ HT`1p0nq ‘m.

We prove in Appendix G (Theorem 12) that TREih is T -one-way without offline queries. TREih is
obviously not one-way with offline queries, the adversary can precompute HT`1p0nq. Yet, using the
random-oracle transformations from Theorems 5 and 6, we can transform it into a hiding TRE. This is
plugged into RTREow , to get a revocably one-way TRE, and using Theorem 5 again, we get a revocably
hiding TRE in the random oracle model. (The resulting protocol is spelled out in Appendix H.)

An alternative construction is to plug TREih (after transforming it using Theorems 5 and 6) into
RTREhid . This results in a more complex yet everlastingly secure scheme.

And finally, if we wish to avoid the random oracle model altogether, we can take as our basic as-
sumption that a suitable variant of iterated hashing18 is a hiding TRE, and get a revocably hiding,
everlastingly secure TRE by plugging it into RTREhid .

Acknowledgements. Dominique Unruh was supported by the Estonian ICT program 2011-2015
(3.2.1201.13-0022), the European Union through the European Regional Development Fund through
the sub-measure “Supporting the development of R&D of info and communication technology”, by the
European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa, by the Estonian
Centre of Excellence in Computer Science, EXCS. We thank Sébastien Gambs for the suggesting the
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A Auxiliary lemmas

Lemma 3 (Detecting bit errors) Fix integers t, q, n ě 1. Let x0, x1 P t0, 1uq`n such that ωpx0q ě t`
1 or ωpx1q ě t`1. Consider the following process: Select uniformly Q “ tQ1, . . . , Qqu P rq`nsq. (Recall,
rq ` nsq refers to q-size subsets of t1, . . . , q ` nu, see page 4.) Select uniformly B “ B1 . . . Bq P t0, 1uq.
Let P pxq :“ PrrEi P t1, . . . , qu : xBi

Qi
“ 1s.

Then P pxq ď 3
?
qp1 ´ q

2pq`nq qt`1.

18E.g., pa,HT`2paq ‘ mq for random a. Or the protocol resulting from applying Theorems 5 and 6 to Definition 10.
That this is a realistic assumption for suitable hash functions is confirmed by our analysis in the random oracle model.
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Proof. Obviously, P pxq is maximized if pωpx0q, ωpx1qq “ pt`1, 0q or pωpx0q, ωpx1qq “ p0, t`1q. Without
loss of generality we assume ωpx0q “ 0 and ωpx1q “ t` 1.

Let C1, . . . , Cq`n P t0, 1u be independently uniformly distributed. Then P pxq “ PrrEi : xCQi

Qi
“ 1s.

(Because pQ,B1, . . . , Bqq has the same distribution as pQ,CQ1
, . . . , CQn

q.)
Let I :“ ti : x1i “ 1u. Then, Di : xCQi

Qi
“ 1 iff Dj P I : Cj “ 1 ^ j P Q. Hence P pxq “ PrrEj P I : Cj “

1 ^ j P Qs.
Let R1, . . . , Rq`n be independently Bernoulli-distributed with PrrRi “ 1s “ q{pq ` nq. Let R :“ tj :

Rj “ 1u. (I.e., each j is in R with probability q{pq ` nq.) Let Zj :“ CjRj . Note that conditioned on
|R| “ q, R has the same distribution as Q. Hence P pxq “ PrrEj P I : Cj “ 1^ j P R ˇ̌

|R| “ qs “ Prr@j P
I : Zj “ 0

ˇ̌
|R| “ qs.

We proceed to lower bound Prr|R| “ qs. The Sterling formula [AS72, 6.1.38, p.257] states?
2πxx`1{2e´x ă x! ă ?

2πxx`1{2e´xe1{p12xq for x ą 0. Hence
ˆ
q ` n

q

˙
“ pq ` nq!

n!q!
ě

?
2πpq ` nqq`n`1{2e´q´n

?
2π nn`1{2e´ne1{p12nq

?
2π qq`1{2e´qe1{p12qq “ pq ` nqq`n`1{2

?
2π nn`1{2qq`1{2e1{p12qqe1{p12nq

Thus

Prr|R| “ qs “
ˆ
q ` n

q

˙´ q

q ` n

¯q´
1 ´ q

q ` n

¯n

“ pq ` nqq`n`1{2
?
2π nn`1{2qq`1{2e1{p12qqe1{p12nq

qq

pq ` nqq
nn

pq ` nqn

“ pq ` nq1{2
?
2π n1{2q1{2e1{p12qqe1{p12nq ě 1?

2π q1{2e1{12e1{12 ě 1

3
?
q
.

Hence P pxq “ Prr@j P I : Zj “ 0 ^ |R| “ qs{Prr|R| “ qs ď 3
?
q Prr@j P I : Zj “ 0s.

Since the Zj are independently Bernoulli-distributed with PrrZj “ 1s “ q{2pq ` nq, we have Prr@j P
I : Zj “ 0s “ p1 ´ q

2pq`nq q|I|. Thus P pxq ď 3
?
q p1 ´ q

2pq`nq qt`1. l

Lemma 4 (Operating on EPR pair halves) For any A, we have pAb Inq|Ć0n0ny “ pIn bAT q|Ć0n0ny.
(Here AT denotes the transpose of A, not the Hermitean transpose A:. And recall that |Ć0n0ny denotes n
EPR pairs, see page 4.)

Proof. Let N :“ 2n and I :“ In. δxy :“ I iff x “ y and 0 otherwise. For any x, y, we have

xx, y|pAb Iq|Ć0n0ny “
ÿ

z

1?
N

xx, y|pA b Iq|z, zy “
ÿ

z

1?
N
Axzδyz

“ 1?
N
Axy “ 1?

N
AT

yx “
ÿ

z

1?
N
δxzA

T
yz “

ÿ

z

1?
N

xx, y|pI bAT q|z, zy

“ xx, y|pI bAT q|Ć0n0ny.

Since |x, yy form an orthonormal basis, this implies that pA b Iq|Ć0n0ny “ pI bAT q|Ć0n0ny. l

Lemma 5 (Cauchy-Schwarz inequality, vector based) Let αi be complex numbers and |Ψiy finite-
dimensional vectors. Then

∥

∥

ÿ

i

αi|Ψiy
∥

∥

2 ď
´ÿ

i

|αi|
2
¯

¨
´ÿ

i

‖|Ψiy‖2
¯
.

Proof. Let xij denote the j-th component of |Ψiy. Then

∥

∥

ÿ

i

αi|Ψiy
∥

∥

2 “
ÿ

j

∣

∣

ÿ

i

αixij
∣

∣

2 p˚qď
ÿ

j

´ÿ

i

|αi|
2 ¨

ÿ

i

|xij |
2
¯

“
ÿ

i

|αi|
2 ¨

ÿ

i

ÿ

j

|xij |
2 “

ÿ

i

|αi|
2 ¨

ÿ

i

‖|Ψiy‖2.

Here p˚q uses the (usual) Cauchy-Schwarz-inequality. l

Lemma 6 (Closeness to ideal states) Let ρ be a mixed state, and let P be a projector. Let 1 ´ ε :“
trPρ. (I.e., ε is the probability that measuring ρ with P fails.)

Then there exists a mixed state ρideal such that
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• TDpρ, ρidealq ď ?
ε.

• ρideal is a mixture over imP . (I.e., ρ “ ř
i pi|ΨiyxΨi| for quantum states |Ψiy P imP and pi ě 0

and
ř
pi “ 1.)

Proof. We first consider the special case where ρ “ |ΨyxΨ| for some quantum state |Ψy. (I.e., ρ is
pure.) Let F p¨, ¨q denote the Fidelity between two quantum states. Let ρideal :“ |ΦyxΦ| with |Φy :“
P |Ψy{‖P |Ψy‖. Then

F pρ, ρidealq2 “ |xΨ|Φy|2 “ |xΨ|P |Ψy|2
‖PΨ‖2

“ |xΨ|P |Ψy|2
|xΨ|P |Ψy| “ |xΨ|P |Ψy| “ ‖PΨ‖2 “ trPρ “ 1 ´ ε.

Then we have
TDpρ, ρideal q p˚qď

b
1 ´ F pρ, ρideal q2 “ ?

ε.

Here p˚q uses that the trace distance is bounded in terms of the fidelity (e.g., [NC10, (9.101)]). Also, by
construction, ρideal is a mixture over imP . Thus the lemma holds for pure ρ.

Now consider the general case. Then ρ “ ř
i piρi for some pure mixed states ρi and for

ř
pi “ 1,

pi ě 0. Let εi :“ 1 ´ trPρi. Then ε “ 1 ´ tr
ř

i piPρi “ ř
i pip1 ´ trPρiq “ ř

piεi. Since the lemma
holds for pure states, we can apply it to get states ρideali that are mixtures over imP and such that
TDpρi, ρideali q ď ?

εi.
Let ρideal :“ ř

piρ
ideal
i . Then ρideal is a mixture over imP and we have

TDpρ, ρidealq “ TD
`ÿ

piρi,
ÿ
piρ

ideal
i

˘ p˚qď
ÿ
piTDpρi, ρideali q ď

ÿ
pi

?
εi

p˚˚qď
bÿ

piεi “ ?
ε.

Here p˚q follows from the convexity of the trace distance (e.g., [NC10, (9.50)]). And p˚˚q uses Jensen’s
inequality. l

Lemma 7 Let |Ψ1y, |Ψ2y be quantum states that can be written as |Ψiy “ |Ψ˚
i y ` |Φ˚y where both |Ψ˚

i y
are orthogonal to |Φ˚y.

Then TDp|Ψ1y, |Ψ2yq ď 2‖|Ψ˚
1y‖.

Proof. Let α :“ ‖|Ψ˚
1y‖ and β “ ‖|Φ˚y‖. Since |Φ˚y is orthogonal to |Ψ˚

1 y and |Ψ1y is a quantum
state, α2 ` β2 “ ‖|Ψ1y‖2 “ 1. And since |Φ˚y is orthogonal to |Ψ˚

2 y and |Ψ2y is a quantum state,
‖|Ψ˚

2 y‖2 ` β2 “ ‖|Ψ2y‖2 “ 1, hence ‖|Ψ˚
2 y‖2 “ α. Let F denote the fidelity between quantum states.

Then F p|Ψ1y, |Ψ2yq “ |xΨ1|Ψ2y| by definition and we have

F p|Ψ1y, |Ψ2yq “ |xΨ˚
1 |Ψ˚

2 y ` xΦ˚|Φ˚y| “ |xΨ˚
1 |Ψ˚

2 y ` β2| ě β2 ´ |xΨ˚
1 |Ψ˚

2 y| ě β2 ´ α2 “ 1 ´ 2α2.

By [NC10, Section 9.2.3, (9.97)], we have TDp|Ψ1y, |Ψ2yq “ a
1 ´ F p|Ψ1y, |Ψ2yq2. Hence

TDp|Ψ1y, |Ψ2yq ď
a
1 ´ p1 ´ 2α2q2q “

a
4α2p1 ´ α2q “

a
4α2β2 “ 2αβ ď 2α.

(Notice that this is almost tight for β “ ‖|Φ˚y‖ « 1. If |Ψ˚
1 y “ |Ψ˚

1 y, all inequalities except the last one
(2αβ ď 2α) are equalities.) l

B Full proof: revocably one-way timed-release encryptions

In this appendix, we give the full security proof for the protocol RTREow from Section 3, Definition 7.
We first start with the proof that RTREow is revocably one-way. And below (page 10) we show that it
is (non-revocably) hiding.

We restate Theorem 1

Theorem 7 (RTREow is revocably one-way) Let δowT be the time to compute the following things:
a measurement whether two n-qubit registers are equal in a given basis B (formally defined as P“

B on

page 20 below), a measurement whether two n-qubit registers are in a |Ć0n0ny state up to t phase flips and
t bit flips (for a given t; formally defined as PEPR

t on page 20 below), and one NOT- and one AND-gate.
Assume that the protocol parameter n is superlogarithmic.
The protocol RTREow from Definition 7 is pT ´ δowT q-revocably one-way, even if A2 is unlimited (i.e.,

after revocation, security holds information-theoretically).
A concrete security bound is given at the end of the proof, page 25.
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The rest of this section will be devoted to proving this theorem.
For the rest of this section, assume an adversary pA1, A2q where A1 is sequential-polynomial-time

and pT ´ δowT q-time and A2 is sequential-polynomial-time. To show Theorem 7, we need to show that
the probability of the adversary winning the game from Definition 6 is negligible.

Some measurements. We first define two measurement operators that will be used in this proof:
The projector PEPR

t measures whether a 2n-qubit state is an EPR state with at most t phase and at
most t bit flips. Formally (recall the Bell-basis notation |Ăfey from page 4):

PEPR
t :“

ÿ

f,ePt0,1un

ωpfq,ωpeqďt

|ĂfeyxĂfe|.

Given a basis B P t0, 1un, the projector P“
B measures whether two n-qubit systems would give the

same outcome when measured in basis B. Formally,

P“
B :“

ÿ

xPt0,1un

|x, xyBxx, x|B.

Sequence of games. We now proceed to define a number of games and to show the relation between
the attack probabilities in these games. From this we finally deduce the security of our protocol. X and
Y refer to n-bit quantum registers.

Game 1 (Original game)
(a) Run A0pq.
(b) m

$Ð t0, 1un, p $Ð t0, 1un, B $Ð t0, 1un.
(c) V0 Ð TRE0pB, pq.
(d) X Ð |m ‘ pyB.
(e) Run A1pX,V0q. (We pass the quantum register X to A1 which means that A1 has read-write access

to it.)
(f) Measure X in basis B; outcome γ.
(g) If m‘ p “ γ, ok :“ 1. Else ok :“ 0.
(h) m1 Ð A2pq.

Since Game 1 is the game from Definition 6 (with the definition of RTREow inlined), it suffices to
show that Prrm “ m1 ^ ok “ 1 : Game 1s is negligible.

The first game removes p from some steps, this is more of a cosmetic change that makes notation
easier later.

Game 2 (One-time-pad removed)
(a) Run A0pq.
(b) m

$Ð t0, 1un, p $Ð t0, 1un, B $Ð t0, 1un.
(c) V0 Ð TRE0pB, pq.
(d) X Ð |myB.
(e) Run A1pX,V0q.
(f) Measure X in basis B; outcome γ.
(g) If m “ γ, ok :“ 1. Else ok :“ 0.
(h) m1 Ð A2pq ‘ p.

Lemma 8 (Game 1 vs. Game 2) Prrm1 “ m ^ ok “ 1 : Game 1s “ Prrm1 “ m ^ ok “ 1 : Game 2s.

Proof. Consider first an intermediate game G which is like Game 2, except that the last step is still
“m1 $Ð A2pq”. The difference between G and Game 1 is then that m is consistently replaced by m ‘ p.
Since m ‘ p has the same distribution as m for m $Ð t0, 1un, it follows that Prrm1 “ m ^ ok “ 1 :

Game 1s “ Prrm1 “ m‘ p^ ok “ 1 : Gs.
Furthermore, G differs from Game 2 only in the fact that we add p to m1 in the last step. Hence

Prrm1 “ m‘ p^ ok “ 1 : Gs “ Prrm1 ‘ p “ m‘ p^ ok “ 1 : Game 2s “ Prrm1 “ m^ ok “ 1 : Game 2s.
l
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Game 3 (Using EPR states)
(a) Run A0pq.
(b) m

$Ð t0, 1un, p $Ð t0, 1un, B $Ð t0, 1un.
(c) V0 Ð TRE0pB, pq.
(d) Initialize XY as |Ć0n0ny.
(e) Run A1pX,V0q.
(f) Measure X in basis B; outcome γ.
(g) Measure Y in basis B, outcome m.
(h) If m “ γ, ok :“ 1. Else ok :“ 0.
(i) m1 Ð A2pq ‘ p.

Lemma 9 (Game 2 vs. Game 3) Prrm1 “ m ^ ok “ 1 : Game 2s “ Prrm1 “ m ^ ok “ 1 : Game 3s.

Proof. It is sufficient to show that for any basis B, “m $Ð t0, 1un;X Ð |myB” and “XY Ð
|Ć0n0ny;measure Y in basis B, outcome m” are equivalent. I.e., we need to show that in the second
case, m is uniformly distributed, and the state in X is |myB.

The probability of measuring m is ‖|Ψmy‖2 and the state of XY after measuring m is |Ψmy{‖|Ψmy‖
where |Ψmy :“ pHB|myxm|HB b Inq |Ć0n0ny. We have

|Ψmy “ pHB|myxm|HB b Inq |Ć0n0ny
pHB b Inq p|myxm| b Inq pHB b Inq |Ć0n0ny
p˚q“ ∥

∥ pHB b Inq p|myxm| b Inq pIn bHBq |Ć0n0ny∥∥
“

ÿ

m̃

2´n{2pHB|myxm|m̃yq b pHB|m̃yq

“ 2´n{2pHB|myq b pHB|myq “ 2´n{2|myB b |myB.
Here p˚q uses Lemma 4 and the fact that H is symmetric.

Hence the probability of measuring m is ‖|Ψmy‖2 “ 2´n and the state of XY is then |myB b |myB.
Thus, after tracing out Y , we have |myB in X . The two games are therefore equivalent. l

Game 4 (Changed revocation test)
(a) Run A0pq.
(b) p

$Ð t0, 1un, B $Ð t0, 1un.
(c) V0 Ð TRE0pB, pq.
(d) Initialize XY as |Ć0n0ny.
(e) Run A1pX,V0q.
(f) Measure XY using P“

B ; outcome ok .
(g) Measure X in basis B; outcome γ.
(h) Measure Y in basis B, outcome m.
(i) If m “ γ, ok :“ 1. Else ok :“ 0.
(j) m1 Ð A2pq ‘ p.

Lemma 10 (Game 3 vs. Game 4) Prrm1 “ m^ok “ 1 : Game 3s “ Prrm1 “ m^ok “ 1 : Game 4s.

Proof. Consider first an intermediate game G, which is like Game 4, except that line (g) is not removed.
Since X is not used after (g), we have Prrm1 “ m ^ ok “ 1 : Game 4s “ Prrm1 “ m^ ok “ 1 : Gs.

Consider further a gameG1 which is like G, except that (f) is moved after (h). Then Prrm1 “ m^ok “
1 : Gs “ Prrm1 “ m^ok “ 1 : G1s because P“

B and measurements in basis B commute (they are diagonal
in the same basis).

Finally, after the measurements of X,Y in basis B, we have that X,Y are in state |γy|my. Thus
ok “ 1 iff m “ γ. Hence, if we replace the measurement using P“

B with “if m “ γ, ok :“ 1, else ok :“ 0”,
we get Game 3 and have Prrm1 “ m ^ ok “ 1 : G1s “ Prrm1 “ m ^ ok “ 1 : Game 3s. l

In the following, let t be an arbitrary integer with 0 ď t ď n. (In the end, we will fix t :“ ?
n.)

Game 5 (Testing the state)
(a) Run A0pq.
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(b) p
$Ð t0, 1un, B $Ð t0, 1un.

(c) V0 Ð TRE0pB, pq.
(d) Initialize XY as |Ć0n0ny.
(e) Run A1pX,V0q.
(f) Measure XY using P“

B ; outcome ok .
(g) Measure XY using PEPR

t ; outcome isEPR.
(h) Measure Y in basis B, outcome m.
(i) m1 Ð A2pq ‘ p.

Lemma 11 (Uncertainty relation for t-error EPR states) Let X,Y be n-bit quantum registers
and Z a quantum register. Let M be a projective measurement on Z. Let B P t0, 1un. Let |Ψy be
a state of XY Z that is in the image of PEPR

t b IZ (here IZ is the identity on Z). Let m be the outcome
of measuring Y in basis B. Let m1 be the outcome of applying M to Z. Then Prrm “ m1s ď 2´npn`1q2t.

Proof. Since the states |Ăfey form a basis for the state space ofXY , we can write |Ψy “ ř
fe αfe|Ăfeyb|Ψfey

for some quantum states |Ψfey living in Z. Let T :“ tfe : ωpfq, ωpeq ď tu. Since |Ψy “ PEPR
t |Ψy, we

have αfe “ 0 for fe R T . Thus |Ψy “ ř
fePT αfe|Ăfey b |Ψfey with

ř
fePT |αfe|

2 “ 1.
For any m1, let Pm1 be the projector for outcome m1 in the measurement M . Thus m,m1 is the result

of applying the measurement tIn bHB|myxm|HB b Pm1 umm1 to |Ψy. Hence

Prrm “ m1s “
ÿ

m

∥

∥ pIn bHB|myxm|HB b Pmq |Ψy ∥∥2

“
ÿ

m

∥

∥

ÿ

fePT
αfepIn bHB|myxm|HBq|Ăfey b Pm|Ψfey∥∥2

p˚qď
ÿ

m

´ ÿ

fePT
|αfe|

2 ¨
ÿ

fePT
‖ppIn bHB|myxm|HBq|Ăfey b Pm|Ψfey‖2

¯

“
ÿ

m

´ ÿ

fePT
|αfe|

2

loooomoooon
“1

¨
ÿ

fePT
‖pIn bHB|myxm|HBq|Ăfey‖2loooooooooooooooooomoooooooooooooooooon

“2´n p˚˚q

¨‖Pm|Ψfey‖2
¯

“ 2´n
ÿ

fePT

ÿ

m

‖Pm|Ψfey‖2
loooooooomoooooooon

“1

“ 2´n|T |. (2)

Here p˚q uses Lemma 5 (vector-based variant of the Cauchy-Schwarz-inequality).
And p˚˚q uses

∥

∥pIn bHB|myxm|HBq|Ăfey∥∥ “ ∥

∥pZfXe bHB|myxm|HBq|Ć0n0ny∥∥
Lemma 4“ ∥

∥pZfXeHB bHB|myxm|q|Ć0n0ny∥∥ “ ∥

∥pZfXeHB bHBq ¨ 2´n{2|my|my∥∥ “ 2´n{2.

We now bound |T |. Notice that any e with ωpeq ď t can be specified by giving t indices i P t0, . . . , nu
with ei “ 1 (where i “ 0 for unused indices when ωpeq ă t). Thus there are at most pn ` 1qt such e.
Hence |T | ď pn` 1q2t.

Summarizing, we have

Prrm “ m1s (2)ď 2´n|T | ď 2´npn` 1q2t. l

Lemma 12 (Game 4 vs. Game 5) Prrm1 “ m ^ ok “ 1 : Game 4s ďa
PrrisEPR “ 0 ^ ok “ 1 : Game 5s ` 2´npn` 1q2t.

Proof. For b P t0, 1un, let ρb denote the state of the system after measuring ok “ 1 in the case that
B “ b in Game 5. (I.e., the post-measurement-state conditioned on having chosen B “ b and on outcome
ok “ 1.) Then

PrrisEPR “ 1 ^ ok “ 1 : Game 5s “
ÿ

b

trPEPR
t ρb ¨ PrrB “ b^ ok “ 1 : Game 5s. (3)
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Let ρ̂b be the state of the system after measuring ok “ 1 in the case B “ b in Game 4. Since Games 4
and 5 are identical up to this point, ρb “ ρ̂b.

By Lemma 6 there is a state ρ1
b such that TDpρb, ρ1

bq ď
a
1 ´ trpPEPR

t ρbq and such that ρ1
b “ř

i pi|ΨiyxΨi| where each |Ψiy is in the image of PEPR
t .

In the special case ρ1
b “ |ΨiyxΨi| for some such |Ψiy, Lemma 11 implies that Prrm “ m1 : Game 41s ď

ε :“ 2´npn ` 1q2t. Here Game 41 is the following game: “Initialize XY Z with ρ1
b. Measure Y in basis b,

outcome m. m1 Ð A2pZq. (Z stands for the quantum register holding the adversary’s state.)”
Since ρ1

b is a mixture of such states |ΨiyxΨi|, Prrm “ m1 : Game 41s ď ε follows also in the general
case by averaging. Since TDpρ̂b, ρ1

bq ď
a
1 ´ trpPEPR

t ρbq, it follows that Prrm “ m1|B “ b ^ ok “ 1 :

Game 4s ď ε`
a
1 ´ trpPEPR

t ρbq.
We abbreviate qb :“ PrrB “ b ^ ok “ 1 : Game 4s “ PrrB “ b ^ ok “ 1 : Game 5s (equality holds

because the two games are identical up to the measurement of ok). Then

Prrm “ m1 ^ ok “ 1 : Game 4s
“

ÿ

b

qb Prrm “ m1 | B “ b^ ok “ 1 : Game 4s

ď
ÿ

b

qb

´
ε `

b
1 ´ trpPEPR

t ρbq
¯

ď `ÿ
b
qb

˘ ¨
ˆ
ε`

d
1 ´

ř
b qb trpPEPR

t ρbqř
b qb

˙
(Jensen’s inequality)

“ `ÿ
b
qb

˘
ε`

c`ÿ
b
qb

˘ ¨
´`ÿ

b
qb

˘ ´ `ÿ
b
qb trpPEPR

t ρbq
˘¯

ď ε `
b
Prrok “ 1 : Game 5s ´

ÿ
b
qb trpPEPR

t ρbq (using
ÿ

b
qb “ Prrok “ 1 : Game 5s ď 1)

(3)“ ε `
a
Prrok “ 1 : Game 5s ´ PrrisEPR “ 1 ^ ok “ 1 : Game 5s

“ ε `
a
PrrisEPR “ 0 ^ ok “ 1 : Game 5s. l

Game 6 (Using fake timed-release encryption)
(a) Run A0pq.
(b) p

$Ð t0, 1un, B $Ð t0, 1un.
(c) B̂ Ð t0, 1un. V0 Ð TRE0pB̂, pq.
(d) Initialize XY as |Ć0n0ny.
(e) Run A1pX,V0q.
(f) B

$Ð t0, 1un.
(g) Measure XY using P“

B ; outcome ok .
(h) Measure XY using PEPR

t ; outcome isEPR.

Lemma 13 (Game 5 vs. Game 6) PrrisEPR “ 0 ^ ok “ 1 : Game 5s ď PrrisEPR “ 0 ^ ok “ 1 :

Game 6s ` µ for some negligible µ.

Proof. First, consider an intermediate game G1 defined like Game 6, except that B is chosen and
XY initialized before the computation of V0. Let G be the same game, except that V0 is chosen as
V0 Ð TRE0pB, pq.

Then we immediately see that PrrisEPR “ 0 ^ ok “ 1 : Gs “ PrrisEPR “ 0 ^ ok “ 1 : Game 5s and
PrrisEPR “ 0 ^ ok “ 1 : G1s “ PrrisEPR “ 0 ^ ok “ 1 : Game 6s because only operations that operate
on distinct variables/quantum registers are moved around.

Furthermore, in game G, after computing V0, we have a measurement using P“
B , a measurement using

PEPR
t , an invocation of the pT ´ δowT q-time adversary A1, and a NOT- and an AND-gate (for evaluating

isEPR “ 0 ^ ok “ 1). Together, these steps take time at most T (by definition of δowT ). Furthermore,
all steps before and after V0

$Ð TRE0pB, pq run in sequential-polynomial-time.
Since TRE0 is T -hiding, replacing TRE0pB, pq by TRE0pB̃, pq thus only negligibly changes

PrrisEPR “ 0 ^ ok “ 1s.
Hence PrrisEPR “ 0 ^ ok “ 1 : Gs ď PrrisEPR “ 0 ^ ok “ 1 : G1s ` µ for some negligible µ. l
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Lemma 14 (Equality measurements on Bell-basis states) P“
B |Ăfey “ |Ăfey iff for all i we have

pBi “ 0 ^ fi “ 0q _ pBi “ 1 ^ ei “ 0q. And P“
B |Ăfey “ 0 otherwise.

Proof. For the case that |e| “ |f | “ 1, it follows from the following case distinction:

B e f P“
B |Ăfey B e f P“

B |Ăfey
0 (comp. basis) 0 0 |Ă00y 1 (diag. basis) 0 0 |Ă00y
0 0 1 0 1 0 1 |Ă01y
0 1 0 |Ă10y 1 1 0 0

0 1 1 0 1 1 1 0

For checking the four cases with B “ 1, it is convenient to use that |Ă0fy “ 1?
2

p|``y ˘ |´´yq and

|Ă1fy “ 1?
2

p|´`y ˘ |`´yq for f “ 0, 1.

The general case follows from the fact that P“
B “ P“

B1
b ¨ ¨ ¨ b P“

Bn
and |Ăfey “ | Ąe1f1y b ¨ ¨ ¨ b |Ćenfny

(up to reordering of qubits). l

Lemma 15 (Game 6 is secure) PrrisEPR “ 0 ^ ok “ 1 : Game 6s ď 2´t´1.

Proof. Observe that PrrisEPR “ 0^ ok “ 1 : Game 6s “ ř
B 2´n trPEPR

t P“
B ρ where ρ is the state after

the invocation of A1, and PEPR
t :“ 1 ´ PEPR

t .
Before bounding

ř
B 2´n trPEPR

t P“
B ρ, we show for any f, e P t0, 1un that pfe :“ř

B 2´n trPEPR
t P“

B |ĂfeyxĂfe| ď 2´t´1. We distinguish two cases: ωpeq, ωpfq ď t and maxpωpfq, ωpeqq ě
t ` 1. If ωpfq, ωpeq ď t, by Lemma 14, for any B either P“

B |Ăfey “ 0 or P“
B |Ăfey “ |Ăfey depending on B.

Since PEPR
t |Ăfey “ |Ăfey, it follows that PEPR

t PB|Ăfey “ 0 and hence pfe “ 0. If maxpωpfq, ωpeqq ě t ` 1,
then by Lemma 14 there are at most q :“ 2n{2t`1 different values of B such that P“

B |Ăfey ‰ 0 (this
bound is tight iff e “ 0n and ωpfq “ t` 1 or vice versa). Hence pfe ď q ¨ 2´n “ 2´t´1. Thus, in all cases,
pfe ď 2´t´1.

We abbreviate Pfe :“ |ĂfeyxĂfe| and αfe :“ xĂfe|ρ|Ăfey. We proceed:

PrrisEPR “ 0 ^ ok “ 1 : Game 6s
“

ÿ

B

2´n trPEPR
t P“

B ρ

p˚q“
ÿ

B

2´n tr
´`ÿ

fe
Pfe

˘
PEPR
t P“

B ρ
¯

“
ÿ

Bef

2´n trPfeP
EPR
t P“

B ρ

p˚˚q“
ÿ

Bef

2´n trPfeP
EPR
t P“

B ρPfe

p̊ ˚̊ q“
ÿ

Bef

2´n trPEPR
t P“

B pPfeρPfeq

“
ÿ

fe

´
αfe

ÿ

B

2´n trPEPR
t P“

B |ĂfeyxĂfe|
¯

“
ÿ

fe

αfepfe ď
ÿ

fe

αfe2
´t´1 “ tr ρ ¨ 2´t´1 “ 2´t´1.

Here p˚q uses that
ř

fe Pfe “ 1 since |Ăfey form a basis.
And p˚˚q uses that Pfe “ Pfe ¨ Pfe and the circularity of the trace.
And p˚˚˚q uses that PEPR

t , P“
B , and Pfe commute because they are all diagonal in the Bell basis.

(This is immediate from the definition for PEPR
t and Pfe, and for P“

B it follows from Lemma 14.) l

We can now finally prove the revocable onewayness of RTREow :
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Proof of Theorem 7. We have

Prrm1 “ m ^ ok “ 1 : Game 1s
“ Prrm1 “ m ^ ok “ 1 : Game 4s pLemmas 8, 9, and 10q
ď

a
PrrisEPR “ 0 ^ ok “ 1 : Game 5s ` 2´npn ` 1q2t pLemma 12q

ď
a
PrrisEPR “ 0 ^ ok “ 1 : Game 6s ` µ` 2´npn` 1q2t pLemma 13; µ negligibleq

ď
a
2´t´1 ` µ` 2´npn ` 1q2t “: ν pLemma 15q (4)

So far, our calculation was for arbitrary t. If we fix t :“ ?
n, then 2´t´1 and 2´npn` 1q2t are negligible,

and hence ν is negligible.
Furthermore, the lemmas above hold for any adversary sequential-polynomial-time adversary pA1, A2q

with A1 being pT ´ δowT q-time. And Prrm1 “ m^ ok “ 1 : Game 1s is the probability that pA1, A2q wins
the game from Definition 6 (revocable one-wayness).

Thus RTREow is revocably one-way.

Note that (4) also tells us the concrete security of RTREow . Namely, when µ is the advantage of
an adversary against TRE0 (that runs only a small additive amount longer than the original adversary
pA0, A1, A2q; it consists of the code in Game 6), then maxtp

a
2´t´1 ` µ ` 2´npn ` 1q2tq bounds the

advantage of pA0, A1, A2q against RTREow . l

Hiding. Note that revocable one-wayness does not immediately imply one-wayness or hiding. However,
due to the one-time-pad p used in RTREow , it is easy to show that RTREow is hiding:

Theorem 8 (RTREow is hiding) The protocol RTREow from Definition 7 is T -hiding. (A concrete
security bound is given at the end of the proof.)

Proof. We need to show that for an adversary pA0, A1q such that A0 is sequential-polynomial-time and A1

is sequential-polynomial-time and T -time, we have that
∣

∣Prrb1 “ 1 : Game 1p0qs´Prrb1 “ 1 : Game 1p1qs∣∣
is negligible. Here Game 1pbq denotes Game 1 running with parameter b, and Game 1 is defined as
follows:

Game 1 (Original protocol)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) p

$Ð t0, 1un, B $Ð t0, 1un.
(d) V0 Ð TRE0pB, pq.
(e) X Ð |mb ‘ pyB.
(f) b1 Ð A1pX,V0q.

Since TRE0 is T -hiding, and A1 is T -time, and A0, A1 are sequential-polynomial-time, we can replace
the arguments of TRE0 by different ones.

Game 2 (Fake timed-release encryption)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) p

$Ð t0, 1un, p̃ $Ð t0, 1un, B $Ð t0, 1un.
(d) V0 Ð TRE0pB, p̃q.
(e) X Ð |mb ‘ pyB.
(f) b1 Ð ApX,V0q.

We then have that
∣

∣Prrb1 “ 1 : Game 1pbqs ´ Prrb1 “ 1 : Game 2pbqs∣∣ is negligible for b P t0, 1u.
Game 3 (Removing m)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) p

$Ð t0, 1un, p̃ $Ð t0, 1un, B $Ð t0, 1un.
(d) V0 Ð TRE0pB, p̃q.
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(e) X Ð |pyB.
(f) b1 Ð ApX,V0q.

In this game, we have substituted p by p ‘ mb. For p $Ð t0, 1un, both p and p ‘ mb have the same
distribution. Hence Prrb1 “ 1 : Game 2pbqs “ Prrb1 “ 1 : Game 3pbqs for b P t0, 1u.

Finally, since b is never used in Game 3, we have Prrb1 “ 1 : Game 3p0qs “ Prrb1 “ 1 : Game 3p1qs.
Combining all equations, we get that

∣

∣Prrb1 “ 1 : Game 1p0qs ´ Prrb1 “ 1 : Game 1p1qs∣∣ is negligible.
Note that this also tells us the concrete security of RTREow . Namely, when µ is the advantage of

an adversary against TRE0 (that runs only a small additive amount longer than the original adversary
pA0, A1q; it consists of the code in Game 2), then µ also bounds the advantage against RTREow . l

C CSS codes – recap and properties

We recall the definition of CSS codes and prove some properties that we will need in the following. For
more information, see [CS96, Ste96] or the textbook [NC10, Section 10.4.2].

A CSS code with parameters n, k1, k2, t consists of two classical linear binary codes, namely an rn, k1s
code C1

19 and an rn, k2s code C2 such that C2 Ď C1 and both C1 and CK
2 can correct up to t errors.

We require that the parity check matrices of C1, C2 are computable in polynomial time, and that error
correction can be performed in polynomial time. (Here we assume an asymptotic setting in which C1, C2

are defined for every security parameter.)
Given two binary codes C Ď D, with slight abuse of notation, D{Cdenotes a representative system

of the quotient D{C. More precisely, we assume an idempotent linear polynomial-time computable
operation “mod C” on t0, 1un such that we have that x mod C “ x1 mod C iff x ´ x1 P C and for all
codes D Ě C that x P D ùñ x mod C P D and that x mod D mod C “ x mod D. (Such an operation
can always be found, e.g., x mod C :“ HT pHHT q´1Hx if H is the parity check matrix of C and HT

its transpose. Note that HHT is invertible because we can assume H to be of full rank.) We then let
D{C :“ tx mod C : x P Du.

Let |ξxuvy :“ 1?
|C2|

ř
wPC2

p´1qv¨w|x‘w ‘ uy P C2n . For any u P t0, 1un{C1 and v P t0, 1un{CK
2 , the

set of states t|ξxuvyuxPC1{C2
define a different quantum code (with similar properties) where |ξxuvy is the

encoding of a word x P C1{C2.

Lemma 16 (Characters sums)
(a) For a linear binary code C, if x P CK then

ř
yPCp´1qx¨y “ |C|, and if x R CK, then

ř
yPCp´1qx¨y “ 0.

(b) For a linear binary code C and x P C, if x “ 0 then
ř

yPt0,1un{CKp´1qx¨y “ |C|, and if x ‰ 0, thenř
yPt0,1un{CKp´1qx¨y “ 0.

Proof. We prove (a) first.
The first part of (a) follows since for x P CK, we have p´1qx¨y “ p´1q0 “ 1 for all y P C. For

the second part, notice that x R CK implies that there is a y1 P C such that x ¨ y1 “ 1. Fix a
basis ty1, . . . , yku of C (using that particular y1). Let C 1 :“ spanty2, . . . , yku. Then

ř
yPCp´1qx¨y “ř

yPC1p´1qx¨y ` p´1qx¨py‘y1q “ ř
yPC1 p´1qx¨y ` p´1qx¨yp´1qx¨y1 “ ř

yPC1 p´1qx¨y ` p´1qx¨yp´1q “ 0.

We now prove (b).
The first part of (b) follows since p´1qx¨y “ 1 and |t0, 1un{CK| “ 2n{p2n´dimCq “ 2dimC “ |C|. For

the second part, we have

0
p˚q“

ÿ

yPt0,1un

p´1qx¨y “
ÿ

yPt0,1un{CK

zPCK

p´1qx¨py‘zq p˚˚q“
ÿ

yPt0,1un{CK

zPCK

p´1qx¨y “ |CK| ¨
ÿ

yPt0,1un{CK

p´1qx¨y

Here p˚q is by (a) (with C :“ t0, 1un and x R CK “ t0u). And p˚˚q uses that x ¨ z “ 0 for x P C and
z P CK. So |CK|

ř
yPt0,1un{CK p´1qx¨y “ 0, and hence

ř
yPt0,1un{CK p´1qx¨y “ 0. l

Lemma 17 (CSS codes form a basis) t|ξxuvyuxPC1{C2,uPt0,1un{C1,vPt0,1un{CK
2

is an orthonormal basis

of C2n .

19A rn, ks-code is a code consisting of 2k codewords, each of length n. That is, a k-dimensional subspace of t0, 1un “
GFp2qn.

26



Proof. We easily verify that ‖|ξxuvy‖ “ 1. Furthermore, the number of tuples px, u, vq is |C1{C2| ¨
|t0, 1un{C1| ¨ |t0, 1un{CK

2 | “ p2k1{2k2q ¨ p2n{2k1q ¨ p2n{2n´k2q “ 2n. Thus t|ξxuvyux,u,v forms a basis if
the |ξxuvy are linearly independent. Thus, to show that t|ξxuvyux,u,v is an orthonormal basis, it is thus
sufficient to show that the |ξxuvy are orthogonal (and thus also linearly independent).

To show this, fix x, x1 P C1{C2, u, u1 P t0, 1un{C1, v, v1 P t0, 1un{CK
2 with px, u, vq ‰ px1, u1, v1q. We

will show that xξxuv|ξx1u1v1 y “ 0.
We have xξxuv|ξx1u1v1 y “ 1

|C2|

ř
w,w1PC2

p´1qv¨w‘v1¨w1xx ‘ u ‘ w|x1 ‘ u1 ‘ w1y. If px, uq ‰ px1, u1q,
then x ‘ u ‰ x1 ‘ u1 and x ‘ u, x1 ‘ u1 P t0, 1un{C2 since x, x1 P C1{C2 and u, u1 P t0, 1un{C1. Thus
px ‘ uq ´ px1 ‘ u1q R C2 and thus x‘ u ‘ w ‰ x1 ‘ u1 ‘ w1 for any w,w1 P C2. Hence xξxuv|ξx1u1v1 y “ 0

if px, uq ‰ px1, u1q. If px, uq “ px1, u1q, then v ‰ v1. Also, the scalar product xx ‘ u ‘ w|x1 ‘ u1 ‘ w1y
vanishes for w ‰ w1. Thus we have xξxuv|ξx1u1v1 y “ 1

|C2|

ř
wPC2

p´1qpv‘v1q¨w. Since v, v1 P t0, 1un{CK
2 and

v ‰ v1, we have that v ´ v1 R CK
2 . Thus by Lemma 16 (a), xξxuv|ξx1u1v1 y “ 0. l

Lemma 18 (EPR states as CSS code superpositions) 2´n{2 ř
x,u,v|ξxuvy b |ξxuvy “ |Ć0n0ny with

x P C1{C2, u P t0, 1un{C1, v P t0, 1un{CK
2 . (Recall that |Ć0n0ny denotes n EPR pairs, see page 4.)

Proof.

2´n{2
ÿ

x,u,v

|ξxuvy b |ξxuvy

“ 2´n{2|C2|
´1

ÿ

x,u,v

ÿ

w1,w2PC2

p´1qv¨pw1‘w2q|x‘ w1 ‘ uy b |x‘ w2 ‘ uy

“ 2´n{2|C2|
´1

ÿ

x,u,w1,w2

ÿ

vPt0,1un{CK
2

p´1qv¨pw1‘w2q

looooooooooooooomooooooooooooooon
“0 if w1‰w2, “|C2| if w1“w2

by Lemma 16 (b)

|x‘ w1 ‘ uy b |x‘ w2 ‘ uy

“ 2´n{2
ÿ

x,u,w

|x‘ w ‘ uy b |x‘ w ‘ uy

“ 2´n{2
ÿ

jPt0,1un

|jy b |jy

“ |Ć0n0ny l

Error-correction and decoding operations. We proceed to define some operations related to CSS
codes that are needed for subsequent proofs:

For u P t0, 1un{C1, v P t0, 1un{CK
2 , let UEC

uv be an isometry20 describing error correction and decoding
for the CCS code t|ξxuvyux. More precisely, we require that for any u, v and any f P t0, 1un, e P t0, 1un
with ωpfq, ωpeq ď t there is a state |Ψy such that for all x we have UEC

uv XeZf |ξxuvy “ |xy b |Ψy. Here
Xe stands for Xe1 b ¨ ¨ ¨ bXen and Zf analogously where X,Z are the Pauli gates.

Let Udec
uv be an isometry describing decoding (without error correction) for the CCS code t|ξxuvyux.

More precisely, we require that for any u P t0, 1un{C1, v P t0, 1un{CK
2 there is a state |Ψy such that for

all x P C1{C2 we have Udec
uv |ξxuvy “ |xy b |Ψy. And for any u P t0, 1un{C1, v P t0, 1un{CK

2 and any |ξy
orthogonal to spant|ξxuvy : x P C1{C2u, there is a |Ψy such that Udec

uv |ξy “ |Ky b |Ψy.

Lemma 19 (Decoding and error correcting) Polynomial-time operations Udec
uv and UEC

uv with the
properties above exist.

Proof. We first construct UEC
uv . Fix x P C1{C2, u P t0, 1un{C1, v P t0, 1un{CK

2 as well as f P t0, 1un, e P
t0, 1un with ωpfq, ωpeq ď t. In the following calculation, we will apply a number of polynomial-time

20I.e., a pure quantum operation that may add auxiliary qubits. This is slightly less demanding that requiring a unitary.
(Which in turns can lead to a smaller circuit for UEC

uv and thus to a more efficient reduction in our construction of
revocably-hiding timed-release encryptions below.) Notice that the conditions for Udec

uv below cannot even be satisfied by
a unitary operation: the dimension of the input space of Udec

uv is dimin :“ 2n, and the dimension of the output space is
dimout :“ |C1{C2 Y tKu| ¨ dimΨ where dimΨ is the dimension of |Ψy. Since |C1{C2| is not a power of two, dimin “ dimout

is impossible, so Udec
uv cannot be unitary.
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isometries to XeZf |ξxuvy to reach a state of the form |xy b |Ψy. The isometries will depend only on u, v,
and |Ψy will depend only on u, v, f, e. Thus, by taking the product of these isometries, we get UEC

uv such
that for any u, v and any f P t0, 1un, e P t0, 1un with ωpfq, ωpeq ď t there is a state |Ψy such that for
all x we have UEC

uv XeZf |ξxuvy “ |xy b |Ψy, as required by the definition of UEC
uv . All sum-indices range

over t0, 1un unless specified otherwise.
(The following calculation loosely follows [NC10, Section 10.4.2].)
To increase readability, we highlight differences between the lines of the calculation in blue, with an

underscore ( ) denoting an omitted piece of formula.

XeZf |ξxuvy
“ XeZf

`
2´k2{2

ÿ

wPC2

p´1qv¨w|x‘ w ‘ uy˘

“ Xe
`
2´k2{2

ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq|x‘ w ‘ uy˘

“ 2´k2{2
ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq|x‘ w ‘ u‘ ey

ÞÑ 2´k2{2
ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq|x‘ w ‘ ey using U1 : |zy ÞÑ |z ‘ uy

ÞÑ 2´k2{2
ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq|x‘ w ‘ ey|H1px‘ w ‘ eqy using U2 : |zy ÞÑ |zy|H1zy
with H1 parity check matrix of C1

“ 2´k2{2
ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq|x‘ w ‘ ey|H1ey since x‘ w P C1 “ kerH1

ÞÑ 2´k2{2
ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq|x‘ w y|H1ey using Uec1 : |z1y|H1ey ÞÑ |z1 ‘ ey|H1ey,
see below

ÞÑ 2´k2{2
ÿ

wPC2

p´1qv¨w‘f ¨px‘w‘uq
´
2´n{2

ÿ

z

p´1qz¨px‘wq|zy
¯
|H1ey using Hbn

“ 2´k2{2´n{2
ÿ

z

ÿ

wPC2

p´1qw¨pz‘f‘vqp´1qf ¨px‘uq‘z¨x|zy|H1ey

“ 2´k2{2´n{2
ÿ

z1

ÿ

wPC2

p´1qw¨z1 p´1qf ¨u‘pz1‘vq¨x|z1 ‘ f ‘ vy|H1ey with z1 :“ z ‘ f ‘ v

“ 2´k2{2´n{2
ÿ

z1PCK
2

2k2p´1qf ¨u‘pz1‘vq¨x|z1 ‘ f ‘ vy|H1ey by Lemma 16 (a) (using w P C2, |C2| “ 2k2)

ÞÑ 2k2{2´n{2
ÿ

z1PCK
2

p´1qf ¨u‘pz1‘vq¨x|z1 ‘ f y|H1ey using U3 : |zy ÞÑ |z ‘ vy

ÞÑ 2k2{2´n{2
ÿ

z1PCK
2

p´1qf ¨u‘pz1‘vq¨x|z1 ‘ fy|H2pz1 ‘ fqy|H1ey using U4 : |zy ÞÑ |zy|H2zy
with H2 parity check matrix of CK

2

“ 2k2{2´n{2
ÿ

z1PCK
2

p´1qf ¨u‘pz1‘vq¨x|z1 ‘ fy|H2fy|H1ey since z1 P CK
2 “ kerH1

ÞÑ 2k2{2´n{2
ÿ

z1PCK
2

p´1qf ¨u‘pz1‘vq¨x|z1 y|H2fy|H1ey using Uec2 : |z1y|H2fy ÞÑ |z1 ‘ fy|H2fy
see below

ÞÑ 2k2{2´n{2
ÿ

z1PCK
2

p´1qf ¨u‘pz1‘vq¨x
´ÿ

y

2´n{2p´1qy¨z1

|yy
¯
|H2fy|H1ey using Hbn

“ 2k2{2´n
ÿ

y

ÿ

z1PCK
2

p´1qz1¨py‘xqp´1qf ¨u‘v¨x|yy|H2fy|H1ey

“ 2k2{2´n
ÿ

y1

ÿ

z1PCK
2

p´1qz1¨y1p´1qf ¨u‘v¨x|y1 ‘ xy|H2fy|H1ey with y1 :“ y ‘ x

“ 2k2{2´n
ÿ

y1PC2

2n´k2p´1qf ¨u‘v¨x|y1 ‘ xy|H2fy|H1ey by Lemma 16 (a) (using |CK
2 | “ 2n´k2 ,

pCK
2 qK “ C2)
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ÞÑ 2´k2{2
ÿ

y1PC2

p´1qf ¨u‘v¨x|xy|y1 ‘ xy|H2fy|H1ey using U5 : |zy ÞÑ |z mod C2y|zy

ÞÑ 2´k2{2
ÿ

y1PC2

p´1qf ¨u‘v¨x|xy|y1 y|H2fy|H1ey using U6 : |z1y|z2y ÞÑ |z1y|z2 ‘ z1y

“ p´1qv¨x|xy|Ψy with |Ψy :“ 2´k2{2p´1qf ¨u
ÿ

y1PC2

|y1y|H2fy|H1ey

ÞÑ |xy|Ψy using Zv

In the above calculation, we used the unitaries Uec1 and Uec2 . We describe Uec1 : Let ec1 be a polynomial-
error error correction function for C1, i.e., ec1 pzq “ z1 if ωpz ‘ z1q ď t and z1 P C1. Let H1 be the parity
check matrix of C1. Let H´1

1 pzq denote a polynomial-time function that returns some preimage of z under
H1 if such exists and is defined arbitrarily elsewhere. For y P t0, 1un, let ec1 1pyq :“ ec1 pH´1

1 pyqq‘H´1
1 pyq.

Then for ωpeq ď t, we have that H´1
1 pH1eq ‘ e P kerH1 “ C1 because both e and H´1

1 pH1eq are
preimages of H1e under H1. Hence ec1 pH´1

1 pH1eqq “ H´1
1 pH1eq ‘ e, and thus ec1 1pH1eq “ e. Let

Uec1 : |z1y|z2y ÞÑ |z1 ‘ ec1 1pz2qy|z2y. Then Uec1 : |z1y|H1ey ÞÑ |z1 ‘ ey|H1ey for ωpeq ď t as needed in
the above calculation. Uec2 is constructed analogously with respect to CK

2 instead of C1.
As discussed in the beginning of the proof, UEC

uv is then the product of the isometries applied in the
above calculation.

We now construct Udec
uv . We define the following unitaries and isometries:

• U‘u : |zy ÞÑ |z ‘ uy for z P t0, 1un.
• Usplit : |x ‘ wy ÞÑ |xy|wy for x P C1{C2 and w P C2. (This can be implemented by |x ‘ wy ÞÑ
|x‘ wy|0ny p˚qÞÑ |x‘ wy|wy ÞÑ |xy|wy where p˚q uses a unitary |zy|z1y ÞÑ |zy|z1 ‘ pz mod C2qy.)

• Zv :“ Zv1 b ¨ ¨ ¨ b Zvn where Z is the Pauli matrix Z.
• UG : |0ny ÞÑ 1?

|C2|

ř
wPC2

|wy. (This can be implemented using n ´ k2 auxil-

iaries as |0ny|0n´k2y Hbn´k2ÞÑ 1?
|C2|

ř
zPt0,1un´k2 |0

ny|zy p˚qÞÑ 1?
|C2|

ř
zPt0,1un´k2 |Gzy|zy p˚˚qÞÑ

1?
|C2|

ř
zPt0,1un´k2 |Gzy|0n´k2y. Here G is the generator matrix of C2. And G´1pzq computes

the unique preimage of z under G where G´1pzq is arbitrary if this preimage does not exist. And
p˚q uses a unitary |zy|z1y ÞÑ |z ‘Gz1y|z1y. And p˚˚q uses a unitary |zy|z1y ÞÑ |zy|z1 ‘G´1pzqy.)

• Ucheck : |xy|0ny ÞÑ |xy|0ny|0ny for x P C1{C2 and Ucheck : |xy|zy ÞÑ |Ky|0ny|xy for x R C1{C2 or
z ‰ 0n.

Notice that all these operations can be implemented in polynomial time.
If we start with a state |ξxuvy with x P C1{C2 and apply the following operations sequentially, we get

the following states:
• After U‘u: 1?

|C2|

ř
wPC2

p´1qv¨w|x‘ wy.
• After Usplit : 1?

|C2|

ř
wPC2

p´1qv¨w|xy|wy.
• After In b Zv: |xy b 1?

|C2|

ř
wPC2

|wy.
• After In b U

:
G: |xy b |0ny. (This holds because UG|0

ny “ 1?
|C2|

ř
wPC2

|wy.)
• After Ucheck : |xy b |0ny|0ny.

Let Udec
uv be the operation resulting from applying all these operations sequentially.

Thus, with |Ψy :“ |0ny|0ny we have: For any u, v there is a state |Ψy such that for all x we have
Udec
uv |ξxuvy “ |xy b |Ψy.

Furthermore, for fixed u, v, if we apply the same sequence of operations to a state |ξy that is orthogonal
to all |ξxuvy (x P C1{C2), then after InbU :

G we get a state |Φy that is orthogonal to all |xy|0ny (x P C1{C2),
i.e., |Φy is spanned by vectors |xy|zy with x R C1{C2 or z ‰ 0n. Thus Udec

uv |ξy “ Ucheck |Φy “ |Ky b |Ψy
for some |Ψy.

Hence for any u, v and any |ξy is orthogonal to spant|ξxuvy : x P C1{C2u, there is a |Ψy such that
Udec
uv |ξxuvy “ |Ky b |Ψy.

This shows the existence of Udec
uv . l
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D Full proofs: revocably hiding timed-release encryptions

This section is devoted to proving Theorem 3.
Let pA0, A1, A2q be an adversary such that A0 is sequential-polynomial-time and A1 is sequential-

polynomial-time and pT ´ δhidT q-time. (No restrictions on A2.)

Variable conventions. In the following, the variables B,Q, r, x, u, v always range over the following
sets unless explicitly specified otherwise: B P t0, 1uq, Q P rq ` nsq, B P t0, 1uq, r P t0, 1uq, x P C1{C2,
u P t0, 1un{C1, v P t0, 1un{CK

2 . The same holds for derived variable names such as r1 or r1.

Some measurements. We first define a number of projective measurements that will be used in this
proof:

The measurement MR measures the first q qubits of an q ` n qubit register in the computational
basis. Formally, MR “ tPrurPt0,1uq with Pr :“ |ryxr| b In.

The measurement MUV measures the values u, v in an q ` n qubit state of the form |ry b |ξxuvy.
Formally, let Puv “ ř

x Iq b |ξxuvyxξxuv| and MUV :“ tPuvuu,v.
The measurement Muv

X , parametric in u, v, measures the value x in an q ` n qubit state of the form
|ryb|ξxuvy. (If the parameters u, v do not match, the outcome is K.) Formally, let Puv

x “ Iqb|ξxuvyxξxuv|
and Puv

K “ 1 ´ ř
x P

uv
x and Muv

X “ tPuv
x uxPC1{C2YtKu.

That the measurements MUV and Muv
X are indeed projective measurements follows from the fact

that the |ξxuvy form an orthonormal basis (Lemma 17).
Also recall the definition of PEPR

t (page 20). Similarly, we define PEPR
C1{C2

:“ ř
xPC1{C2

|xyxx| b |xyxx|,
i.e., PEPR

C1{C2
is the analogue of PEPR

C1{C2
for basis t|xyuxPC1{C2

.

Sequence of games. We now proceed to define a number of games and to show the relation between
the attack probability in these games. From this we finally deduce the security of our protocol. X and
Y refer to n-bit quantum registers.

Game 1 (Original game)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq. (m0,m1 P C1{C2 since that is the message space of RTREhid .)

(c) B
$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(d) u
$Ð t0, 1un{C1. r

$Ð t0, 1uq.
(e) x

$Ð C1{C2.

(f) w
$Ð C2.

(g) X Ð U
:
QpHB b Inqp|ry b |x‘ w ‘ uyq.

(h) V0 Ð TRE0pB,Q, r, pq.
(i) Run A1pX,V0, u,mb ‘ x ‘ pq. (We pass the quantum register X to A1 which means that A1 has

read-write access to it.)
(j) Apply pHB b InqUQ to X.
(k) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(l) Run b1 Ð A2pq.

Since Game 1 is the game from Definition 5 (with the definition of RTREhid inlined), it suffices to
show that

∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 1p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 1p1qs∣∣ is negligible.

Game 2 (Late key revelation)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(d) u
$Ð t0, 1un{C1. r

$Ð t0, 1uq.
(e) x

$Ð C1{C2. x̂
$Ð C1{C2

(f) w
$Ð C2.

(g) X Ð U
:
QpHB b Inqp|ry b |x‘ w ‘ uyq.

(h) V0 Ð TRE0pB,Q, r, pq.
(i) Run A1pX,V0, u, x̂‘ pq.
(j) Apply pHB b InqUQ to X.
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(k) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(l) If mb ‘ x “ x̂, run b1 Ð A2pq. Else let b1 :“ 0.

Lemma 20 (Game 1 vs. Game 2) Then for b P t0, 1u we have

Prrb1 “ 1 ^ ok “ 1 : Game 1pbqs “ |C1{C2|Prrb1 “ 1 ^ ok “ 1 : Game 2pbqs

Proof. Note that for all x, x̂,m0,m1, we have

Prrb1 “ 1 ^ ok “ 1 | px, x̂,m0,m1q “ px, x̂,m0,m1q : Game 2pbqs

“
#
Prrb1 “ 1 ^ ok “ 1 | px,m0,m1q “ px,m0,m1q : Game 1pbqs if mb ‘ x “ x̂

0 if mb ‘ x ‰ x̂.
(5)

And since up to and including the invocation of A0, the games are identical, we have Prrpm0,m1q “
pm0,m1q : Game 2pbqs “ Prrpm0,m1q “ pm0,m1q : Game 1pbqs.

Thus

|C1{C2|Prrb1 “ 1 ^ ok “ 1 : Game 2pbqs
“

ÿ

x,x̂,
m0,m1

1

|C1{C2|
Prrb1 “ 1 ^ ok “ 1 | px, x̂,m0,m1q “ px, x̂,m0,m1q : Game 2pbqs

¨ Prrpm0,m1q “ pm0,m1q : Game 2pbqs
(5)“

ÿ

x,m0,m1

1

|C1{C2|
Prrb1 “ 1 ^ ok “ 1 | px,m0,m1q “ px,m0,m1q : Game 1pbqs

¨ Prrpm0,m1q “ pm0,m1q : Game 1pbqs
“ Prrb1 “ 1 ^ ok “ 1 : Game 1pbqs. l

Game 3 (Using CSS codes)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(d) u
$Ð t0, 1un{C1. r

$Ð t0, 1uq.
(e) x

$Ð C1{C2. x̂
$Ð C1{C2.

(f) w
$Ð C2. v

$Ð t0, 1un{CK
2

(g) X Ð U
:
QpHB b Inqp|ry b |ξxuvyq.

(h) V0 Ð TRE0pB,Q, r, pq.
(i) Run A1pX,V0, u, x̂‘ pq.
(j) Apply pHB b InqUQ to X.
(k) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(l) If mb ‘ x “ x̂, run b1 Ð A2pq. Else let b1 :“ 0.

Lemma 21 (Game 2 vs. Game 3) For b P t0, 1u we have

Prrb1 “ 1 ^ ok “ 1 : Game 2pbqs “ Prrb1 “ 1 ^ ok “ 1 : Game 3pbqs

Proof. In Games 2 and 3, w and v are never used except in the construction of the state |x‘w‘uy and
|ξxuvy, respectively. Thus to show Lemma 21, it is sufficient to show that for all x and u, |x ‘ w ‘ uy
and |ξxuvy are indistinguishable by any quantum circuit for random v, w, i.e., that ρxu1 “ ρxu2 for ρxu1 :“ř

w
1

|C2|
|x ‘ w ‘ uyxx ‘ w ‘ u| and ρxu2 :“ ř

v
1

|t0,1un{CK
2 |
|ξx,u,vyxξx,u,v|. This equality is shown by the

following calculation:

ρxu2
p˚q“

ÿ

w1,w2

1

|C2|

´ÿ

v

1

|t0, 1un{CK
2 |

p´1qv¨pw1‘w2q
¯
|x‘ w1 ‘ uyxx‘ w2 ‘ u|

p˚˚q“
ÿ

w

1

|C2|
|x‘ w ‘ uyxx‘ w ‘ u| “ ρxu1 .

Here p˚q uses the definition of |ξxuvy, and p˚˚q uses Lemma 16 (b) with C :“ C2 and x :“ w1 ‘ w2.
Thus ρxu1 “ ρxu2 and the lemma follows. l
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Game 4 (Using EPR pairs)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(d) u
$Ð t0, 1un{C1. r

$Ð t0, 1uq.
(e) x

$Ð C1{C2. x̂
$Ð C1{C2.

(f) v
$Ð t0, 1un{CK

2 .

(g) X Ð U
:
QpHB b Inqp|ry b |ξxuvyq.

(h) Initialize XY as | Č0q`n0q`ny.
(i) Apply pHB b InqUQ to Y .
(j) Measure Y using MUV , outcome u, v. (Reminder: MUV ,M

uv
X ,MR are defined on page 30.)

(k) Measure Y using Muv
X , outcome x.

(l) Measure Y using MR, outcome r.
(m) V0 Ð TRE0pB,Q, r, pq.
(n) x̂

$Ð C1{C2. Run A1pX,V0, u, x̂‘ pq.
(o) Apply pHB b InqUQ to X.
(p) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(q) If mb ‘ x “ x̂, run b1 Ð A2pq. Else let b1 :“ 0.

Lemma 22 (Game 3 vs. Game 4) For b P t0, 1u, we have Prrb1 “ 1^ok “ 1 : Game 3pbqs “ Prrb1 “
1 ^ ok “ 1 : Game 4pbqs.

Proof. To show this lemma, it is sufficient to show two things: When initializing XY with | Č0q`n0q`ny,
applying pHB b InqUQ on Y , and performing the measurements MUV , Muv

X , and MR on Y , then the
outcomes u, v, x, r will be uniformly distributed over their respective domains (note: x has to be uniformly
distributed over C1{C2, not over C1{C2 Y tKu). And the post-measurement-state in X in this case is
U

:
QpHB b Inqp|ry b |ξxuvyq.

Let |Ψxruvy :“ pIq`n b PrP
uv
x PuvpHB b InqUQq| Č0q`n0q`ny. (Reminder: Pr, Puv, P

uv
x are defined on

page 30.) Then the probability of getting outcomes x, r, u, v is ‖|Ψxruvy‖2, and the post-measurement-
state is |Ψxruvy { ‖|Ψxruvy‖.

We have

|Ψxruvy “ pIq`n b PrP
uv
x PuvqpIq`n b pHB b InqUQq| Č0q`n0q`ny (6)

p˚q“ pIq`n b PrP
uv
x PuvqpU :

QpHB b Inq b Iq`nq| Č0q`n0q`ny (7)

“ pU :
QpHB b Inq b Iq`nqpIq`n b PrP

uv
x Puvq| Č0q`n0q`ny (8)

p˚˚q“ pU :
QpHB b Inq b Iq`nqpPrP

uv
x Puv b Iq`nq| Č0q`n0q`ny (9)

p̊ ˚̊ q“ pU :
QpHB b Inq b Iq`nqpPrP

uv
x Puv b Iq`nq2´q{2´n{2

ÿ

r,x,u,v

|ry|ξxuvy|ry|ξxuvy (10)

p̊ ˚̊ q̊“ 2´q{2´n{2U :
QpHB b Inq|ry|ξxuvy b |ry|ξxuvy. (11)

Here p˚q uses Lemma 4 with A :“ pHB b InqUQ and with AT “ UT
QpHB b InqT “ U

:
QpHB b Inq where

we use that H is symmetric and UQ is real-valued and thus U :
Q “ UT

Q .
And p˚˚q uses Lemma 4 with A :“ PrP

uv
x Puv and AT “ PT

uvpPuv
x qTPT

r “ PuvP
uv
x Pr where we use

that PT
uv “ P :

uv “ Puv because Puv is real-valued and Hermitean, and analogously for Puv
x , Pr.

And p˚˚˚q uses Lemma 18.
And p˚˚˚˚q uses that the |ry|ξxuvy are orthogonal (Lemma 17), and that thus PrP

uv
x Puv is a projector

onto |ry|ξxuvy.
Hence the probability ‖|Ψxruvy‖2 of measuring x, r, u, v is 2´n´q, thus x, r, u, v are uniformly dis-

tributed. And the post measurement state is U :
QpHB b Inq|ry|ξxuvy b |ry|ξxuvy in XY , thus the post

measurement state in X is U :
QpHB b Inq|ry|ξxuvy.

This shows the lemma. l

Game 5 (Delay measuring x)
(a) In this game, b P t0, 1u is a parameter of the game.
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(b) pm0,m1q Ð A0pq.
(c) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(d) Initialize XY as | Č0q`n0q`ny.
(e) Apply pHB b InqUQ to Y .
(f) Measure Y using MUV , outcome u, v.
(g) Measure Y using Muv

X , outcome x.
(h) Measure Y using MR, outcome r.
(i) V0 Ð TRE0pB,Q, r, pq.
(j) x̂

$Ð C1{C2. Run A1pX,V0, u, x̂‘ pq.
(k) Apply pHB b InqUQ to X.
(l) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(m) Measure Y using Muv

X , outcome x.
(n) If mb ‘ x “ x̂, run b1 Ð A2pq. Else let b1 :“ 0.

Lemma 23 (Game 4 vs. Game 5) Prrb1 “ 1 ^ ok “ 1 : Game 4pbqs “ Prrb1 “ 1 ^ ok “ 1 :

Game 5pbqs for b P t0, 1u.

Proof. The measurement Muv
X on Y that is moved in Game 5 commutes with MR because it operates on

a different part of the register Y . And it commutes with steps (i)–(l) because the latter do not operate
on Y . l

Game 6 (Testing the state)
(a) In this game, b P t0, 1u is a parameter of the game.
(b) pm0,m1q Ð A0pq.
(c) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(d) Initialize XY as | Č0q`n0q`ny.
(e) Apply pHB b InqUQ to Y .
(f) Measure Y using MUV , outcome u, v.
(g) Measure Y using MR, outcome r.
(h) V0 Ð TRE0pB,Q, r, pq.
(i) x̂

$Ð C1{C2. Run A1pX,V0, u, x̂‘ pq.
(j) Apply pHB b InqUQ to X.
(k) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(l) Apply Iq b UEC

uv to X and Iq b Udec
uv to Y . Measure XY using PEPR

C1{C2
, outcome isEPR.

(m) Measure Y using Muv
X , outcome x.

(n) If mb ‘ x “ x̂, run b1 Ð A2pq. Else let b1 :“ 0.

Lemma 24 (Game 5 vs. Game 6) Let ε :“ Prrok “ 1 ^ isEPR “ 0 : Game 6s. Then we have
∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 5p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 5p1qs∣∣ ď ?
ε.

Proof. For any x̂, u, v, let ρx̂uv be the state in Game 6 after step (k), conditioned on the variables
x̂, u, v, ok in the game taking the values x̂, u, v, 1. Let Prx̂uv be the probability of x̂, u, v, ok in the game
taking the values x̂, u, v, 1.

Note that until step (k), Game 5 and Game 6 are identical, hence ρx̂uv and Prx̂uv also refer to Game 5.
Thus we have for b P t0, 1u:

Prrb1 “ 1 ^ ok “ 1 : Game 5pbqs
“

ÿ

x̂,u,v

Prx̂uv ¨Prrb1 “ 1 : start with ρx̂uv, x Ð measure Y with Muv
X , b1 Ð Bpx‘mb ‘ x̂qs (12)

where Bpx1q runs “If x1 “ 0, run b1 Ð A2pq. Else let b1 :“ 0. Return b1”.
Let Px be the projector upon spant|ry|xy|Ψy : r P t0, 1uq, |Ψy arbitraryu, and let MX be the corre-

sponding measurement MX “ tPxuxPC1{C2YtKu. (I.e., MX measures the result of decoding with Udec
uv in

the computational basis.)
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One easily verifies for all r, x, u, v, x1, u1, v1 (and suitable |Ψy):
PxpIq b Udec

uv q|ry|ξxuvy “ |ry|xy b |Ψy “ pIq b Udec
uv q|ry|ξxuvy “ pIq b Udec

uv qPuv
x |ry|ξxuvy

PxpIq b Udec
uv q|ry|ξx1u1v1 y “ 0 “ pIq b Udec

uv qPuv
x |ry|ξx1u1v1 y if px, u, vq ‰ px1, u1, v1q

PKpIq b Udec
uv q|ry|ξxuvy “ 0 “ pIq b Udec

uv qPuv
K |ry|ξxuvy

PKpIq b Udec
uv q|ry|ξx1u1v1 y “ |ry|Ky b |Ψy “ pIq b Udec

uv qPuv
K |ry|ξx1u1v1 y if pu, vq ‰ pu1, v1q

Since the |ξxuvy form a basis, this implies that PxpIq b Udec
uv q “ pIq b Udec

uv qPuv
x for any u, v and x P

C1{C2 Y tKu. Hence applying Iq b Udec
uv and then measuring with MX is equivalent to measuring with

Muv
X and then applying In b Udec

uv . Thus the following four games have the same probability of b1 “ 1:
• Start with ρx̂uv, x Ð measure Y with Muv

X , b1 Ð Bpx‘mi ‘ x̂q.
• Start with ρx̂uv, apply Iq b UEC

uv to X , x Ð measure Y with Muv
X , apply Iq b Udec

uv to Y , b1 Ð
Bpx‘mi ‘ x̂q. (Uses that Bp. . . q does not access X,Y .)

• Start with ρx̂uv, apply Iq b UEC
uv to X , apply Iq b Udec

uv to Y , x Ð measure Y with MX , b1 Ð
Bpx‘mi ‘ x̂q. (Uses that Iq b Udec

uv ,MX is equivalent to Muv
X , Iq b Udec

uv .)
• Start with ρ˚

x̂uv, apply Iq b UEC
uv to X, apply Iq b Udec

uv to Y , x Ð measure Y with MX , b1 Ð
Bpx‘mi ‘ x̂q. (Using the definition of ρ˚

x̂uv, see below.)
Here we define ρ˚

x̂uv to be the state resulting from applying Iq b UEC
uv b Iq b Udec

uv to XY in ρx̂uv.
Thus we can continue the computation from (12):

Prrb1 “ 1 ^ ok “ 1 : Game 5pbqs
“

ÿ

x̂,u,v

Prx̂uv Prrb1 “ 1 : start with ρ˚
x̂uv, x Ð measure Y with MX , b

1 Ð Bpx ‘mb ‘ x̂qslooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooon
“:Succb

x̂uv

(13)

Furthermore, we have

ε “ Prrok “ 1 ^ isEPR “ 0 : Game 6s “
ÿ

x̂,u,v

Prx̂uv trpp1 ´ PEPR
C1{C2

q b Iqρ˚
x̂uvlooooooooooooooomooooooooooooooon

“:εx̂uv

. (14)

(Here I is the identity on all registers except X,Y .)
Since trpPEPR

C1{C2
b Iqρ˚

x̂uv “ 1´ εx̂uv by definition of εx̂uv, Lemma 6 implies existence of a state ρidealx̂uv

such that
TDpρ˚

x̂uv, ρ
ideal
x̂uv q ď ?

εx̂uv (15)

and
ρidealx̂uv is a mixture over impPEPR

C1{C2
b Iq (16)

Equation (16) implies that ρidealx̂uv is of the form
`ř

x
1

|C1{C2|
|xyxx| b |xyxx|˘ b ρrest . Note also that in

the game “start with ρidealx̂uv , x Ð measure Y with MX , b1 Ð Bpx‘mb ‘ x̂q”, the adversary Bpx‘mb ‘ x̂q
operates only on ρrest . Thus x is uniformly distributed on C1{C2 and independent of the initial state of
Bpx‘mb ‘ x̂q. Thus the return value of b1 of Bpx ‘mb ‘ x̂q is independent of mi, hence:

Prrb1 “ 1 : start with ρidealx̂uv , x Ð measure Y with MX , b
1 Ð Bpx‘m0 ‘ x̂qs

“ Prrb1 “ 1 : start with ρidealx̂uv , x Ð measure Y with MX , b
1 Ð Bpx‘m1 ‘ x̂qs.

By (15), it follows that
∣

∣Prrb1 “ 1 : start with ρ˚
x̂uv, x Ð measure Y with MX , b

1 Ð Bpx‘m0 ‘ x̂qs
´ Prrb1 “ 1 : start with ρ˚

x̂uv, x Ð measure Y with MX , b
1 Ð Bpx ‘m1 ‘ x̂qs∣∣ ď ?

εx̂uv.

Or using abbreviations from above:
∣

∣Succ0x̂uv ´ Succ1x̂uv
∣

∣ ď ?
εx̂uv.

Thus
∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 5p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 5p1qs∣∣
(13)ď

ÿ

x̂,u,v

Prx̂uv|Succ
0
x̂uv ´ Succ1x̂uv| ď

ÿ

x̂,u,v

Prx̂uv
?
εx̂uv

p˚qď
d ÿ

x̂,u,v

Prx̂uv εx̂uv
(14)“ ?

ε.

Here p˚q uses Jensen’s inequality and the fact that
ř

x̂,u,v Prx̂uv ď 1. l
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Game 7 (Using fake timed-release encryption)
(a) pm0,m1q Ð A0pq.
(b) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(c) Initialize XY as | Č0q`n0q`ny.
(d) Apply pHB b InqUQ to Y .
(e) Measure Y using MUV , outcome u, v.
(f) Measure Y using MR, outcome r.

(g) B̂
$Ð t0, 1uq. Q̂ $Ð rq ` nsq. r̂ $Ð t0, 1uq. V0 Ð TRE0pB̂, Q̂, r̂, pq.

(h) x̂
$Ð C1{C2. Run A1pX,V0, u, x̂‘ pq.

(i) Apply pHB b InqUQ to X.
(j) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(k) Apply Iq b UEC

uv to X and Iq b Udec
uv to Y . Measure XY using PEPR

C1{C2
, outcome isEPR.

Lemma 25 (Game 6 vs. Game 7) For some µ P p2´2pk1´k2q ¨ negligibleq we have

Prrok “ 1 and isEPR “ 0 : Game 6s ď Prrok “ 1 and isEPR “ 0 : Game 7s ` µ.

Proof. First, consider an intermediate game G defined like Game 6, except that the following steps are
performed before V0 is computed: choosing x̂ $Ð C1{C2, computing the argument x̂‘ p of A1, measuring
Y using MR. Analogously G1 is defined like Game 7, with the same modifications.

Then we immediately see that Prrok “ 1 : G ^ isEPR “ 0 : Gs “ Prrok “ 1 ^ isEPR “ 0 : Game 6s
and Prrok “ 1 ^ isEPR “ 0 : G1s “ Prrok “ 1 ^ isEPR “ 0 : Game 7s because only operations that
operate on distinct variables/quantum registers are moved around.

Furthermore, in game G, after computing V0, we have an invocation of the pT ´ δhidT q-time adversary
A1, q controlled Hadamard gates (HB), an application of an already computed permutation on q ` n

qubits (U :
Q), a q-qubit measurement in the computational basis (MR on X), an n-bit equality test, the

operations UEC
uv , Udec

uv , a measurement whether two n-qubit registers are in the state
ř

xPC1{C2
|xy|xy

(PEPR
C1{C2

), and a NOT- and an AND-gate (for evaluating isEPR “ 0 ^ ok “ 1). Together, these steps

take time at most T (by definition of δhidT and our additivity assumptions on timing models, page 5).
Since TRE0 is T -hiding with p2´2pk1´k2q ¨ negligibleq-security, replacing TRE0pB,Q, r, pq by

TRE0pB̂, Q̂, r̂, pq thus only changes PrrisEPR “ 0 ^ ok “ 1s by some µ P p2´2pk1´k2q ¨ negligibleq.
Hence PrrisEPR “ 0 ^ ok “ 1 : Gs ď PrrisEPR “ 0 ^ ok “ 1 : G1s ` µ. l

Game 8 (Delay basis choices)
(a) pm0,m1q Ð A0pq.
(b) B

$Ð t0, 1uq. Q $Ð rq ` nsq. p $Ð C1{C2.

(c) Initialize XY as | Č0q`n0q`ny.
(d) Apply pHB b InqUQ to Y .
(e) Measure Y using MUV , outcome u, v.
(f) Measure Y using MR, outcome r.

(g) B̂
$Ð t0, 1uq. Q̂ $Ð rq ` nsq. r̂ $Ð t0, 1uq. V0 Ð TRE0pB̂, Q̂, r̂, pq.

(h) x̂
$Ð C1{C2. Run A1pX,V0, u, x̂‘ pq.

(i) B
$Ð t0, 1uq. Q $Ð rq ` nsq.

(j) Apply pHB b InqUQ to Y .
(k) Apply pHB b InqUQ to X.
(l) Measure Y using MR, outcome r.
(m) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(n) Measure Y using MUV , outcome u, v.
(o) Apply Iq b UEC

uv to X and Iq b Udec
uv to Y . Measure X 1Y 1 using PEPR

C1{C2
, outcome isEPR. (Here

X 1, Y 1 refer to the last n qubits of X,Y , respectively.)

Lemma 26 (Game 7 vs. Game 8) Prrok “ 1 and isEPR “ 0 : Game 7s “ Prrok “ 1 and isEPR “
0 : Game 8s.

Proof. The difference between the two lemmas is simple swapping of lines of code. All involved quantum
operations and measurements are on different registers X,Y , except for the measurements MR and MUV

on Y which commute by definition of MR,MUV . l
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Game 9 (Measure t-error state)
(a) pm0,m1q Ð A0pq.
(b) p

$Ð C1{C2.

(c) Initialize XY as | Č0q`n0q`ny.
(d) B̂

$Ð t0, 1uq. Q̂ $Ð rq ` nsq. r̂ $Ð t0, 1uq. V0 Ð TRE0pB̂, Q̂, r̂, pq.
(e) x̂

$Ð C1{C2. Run A1pX,V0, u, x̂‘ pq.
(f) B

$Ð t0, 1uq. Q $Ð rq ` nsq.
(g) Apply pHB b InqUQ to Y .
(h) Apply pHB b InqUQ to X.
(i) Measure Y using MR, outcome r.
(j) Measure X using MR, outcome r1. If r “ r1, ok :“ 1, else ok :“ 0.
(k) Measure Y using MUV , outcome u, v.
(l) Apply Iq b UEC

uv to X and Iq b Udec
uv to Y . Measure X 1Y 1 using PEPR

C1{C2
, outcome isEPR.

(m) Measure X 1Y 1 using PEPR
t , outcome isEPR.

Lemma 27 (Decoding tested EPR states) For any state ρ of X 1Y 1 and with

pr 1 :“ PrrisEPR “ 1 : start with ρ, isEPR Ð measure using PEPR
t s

pr 2 :“ PrrisEPR “ 1 : start with ρ, pu, vq Ð measure using In bMUV ,

apply UEC
uv b Udec

uv , isEPR Ð measure using PEPR
C1{C2

s
we have pr1 ď pr2. (Here we write in slight abuse of notation MUV for the restriction of MUV to X 1Y 1.
Since MUV ignores the first q qubits if X,Y anyway, this restriction is well-defined. And by “measure
using PEPR

C1{C2
”, we mean applying PEPR

C1{C2
to the first n qubits of the outputs of UEC

uv and Udec
uv .)

Proof. It is sufficient to show the inequality for pure states ρ, all other density operators are convex
combinations of pure states and the probabilities pr1, pr 2 are then the corresponding convex combinations
of the probabilities for the pure states. We thus assume ρ “ |ΨyxΨ|.

Let U be the purification of the steps “pu, vq Ð measure using In bMUV , apply UEC
uv b Udec

uv ”. I.e.,
the result of applying these steps to an initial state |ψyxψ| is trHpU |ψy|0myqpxψ|x0m|U :q where H refers
to some auxiliary system of dimension m.

We then have that

pr1 “ ∥

∥

“:P1hkkkkkkkkkkkikkkkkkkkkkkj
pPEPR

t b |0myx0m|q|Ψy|0my∥∥2

pr2 “ ∥

∥pPEPR
C1{C2

b ImqU |Ψy|0my∥∥2 “ ∥

∥U :pPEPR
C1{C2

b ImqUlooooooooooomooooooooooon
“:P2

|Ψy|0my∥∥2

P1 and P2 are orthogonal projectors, thus to show pr 1 ď pr2, it is sufficient to show imP1 Ď imP2. By
definition of PEPR

t we have imPEPR
t “ spant|Ăfey : ωpfq, ωpeq ď tu (where f, e are n-bit strings). We

thus have that imP1 “ spant|Ăfey|0my : ωpfq, ωpeq ď tu. Thus to show imP1 Ď imP2, it is sufficient to
show that |Ăfey|0my P imP2 for ωpfq, ωpeq ď t. For the rest of the proof, fix such f, e.

Since |βijy “ pZiXj b I1q|β00y, it follows that |Ăfey “ pZfXe b Inq|Ć0n0ny.
And by Lemma 18, we have hat 2´n{2 ř

x,u,v|ξxuvy b |ξxuvy “ |Ć0n0ny. Hence |Ăfey “
2´n{2 ř

x,u,v Z
fXe|ξxuvy b |ξxuvy. Since all |ξxuvy are orthogonal (Lemma 17), we have for any u, v

that the unnormalized post-measurement state after measuring |Ăfey using In b MUV with outcome
pu, vq is |Ψuvy :“ pIn b Puvq|Ăfey “ 2´n{2 ř

x Z
fXe|ξxuvy b |ξxuvy.

Since f, e have Hamming weight ď t, by definition of UEC
uv and Udec

uv we have UEC
uv ZfXe|ξxuvy “

˘UEC
uv XeZf |ξxuvy “ ˘|xy b |Φuvfey and Udec

uv |ξxuvy “ |xy b |Φ1
uvfey for some quantum states

|Φuvfey, |Φ1
uvfey. Thus the unnormalized state after additionally applying pUEC

uv b Udec
uv q to |Ψuvy is

|Ψ1
uvy :“ pUEC

uv b Udec
uv q|Ψuvy “ 2´n{2

ÿ

x

˘|xy b |Φuvfey b |xy b |Φ1
uvfey P imPEPR

C1{C2
.

Let ρ1 denote the state after applying the steps “pu, vq Ð measure using In bMUV , apply UEC
uv bUdec

uv ”
to the initial state |ĂfeyxĂfe|. Then ρ1 “ ř

uv |Ψ
1
uvyxΨ1

uv|. Thus

trPEPR
C1{C2

ρ1 “
ÿ

uv

trPEPR
C1{C2

|Ψ1
uvyxΨ1

uv| “
ÿ

uv

tr|Ψ1
uvyxΨ1

uv| “ 1
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By definition of U , we have that trHpU |Ăfey|0myqpxĂfe|x0m|U :q “ ρ1. Hence trpPEPR
C1{C2

b
ImqpU |Ăfey|0myqpxĂfe|x0m|U :q “ 1. Thus U |Ăfey|0my P impPEPR

C1{C2
b Imq. And thus finally |Ăfey|0my P

imU :pPEPR
C1{C2

b IqU “ imP2.
We have thus shown that imP1 Ď imP2, and as discussed above, this implies pr1 ď pr 2. l

Lemma 28 (Game 8 vs. Game 9) Prrok “ 1 and isEPR “ 0 : Game 8s ď Prrok “ 1 and isEPR “
0 : Game 9s.

Proof. To show this claim, let ρ1 denote the state in Game 8 right before step (n) (i.e. before measuring
u, v), conditioned on ok “ 1. And let ρ denote the result of tracing out in ρ1 all but the last n qubits of
X and Y . (I.e., ρ describes the last n qubits of X and Y conditioned on ok “ 1 before step (n).)

Then with pr 1, pr2 as in Lemma 27, we have

Prrok “ 1 and isEPR “ 0 : Game 8s
“ PrrisEPR “ 0|ok “ 1 : Game 8s ¨ Prrok “ 1 : Game 8s
ď PrrisEPR “ 0|ok “ 1 : Game 8s
“ p1 ´ pr2qPrrok “ 1 : Game 8s p˚qď p1 ´ pr 1qPrrok “ 1 : Game 9s

p˚˚q“ PrrisEPR “ 0|ok “ 1 : Game 9s ¨ Prrok “ 1 : Game 9s
“ Prrok “ 1 and isEPR “ 0 : Game 9s.

Here p˚q uses that pr 1 ď pr2 by Lemma 27, and that Prrok “ 1s is identical in Game 8 and Game 9
because up to the measurement of ok , these games are identical.

And p˚˚q uses the fact that ρ is also the state in Game 9 right before the measurement of u, v,
conditioned on ok “ 1. l

Lemma 29 (ok implies isEPR) Let ρ be the initial state of a bipartite system XY where X and Y are
q ` n-qubits each.

Consider the following game: Pick B
$Ð t0, 1uq, Q $Ð rq ` nsq. Apply pHB b InqUQ to X and to Y .

Then measure X and Y with MR, outcomes r1, r. Let ok :“ 1 iff r “ r1. Then measure X 1Y 1 using
PEPR
t , outcome isEPR. (Recall: X 1Y 1 are the last n qubit pairs of XY .)

Then Prrok “ 1 ^ isEPR “ 0s ď 3
?
q p1 ´ q

2pq`nq qt`1.

Proof. We first consider the case that ρ “ |ĂfeyxĂfe| with ωpfq ą t or ωpeq ą t.
Note that when measuring both qubits of |β01y or |β11y in the computational basis, the outcomes will

be different with probability 1. Furthermore, note that pHbHq|β10y “ |β01y and pHbHq|β11y “ ´|β11y.
For a given Q “ tQ1, . . . , Qqu and B “ B1 . . . Bn, we have for all i:
• If fQi

“ 1 and Bi “ 1, then ri ‰ r1
i with probability 1. (Because in this case the i-th qubit

pair of XY after applying UQ to X,Y is |βfQi
eQi

y P t|β10y, |β11yu, and after additionally applying
pHB b Inq to X,Y , it the i-th qubit pair is pH bHq|βfQi

eQi
y P t|β01y,´|β11yu. And ri, r

1
i are the

outcomes of measuring this qubit pair in the computational basis. Hence ri ‰ r1
i.)

• If eQi
“ 1 and Bi “ 0, then ri ‰ r1

i with probability 1. (Because in this case the i-th qubit
pair of XY after applying UQ to X,Y is |βfQi

eQi
y P t|β01y, |β11yu, and after additionally applying

pHB b Inq to X,Y , it the i-th qubit pair is pH0 bH0q|βfQi
eQi

y P t|β01y, |β11yu. And ri, r1
i are the

outcomes of measuring this qubit pair in the computational basis. Hence ri ‰ r1
i.)

In the notation of Lemma 3, the probability that there is no i such that Q,B satisfying one of these
cases is written P pxq, where x0 :“ e and x1 :“ f . Thus

Prrok “ 1 ^ isEPR “ 0s ď Prrok “ 1s ď P pxq p˚qď 3
?
q p1 ´ q

2pq`nq qt`1 “: γ

if ρ “ |ĂfeyxĂfe| with ωpfq ą t or ωpeq ą t. (17)

Here p˚q uses Lemma 3.
Now we consider the case that ρ “ |ĂfeyxĂfe| with ωpfq, ωpeq ď t. In this case, after applying pHB b

InqUQ to both X and Y and after measuring the first q qubits in X and Y (measurement MR), the
state of the last n qubit pairs of XY is |Ąf 1e1y where f 1 is a subsequence of f and e1 a subsequence of e.
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In particular ωpe1q ď ωpeq ď t and ωpf 1q ď ωpfq ď t. Thus the measurement PEPR
t will succeed with

probability 1, hence

Prrok “ 1 ^ isEPR “ 0s ď PrrisEPR “ 0s “ 0 ď γ if ρ “ |ĂfeyxĂfe| with ωpfq, ωpeq ď t.

Together with (17), we have

Prrok “ 1 ^ isEPR “ 0s ď γ if ρ “ |ĂfeyxĂfe| for some f, e P t0, 1uq`n (18)

Now we consider the case that ρ “ ř
i αi|ĄeifiyxĄeifi| for some fi, ei P t0, 1uq`n and αi ě 0,

ř
αi “ 1.

Then

Prrok “ 1 ^ isEPR “ 0s
“

ÿ
αi Prrok “ 1 ^ isEPR “ 0 : using ρ :“ |ĄeifiyxĄeifi|s

(18)ď
ÿ
αiγ “ γ

if ρ “
ÿ

i

αi|ĄeifiyxĄeifi| (19)

Now consider the general case of an arbitrary density operator ρ. Let Peq be the projector that
measures whether the first q qubit pairs have the same value in the computational basis. I.e., Peq :“ř

x,y1,y2
|xy1yxxy1| b |xy2yxxy2| with x P t0, 1uq, y1, y2 P t0, 1un.

Note that Peq is a tensor product of projectors P 1
eq :“ |00yx00|` |11yx11| and identities. Furthermore,

one can check that P 1
eq “ |β00yxβ00| ` |β10yxβ10|. Thus Peq is diagonal in the Bell basis.

And PEPR
t is diagonal in the Bell basis by definition.

Let MBell be a complete measurement in the Bell basis. I.e., MBell :“ t|ĂfeyxĂfe|uf,ePt0,1uq`n . Since
MBell is diagonal in the Bell basis, it commutes with Peq and PEPR

t .
Furthermore, since UQ b UQ only reorders the qubit pairs, MBell and pUQ b UQq commute if we

discard the result of MBell . (Otherwise, the outcome of MBell would have to be additionally permuted.)
And since pH b Hq|βijy “ ˘|βjiy, we have that pHB b In b HB b Inq commutes with MBell if we

discard the outcome of MBell . (Otherwise, the bit pairs with Bi “ 1 in the outcome of MBell would need
to be swapped.)

Thus MBell commutes with applying pHB b InqUQ to both X and Y .
Let ρ˚ be the state we get when measuring ρ using MBell and discarding the outcome. Then ρ˚ “ř

i αi|ĄfieiyxĄfiei| for some αi, fi, ei with αi ě 0,
ř
αi “ 1.

We then have

Prrok “ 1 ^ isEPR “ 0 : B
$Ð t0, 1uq, Q $Ð rq ` nsq, apply pHB b InqUQ to X,Y ,

r, r1 Ð measure X,Y with MR, ok :“ pr “ r1q, isEPR Ð measure X 1Y 1 with PEPR
t s

p˚q“ Prrok “ 1 ^ isEPR “ 0 : B
$Ð t0, 1uq, Q $Ð rq ` nsq, apply pHB b InqUQ to X,Y ,

ok Ð measure XY with Peq , isEPR Ð measure X 1Y 1 with PEPR
t s

“ Prrok “ 1 ^ isEPR “ 0 : B
$Ð t0, 1uq, Q $Ð rq ` nsq, apply pHB b InqUQ to X,Y ,

ok Ð measure XY with Peq , isEPR Ð measure X 1Y 1 with PEPR
t ,measure XY with MBell s

p˚˚q“ Prrok “ 1 ^ isEPR “ 0 : measure XY with MBell , B
$Ð t0, 1uq, Q $Ð rq ` nsq, apply pHB b InqUQ to X,Y ,

ok Ð measure XY with Peq , isEPR Ð measure X 1Y 1 with PEPR
t ,measure XY with MBells

“ Prrok “ 1 ^ isEPR “ 0 : use ρ˚ instead of ρ,B $Ð t0, 1uq, Q $Ð rq ` nsq, apply pHB b InqUQ to X,Y ,

ok Ð measure XY with Peq , isEPR Ð measure X 1Y 1 with PEPR
t s

p̊ ˚̊ qď γ.

Here p˚q uses that Peq and MR only operate on the first q qubit pairs, and thus do not touch X 1Y 1.
And p˚˚q uses that MBell commutes with applying pHB b InqUQ, with PEPR

t , and with Peq as
discussed above.

And p˚ ˚ ˚q uses Equation 19 and the fact that ρ˚ is of the form
ř

i αi|ĄeifiyxĄeifi|.
Since the left hand side of the preceding calculation is the probability Prrok “ 1 ^ isEPR “ 0s from

the statement of the lemma, the lemma follows. l

38



Lemma 30 (ok implies isEPR in Game 9) Prrok “ 1 and isEPR “ 0 : Game 9s ď 3
?
q p1 ´

q
2pq`nq qt`1.

Proof. To show this claim, let ρ denote the state in Game 9 right before choosing B,Q (step (f)). Then
the game in Lemma 29 is identical to Game 9. Thus by Lemma 29, we have

Prrok “ 1 ^ isEPR “ 0 : Game 9s ď 3
?
q

´
1 ´ q

2pq ` nq
¯t`1

. l

We can now finally prove the security of RTREhid :

Proof of Theorem 3. Game 1 describes the game played by the adversary according to Definition 5. We
thus need to show that

µ :“ ∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 1p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 1p1qs∣∣

is negligible. Note that |C1{C2| “ 2k1´k2 . By Lemma 20, we get

µ “ 2k1´k2
∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 2p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 2p1qs∣∣.
By Lemmas 21, 22, and 23 it follows that

µ “ 2k1´k2
∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 5p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 5p1qs∣∣.
By Lemma 24 we have

µ ď 2k1´k2
?
ε with ε :“ Prrok “ 1 ^ isEPR “ 0 : Game 6s.

By Lemma 25 we have for some µ1 P p2´2pk1´k2q ¨ negligibleq:
ε ď Prrok “ 1 ^ isEPR “ 0 : Game 7s ` µ1.

By Lemmas 26 and 28,
ε ď Prrok “ 1 ^ isEPR “ 0 : Game 9s ` µ1

and by Lemma 30, we have

ε ď 3
?
q

´
1 ´ q

2pq ` nq
¯t`1

` µ1

where n, t, q are parameters of the protocol. So altogether,

µ ď
gffe22pk1´k2q ¨ 3?

q p1 ´ q
2pq`nq qt`1

looooooooooooooooooomooooooooooooooooooon
“:µ2

`22pk1´k2qµ1. (20)

We have that 22pk1´k2qµ1 is negligible by choice of µ1.
To show that µ2 is negligible, let ℓ :“ k1 ´ k2 and observe that

µ2{p3?
qq ď 22ℓ p1 ´ q

2pq`nq qt “ 22ℓ
´

p1 ´ q
2pq`nq q2pq`nq{q

looooooooooomooooooooooon
ď1{e p˚q

¯tq{p2pq`nqq

ď 22ℓe´tq{p2pq`nqq “ e´ 1
2

ptq{pq`nq´4ℓ ln 2q

Here p˚q uses the fact that p1 ´ 1{xqx is increasing for x ě 1 and tends to 1{e. Since tq{pq ` nq ´
4ℓ ln 2 is superlogarithmic (condition in the statement of Theorem 3), µ2{p3?

qq is negligible. Since q is
polynomially bounded, µ2 is negligible.

Thus both summands below the square root in (20) are negligible, hence µ is negligible. Thus
RTREhid is pT ´ δhidT q-revocably hiding.

Note that (20) also tells us the concrete security of RTREhid . Namely, when µ1 is the advantage of
an adversary against TRE0 (that runs only a small additive amount longer than the original adversary
pA0, A1, A2q; it consists of the code in Game 7), then the right hand side of (20) bounds the advantage
of pA0, A1, A2q against RTREhid . l
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Hiding. Note that revocable hiding does not immediately imply hiding. However, due to the one-time-
pad p used in RTREhid , it is easy to show that RTREhid is hiding:

Theorem 9 (RTREhid is hiding) The protocol RTREhid from Definition 9 is T -hiding.

The proof is completely analogous to that of Theorem 8.

E Full proofs: one-way to hiding

Lemma 31 (One-way to hiding) Let H : t0, 1un Ñ t0, 1um be a random oracle. Consider an oracle
algorithm A that makes at most q queries to H. Let B be an oracle algorithm that on input x does the

following: pick i
$Ð t1, . . . , qu and y

$Ð t0, 1um, run AHpx, yq until (just before) the i-th query, measure
the argument of the query in the computational basis, output the measurement outcome. (When A makes
less than i queries, B outputs K R t0, 1un.)

Let

P 1
A :“ Prrb1 “ 1 : H

$Ð pt0, 1un Ñ t0, 1umq, x Ð t0, 1un, b1 Ð AHpx,Hpxqqs
P 2
A :“ Prrb1 “ 1 : H

$Ð pt0, 1un Ñ t0, 1umq, x Ð t0, 1un, y $Ð t0, 1um, b1 Ð AHpx, yqs
PB :“ Prrx “ x1 : H

$Ð pt0, 1un Ñ t0, 1umq, x Ð t0, 1un, x1 Ð BHpxqs
Then |P 1

A ´ P 2
A| ď 2q

?
PB .

Proof. We assume that the state of A is composed of three quantum systems A,K, V . Then an execution
of A leads to the final state pUOHqq|Ψxyy where |Ψxyy is an input dependent initial state, OH : |a, k, vy ÞÑ
|a, k, v ‘ Hpkqy is an oracle query, and U is A’s state transition operation. A’s output is produced by
applying a measurement M to A’s final state.

We define |Ψi
Hxyy :“ pUOHqi|Ψxyy. Then

P 2
A “

ÿ

Hxy

αPrrM outputs 1 on state |Ψq
Hxyyslooooooooooooooooooooomooooooooooooooooooooon

“:bHxy

. (21)

where α :“ 2´m2n´n´m (i.e., the probability of each particular triple Hxy).
Furthermore, we see that

P 1
A “ Prrb1 “ 1 : H

$Ð pt0, 1un Ñ t0, 1umq, x $Ð t0, 1un, y $Ð t0, 1um, b1 Ð AHxy px, yqs
where Hxy denotes the function with Hxypxq “ y and Hxy “ H everywhere else. Thus

P 1
A “

ÿ

Hxy

αbHxyxy. (22)

And in our notation, we can describe B as follows: BHpxq picks i $Ð t1, . . . , qu and y $Ð Y , measures
the quantum system K of the state |Ψi

Hxyy, and outputs the result. Thus

PB “
ÿ

Hxyi

α
q
‖Qx|Ψ

i
Hxyy‖2 (23)

where Qx is the orthogonal projector projecting K onto |xy. (I.e., ‖Qx|Ψ
i
Hxyy‖2 is the probability of

measuring x in K in |Ψi
Hxyy.)

For fixed H,x, y, let Di :“ TDp|Ψi
Hxyy, |Ψi

Hxyxy
yq. Since the trace distance bounds how well a

measurement can distinguish between two states, |bHxy ´bHxyxy| ď Dq. And D0 “ TDp|Ψxyy, |Ψxyyq “ 0

and

Di “ TDpUOH |Ψi´1
Hxyy, UOHxy

|Ψi´1
Hxyxy

yq
ď TDpUOH |Ψi´1

Hxyy, UOHxy
|Ψi´1

Hxyyq ` TDpUOHxy
|Ψi´1

Hxyy, UOHxy
|Ψi´1

Hxyxy
yq

“ TDpOH |Ψi´1
Hxyy, OHxy

|Ψi´1
Hxyyq `Di`1.
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Hence

|bHxy ´ bHxyxy| ď Dq ď
qÿ

i“1

TDpOH |Ψi´1
Hxyy, OHxy

|Ψi´1
Hxyyq. (24)

Let Vy|a, k, vy :“ |a, k, v ‘ yy. Then OHxy
“ OHp1 ´Qxq ` VyQx. (This can be verified by checking

the equation for all basis states |a, k, vy.) From this we get

TDpOH |Ψi´1
Hxyy, OHxy

|Ψi´1
Hxyyq

“ TDpOHp1 ´Qxq|Ψi´1
Hxyy `OHQx|Ψ

i´1
Hxyy,

OHp1 ´Qxq|Ψi´1
Hxyy ` VyQx|Ψ

i´1
Hxyyq

p˚qď 2‖OHQx|Ψ
i´1
Hxyy‖ “ 2‖Qx|Ψ

i´1
Hxyy‖. (25)

Here p˚q uses Lemma 7 and the fact that the left summands in the second trace distance (which are in
the image of p1 ´ Qxq) are orthogonal to the right summands (which are in the image of Qx).

Thus

|P 1
A ´ P 2

A|
(21,22)ď

ÿ

Hxy

α |bHxy ´ bHxyxy|
(24)ď

ÿ

Hxyi

αTDpOH |Ψi´1
Hxyy, OHxy

|Ψi´1
Hxyyq

(25)ď
ÿ

Hxyi

α 2‖Qx|Ψ
i´1
Hxyy‖ p˚qď 2

ÿ

i

d ÿ

Hxy

α ‖Qx|Ψ
i´1
Hxyy‖2 (23)“ 2q ¨

a
PB.

Here p˚q uses Jensen’s inequality. l

Theorem 10 (Hiding timed-release encryptions) Let H : t0, 1un Ñ t0, 1um be a random oracle.
Let TRE be a (revocable or non-revocable) timed-release encryption with message space t0, 1un (not
using H).

Let TRE1 be the following timed-release encryption (with message space t0, 1um):

• Encryption: TRE1pmq runs k
$Ð t0, 1un, V 1 Ð TREpkq, and then returns V :“ pV 1,m‘Hpkqq.

• Decryption: Given V “ pV 1, cq, run the decryption of TRE on V 1, resulting in k. Then return
c‘Hpkq.

• Revocation (if TRE is revocable): Identical to the revocation protocol of TRE.
The we have

(i) If TRE is T -oneway and T -revocably one-way then TRE1 is T -revocably hiding.
(ii) If TRE is T -oneway then TRE1 is T -hiding.
(iii) If TRE is T -oneway without offline-queries and T -revocably one-way without offline-queries then

TRE1 is T -revocably hiding without offline-queries.
(iv) If TRE is T -oneway without offline-queries then TRE1 is T -hiding without offline-queries.

Both statements hold both for the parallel and the sequential oracle-query timing model.21

Proof. We first show (i): if TRE is T -one-way and T -revocably one-way, then TRE1 is T -revocably
hiding.

Fix an adversary pA0, A1, A2q against the T -revocably hiding property of TRE1. Since A0, A1, A2

all run in sequential-polynomial-time, there are polynomially bounded q0, q1, q2 such that qi bounds the
number of oracle calls performed by Ai. Without loss of generality, we assume that Ai makes exactly qi
queries. We abbreviate the set of functions pt0, 1un Ñ t0, 1umq as Fun. By definition of revocably hiding
(Definition 5) and of TRE1, we have to show that µ is negligible where

µ :“ ∣

∣Prrb1 “ 1 ^ ok “ 1 : Game 1p0qs ´ Prrb1 “ 1 ^ ok “ 1 : Game 1p1qs∣∣

with the following game:

Game 1 (Original game)
(a) In this game, b P t0, 1u is a parameter of the game.

(b) H
$Ð Fun.

(c) k
$Ð t0, 1un.

(d) pm0,m1q Ð AH
0 pq.

21For other timing models, the reduction described in the proof may incur a overhead, leading to a smaller T for TRE
1.
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(e) V 1 Ð TREpkq.
(f) m :“ mb ‘Hpkq.
(g) Run the revocation protocol of TRE, with AH

1 pV 1,mq as recipient. Let ok be the honest sender’s
output.

(h) If ok “ 1, b1 Ð AH
2 pq, else b1 :“ 0.

Note that this game somewhat differs from that from Definition 5: if ok “ 0, we do not run A2. However,
this does not change the probability that b1 “ 1 ^ ok “ 1.

Let A be the algorithm that on input pb, k, hq and with oracle access to H performs steps (d)-(h)
from Game 1(b) but using h instead of Hpkq in (f). A then outputs 1 iff b1 “ 1 ^ ok “ 1.

Let

εb :“
∣

∣Prrb2 “ 1 : H
$Ð Fun, k

$Ð t0, 1un, b2 Ð Apb, k,Hpkqqs
´ Prrb2 “ 1 : H

$Ð Fun, k
$Ð t0, 1un, y $Ð t0, 1um, b2 Ð Apb, k, yqs∣∣.

We then have

Prrb1 “ 1 ^ ok “ 1 : Game 1p0qs
p˚q“ Prrb2 “ 1 : H

$Ð Fun, k
$Ð t0, 1un, b2 Ð Ap0, k,Hpkqqs

ε0« Prrb2 “ 1 : H
$Ð Fun, k

$Ð t0, 1un, h $Ð t0, 1um, b2 Ð Ap0, k, hqs
p˚˚q“ Prrb2 “ 1 : H

$Ð Fun, k
$Ð t0, 1un, h $Ð t0, 1um, b2 Ð Ap1, k, hqs

ε1« Prrb2 “ 1 : H
$Ð Fun, k

$Ð t0, 1un, b2 Ð Ap1, k,Hpkqqs
p˚q“ Prrb1 “ 1 ^ ok “ 1 : Game 1p1qs

where
ε0« denotes a difference of ε0 (

ε1« analogous). Here p˚q is by definition of A. And p˚˚q uses that A
uses b only in the computation “m :“ mb ‘ h”, so for uniform h, A’s output is independent of b.

Thus µ ď ε0 ` ε1.
We will now show that εb is negligible for b P t0, 1u. This then concludes the proof. For the remainder

of the proof, fix some b P t0, 1u.
Let B be the oracle algorithm that on input k picks i $Ð t1, . . . , q0 ` q1 ` q2u and h

$Ð t0, 1um, and
then runs AHpb, k, hq until the i-th query and measure the argument k1 of that query (cf. Lemma 31). B
then returns k1 (or K R t0, 1un if there was no i-th query).

Then by Lemma 31,

εb ď 2pq0 ` q1 ` q2q
b
Prrk “ k1 : H

$Ð Fun, k
$Ð t0, 1un, k1 Ð BHpkqs (26)

Consider the following games:

Game 2 (Measure in phase 0)

(a) H
$Ð Fun.

(b) k
$Ð t0, 1un.

(c) i
$Ð t1, . . . , q0u.

(d) h
$Ð t0, 1um.

(e) Run AH
0 pq until the i-th query and measure the argument k1 to that query.

Game 3 (Measure in phase 1)

(a) H
$Ð Fun.

(b) k
$Ð t0, 1un.

(c) i
$Ð t1, . . . , q1u.

(d) h
$Ð t0, 1um.

(e) pm0,m1q Ð AH
0 pq.

(f) V 1 Ð TREpkq.
(g) m :“ mb ‘ h.
(h) Run the revocation protocol with AH

1 pV 1,mq until the i-th query and measure the argument k1 to that
query.

Game 4 (Measure in phase 2)
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(a) H
$Ð Fun.

(b) k
$Ð t0, 1un.

(c) i
$Ð t1, . . . , q2u.

(d) h
$Ð t0, 1um.

(e) pm0,m1q Ð AH
0 pq.

(f) V 1 Ð TREpkq.
(g) m :“ mb ‘ h.
(h) Run the revocation protocol with AH

1 pV 1,mq, outcome ok .
(i) If ok “ 1, run AH

2 pq until the i-th query and measure the argument k1 to that query. Otherwise set
k1 :“ K.

We have that p0 :“ Prrk “ k1 : Game 2s is negligible because k is never used. We have that
p1 :“ Prrk “ k1 : Game 3s is negligible because TRE is T -one-way and AH

1 runs in time T and no oracle
queries are performed in the game excepts those by AH

1 . And we have that Prrk “ k1 ^ok “ 1 : Game 4s
is negligible because TRE is T -revocably one-way and AH

1 runs in time T . Since k1 “ K ‰ k when
ok ‰ 1, we have p2 :“ Prrk “ k1 : Game 4s “ Prrk “ k1 ^ ok “ 1 : Game 4s.

Furthermore, by construction of B, we have:

Prrk “ k1 : H
$Ð Fun, k Ð t0, 1un, k1 Ð BHpxqs “

ÿ

i“0,1,2

qi

q0 ` q1 ` q2
pi

Thus εb
(26)ď 2pq0`q1`q2q

bř
i

qi
q0`q1`q2

pi Since p1, p2, p3 are negligible and q0, q1, q2 polynomially bounded,

εb is negligible, and hence µ ď ε0 ` ε1 is negligible, too.

To prove (ii), we can use a very similar proof. We only list the changes that need to be made: In
Game 1, the steps (g)–(h) are replaced by “b1 Ð AH

1 pV 1,mq”. Any occurrence of “b1 “ 1 ^ ok “ 1” is
replaced by “b1 “ 1”. In Game 3, (h) is replaced by “Run AH

1 pq until the i-th query and measure the
argument k1 to that query.” Game 4 is removed. All sums involving q0, q1, q2 or p0, p1, p2 loose the terms
with q2 or p2.

Parts (iii) and (iv) of the theorem are proven like parts (i) and (ii), except that we have q0 “ 0. l

F Full proofs: precomputation

Lemma 32 (Removing offline oracle queries) Let H : t0, 1uℓ`n Ñ t0, 1um and G : t0, 1un Ñ
t0, 1um be random oracles. Let A,B be oracle algorithms (which can share state), and assume that
A makes at most q oracle queries to H, and that B makes an arbitrary number of queries to H.

Let B̃paq be the algorithm that results from Bpaq by the following change: Whenever B makes an
oracle query Hpã}xq, B̃ instead makes an oracle query Hpã}xq if ã ‰ a and Gpxq if ã “ a.22

Consider the following two games:

Game A: a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, AHpq, b1 Ð BHpaq.

Game B: a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,

AHpq, b1 Ð B̃G,Hpaq.
Then

∣

∣Prrb1 “ 1 : Game As ´ Prrb1 “ 1 : Game Bs∣∣ ď q2´ℓ{2`1.

Proof of Lemma 32. We describe a sequence of games, the first being identical to Game A from
Lemma 32, and the last being identical to Game B from Lemma 32.

Game 1 (Game A)

a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, AHpq, b1 Ð BHpaq.

In the following, for an oracle H : t0, 1uℓ`n Ñ t0, 1um and an oracle G : t0, 1un Ñ t0, 1um and a
value a P t0, 1uℓ, let H ≀a G : t0, 1uℓ`n Ñ t0, 1um denote the oracle with pH ≀a Gqpã}xq :“ Hpã}xq for
ã ‰ a and pH ≀a Gqpa}xq :“ Gpxq.

22Formally, we replace the unitary operation |k, vy ÞÑ |k, v‘Hpkqy by the unitary |pã}xq, vy ÞÑ |pã}xq, v‘Hpã}xqy (ã ‰ a),
|pa}xq, vy ÞÑ |pa}xq, v ‘ Gpxqy.
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Game 2 (Changing A’s oracle)

a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, G1

$Ð pt0, 1un Ñ t0, 1umq, AH≀aG1pq, b1 Ð BHpaq.

We claim that
∣

∣Prrb1 “ 1 : Game 1s ´ Prrb1 “ 1 : Game 2s∣∣ ď q2´ℓ{2`1 (27)

To show (27) it is sufficient to show that for fixed H,G1, we have that TDpρ1, ρ2q ď q2´ℓ{2`1 where
ρ1 is the state after executing a $Ð t0, 1uℓ, AHpq and ρ2 is the state after executing a $Ð t0, 1uℓ, AH≀aG1pq.
(ρ1, ρ2 describe states of a system with two registers, one for the value of a, and one for the state of A.)

Without loss of generality we can assume that A only performs unitary operations. Then the evolution
of A can be described by a unitary operation U that operates on a tripartite system S,K, V where S
contains A’s internal state, K is the input register for the random oracle, and V is the output register.
The state of SKV before the first oracle query we call |Ψ0y. Then the final state of AHpq is |Ψqy :“
pUOHqq|Ψ0y where OH : |k, vy ÞÑ OH : |k, v ‘Hpvqy. Analogously, we get that the final state of AH≀aG1

is |Ψa
qy :“ pUOH≀aG1

qq|Ψ0y with the same |Ψ0y and the same U . With this notation,

ρ1 “
ÿ

aPt0,1uℓ

2´ℓ|ayxa| b |ΨqyxΨq| and ρ2 “
ÿ

aPt0,1uℓ

2´ℓ|ayxa| b |Ψa
qyxΨa

q |.

In order to bound TDpρ1, ρ2q, we first bound Di where

Di :“
ÿ

aPt0,1uℓ

‖|Ψiy ´ |Ψa
i y‖2 and |Ψiy :“ pUOHqi|Ψ0y and |Ψa

i y :“ pUOH≀aG1
qi|Ψ0y.

We claim that Di ď 4i2 and show this by induction on i. For i “ 0, we have that Di “ ř
a‖|Ψ0y ´

|Ψ0y‖2 “ 0. We now show Di`1 ď 4pi` 1q2 assuming Di ď 4i2.
Let Pa|s, k, vy :“ |s, k, vy if k “ pa}¨q and Pa|s, k, vy :“ 0 otherwise. Note that OH “ OH≀aG1

`
OHPa ´OG1

Pa where OG1
|pã}xq, vy :“ |pã}xq, v ‘G1pxqy. Then

Di`1 “
ÿ

a

‖|Ψa
i`1y ´ |Ψi`1y‖2 “

ÿ

a

‖UOH≀aG1
|Ψa

i y ´ UOH |Ψiy‖2 “
ÿ

a

‖OH≀aG1
|Ψa

i y ´OH |Ψiy‖2

“
ÿ

a

‖pOH≀aG1
|Ψa

i y ´OH≀aG1
|Ψiyq ` pOG1

Pa|Ψiy ´OHPa|Ψiyq‖2
(using OH “ OH≀aG1

`OHPa ´OG1
Pa)

ď
ÿ

a

d2a ` 2data ` t2a

where da :“ ‖Ob
H |Ψa

i y ´Ob
H |Ψiy‖ and ta :“ ‖OG1

Pa|Ψiy ´OHPa|Ψiy‖.
Since OH≀aG1

is unitary, we have da “ ‖|Ψa
i y ´ |Ψiy‖ and thus Di “ ř

a d
2
a.

Furthermore, ta :“ ‖pOG1
´OHqPa|Ψiy‖ ď ~OG1

´OH~ ¨‖Pa|Ψiy‖ ď `~OG1
~ ` ~OH~˘ ¨‖Pa|Ψiy‖ “

2‖Pa|Ψiy‖. (Remember that ‖x`y‖2 ď ‖x‖2`2‖x‖ ‖y‖`‖y‖2.) Hence
ř

a t
2
a ď 4

ř
a‖Pa|Ψiy‖2 ď 4 since

the projectors Pa are orthogonal. The Cauchy-Schwarz-Inequality implies
ř

a data ď ař
a d

2
a ¨ař

a t
2
a ď?

Di ¨ 2.
Thus

Di`1 ď
ÿ

a

d2a ` 2data ` t2a ď Di ` 4
a
Di ` 4 ď 4i2 ` 8i` 4 “ 4pi` 1q2.

This finishes the proof by induction that Di ď 4i2.23

We are now ready to bound TDpρ1, ρ2q. Let Fa :“ |xΨq|Ψa
qy| denote the fidelity between |Ψqy and

|Ψa
qy. By [NC10, Section 9.2.3, (9.97)], we have TDp|Ψqy, |Ψa

qyq “ a
1 ´ F 2

a . And

∆a :“ ‖|Ψqy ´ |Ψa
qy‖2

“ xΨq|Ψqy ´ xΨq|Ψa
qy ´ xΨa

q |Ψqy ` xΨa
q |Ψa

qy
“ 1 ´ 2ℜpxΨq|Ψa

qyq ` 1

ě 1 ´ 2|xΨq|Ψa
qy| ` 1

“ 2p1 ´ Faq
23This calculation of the bound for Di follows roughly the corresponding calculation from [NC10, Section 6.6].
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where ℜpxq denotes the real part of x. Hence Fa ě 1 ´ 1
2
∆a and thus

TDpρ1, ρ2q “ TD
´ÿ

a

2´ℓ|ayxa| b |ΨqyxΨq|,
ÿ

a

2´ℓ|ayxa| b |Ψa
qyxΨa

q |
¯

“
ÿ

a

2´ℓTDp|Ψqy, |Ψa
qyq “

ÿ

a

2´ℓ
a
1 ´ F 2

a

ď
ÿ

a

2´ℓ
b
1 ´ p1 ´ 1

2
∆aq2 “

ÿ

a

2´ℓ
b
∆a ´ 1

4
∆2

a

ď
ÿ

a

2´ℓ
a
∆a

p˚qď
cÿ

a

2´ℓ∆a

“
b
2´ℓDq ď

a
2´ℓ4q2 “ q2´ℓ{2`1.

Here p˚q uses Jensen’s inequality.
As discussed above, TDpρ1, ρ2q ď q2´ℓ{2`1 proves (27).

Game 3 (Decomposing H)

a
$Ð t0, 1uℓ, H1

$Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq, H :“ H1 ≀a G,

G1
$Ð pt0, 1un Ñ t0, 1umq, AH≀aG1pq, b1 Ð BHpaq.

Since H1 ≀a G is a uniformly distributed function for uniformly distributed H1, G (and since H1, G

are not used except in the construction of H), we have Prrb1 “ 1 : Game 2s “ Prrb1 “ 1 : Game 3s.
Game 4 (Substituting equal oracles)

a
$Ð t0, 1uℓ, H1

$Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq, H :“ H1 ≀a G,

G1
$Ð pt0, 1un Ñ t0, 1umq, AH1≀aG1pq, b1 Ð BpH1≀aG1q≀aGpaq.

The oracle supplied to A in the two games is the same since H ≀a G1 “ pH1 ≀a Gq ≀a G1 “ H1 ≀a G1 by
definition of ≀a. The oracle supplied to B is the same since H “ H1 ≀a G “ pH1 ≀a G1q ≀a G. Furthermore,
we can drop the definition of H from Game 4 since H is not used any more. Hence Prrb1 “ 1 : Game 3s “
Prrb1 “ 1 : Game 4s.
Game 5 (Introducing B̃)

a
$Ð t0, 1uℓ, H1

$Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,
G1

$Ð pt0, 1un Ñ t0, 1umq, H :“ H1 ≀a G1, A
Hpq, b1 Ð B̃H,Gpaq.

By definition of B̃, we have that B̃H,G “ BH≀aG for any oracles H,G. Thus (and using that H “
H1 ≀a G1) we have Prrb1 “ 1 : Game 4s “ Prrb1 “ 1 : Game 5s.
Game 6 (Game B)

a
$Ð t0, 1uℓ, H1

$Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,
G1

$Ð pt0, 1un Ñ t0, 1umq, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, AHpq, b1 Ð B̃H,Gpaq.
Since H1 ≀a G1 is uniformly distributed for uniform H1, G1 (and since H1, G1 are not used except in

the construction of H), we can replace H :“ H1 ≀a G1 by a uniformly chosen H and have Prrb1 “ 1 :

Game 5s “ Prrb1 “ 1 : Game 6s.
Summarizing, we have that Prrb1 “ 1 : Game 2s “ Prrb1 “ 1 : Game 6s. Furthermore Game 1 is

identical to Game A from Lemma 32 and Game 6 is identical to Game B from Lemma 32. Hence (27)
implies that

∣

∣Prrb1 “ 1 : Game As ´ Prrb1 “ 1 : Game Bs∣∣ ď q2´ℓ{2`1. l

We can use Lemma 32 to transform a timed-release encryption that is (revocably) hiding without
offline-queries into one that is (revocably) hiding:

Theorem 11 (timed-release encryptions with offline-queries) Let ℓ, n,m be integers (dependent
on the security parameter), assume that ℓ is superlogarithmic, and let H : t0, 1uℓ`n Ñ t0, 1um be a
random oracle. Let TRE be a revocable timed-release encryption in the random oracle model using an
oracle G : t0, 1un Ñ t0, 1um.

Let TRE1 be the following timed-release encryption:
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• Encryption: TRE1pmq picks a
$Ð t0, 1uℓ. Then TRE1pmq runs V Ð TREpmq, except that any

oracle query Gpxq by TREpmq is replaced by an oracle query Hpa}xq. TRE1 returns pa, V q.
• Decryption: Given pa, V q, run the decryption of TRE on V , except that any oracle query Gpxq

is replaced by an oracle query Hpa}xq.
• Revocation: Run the revocation protocol of TRE, except that any oracle query Gpxq is replaced

by an oracle query Hpa}xq.
If TRE is T -revocably hiding without offline-queries then TRE1 is T -revocably hiding.
If TRE is T -hiding without offline-queries then TRE1 is T -hiding.
Both statements hold both for the parallel and the sequential oracle-query timing model.24

Proof. We show that if TRE is T -hiding without offline-queries then TRE1 is T -hiding. The T -revocably
hiding property is proven analogously.

By Definition 2, we need to show that |p0 ´ p1| is negligible where

pb :“ Prrb1 “ 1 : H
$Ð pt0, 1uℓ`n Ñ t0, 1umq, pm0,m1q Ð AH

0 pq, pa, V q Ð pTRE1qHpmbq, b1 Ð AH
1 pa, V qs

and A0 is sequential-polynomial-time and A1 is sequential-polynomial-time and T -time.
Fix b P t0, 1u. Let BHpaq run V Ð TREH

a pmbq, b1 Ð AH
1 pa, V q where TREH

a is like TREG, except
that all Gpxq queries are replaced by Hpa}xq queries. (Note that with this notation pTRE1qHpmq runs
a

$Ð t0, 1uℓ, V Ð TREH
a pmq. Note also that A and B share state because B accesses m0,m1.)

Let B̃G,Hpaq run V Ð TREGpmbq, b1 Ð Ã
G,H
1 pa, V q where Ã1 is the result of applying the transfor-

mation described in Lemma 32 (that transforms B into B̃ there) to A1. Note that our B̃ results from B

when applying the transformation from Lemma 32.
(In the proof for the T -revocably hiding property we let BH and B̃G,H additionally run the revocation

protocol and AH
2 {ÃG,H

2 .)
Let A˚

0 pV q run H
$Ð pt0, 1uℓ`n Ñ t0, 1umq, pm0,m1q Ð AH

0 pa, V q. Let pA˚
1 qGpV q run a

$Ð t0, 1uℓ,
b1 Ð Ã

G,H
1 pa, V q. (Where A˚

1 uses the H picked by A˚
0 .)

(In the proof for the T -revocably hiding property we additionally construct A˚
2 analogously to A˚

1 .)
Note that pA˚

0 , A
˚
1 q described in this way is not sequential-polynomial-time any more because it picks

an exponentially large function H . However, [Zha12] shows that pA˚
0 , A

˚
1 q can be simulated in sequential-

polynomial-time (by replacing H by a 2q1-wise independent function where q1 is the number of queries
of pÃ0, Ã1q). The construction from [Zha12] does not increase the number of G-queries, hence A˚

1 is still
T -time (this holds both for the parallel and the sequential oracle-query timing model).

Let q be an upper bound on the number of oracle queries performed by A0. We can choose q to be
polynomially bounded since A0 is sequential-polynomial-time.

By p « p1 we mean that |p´ p1| is negligible.
We have then

pb “ Prrb1 “ 1 : a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, pm0,m1q Ð AH

0 pq, b1 Ð BHpaqs
p˚q« Prrb1 “ 1 : a

$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,
pm0,m1q Ð AH

0 pq, b1 Ð B̃G,Hpaqs
“ Prrb1 “ 1 : a

$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,
pm0,m1q Ð AH

0 pq, V Ð TREGpmbq, b1 Ð Ã
G,H
1 pa, V qs

“ Prrb1 “ 1 : a
$Ð t0, 1uℓ, H $Ð pt0, 1uℓ`n Ñ t0, 1umq, G $Ð pt0, 1un Ñ t0, 1umq,
pm0,m1q Ð A˚

0 pq, V Ð TREGpmbq, b1 Ð pA˚
1 qGpV qs “: p˚

b

Here p˚q uses Lemma 32 and the fact that q2´ℓ{2´1 is negligible.
Notice that p˚

b is the game from Definition 2 for the timed-release encryption TRE and adversary
pA˚

0 , A
˚
1 q. Since A˚

0 is sequential-polynomial-time and does not access G and A˚
1 is sequential-polynomial-

time and T -time, and since TRE is T -hiding without offline-queries, we have that
∣

∣p˚
0 ´ p˚

1

∣

∣ is negligible.
Since p˚

b « pb for any b P t0, 1u, it follows that
∣

∣p0 ´ p1
∣

∣. Thus TRE1 is T -hiding. l

24For other timing models, the reduction described in the proof may incur a overhead, leading to a smaller T .
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G Full proofs: iterated hashing

Definition 11 (Iterated hashing) Let n and T be polynomially-bounded integers (depending on the
security parameter), and assume that n is superlogarithmic. Let H : t0, 1un Ñ t0, 1un denote the random
oracle.

We define a timed-release encryption TREih with message space t0, 1un in the random oracle model
as follows:

• Encryption: TREihpmq returns the timed-release encryption V :“ HT`1p0nq ‘m.
• Decryption: Given V , return HT`1p0nq ‘ V .

Note that this timed-release encryption cannot be one-way: Since TREih is not randomized, the
adversary can compute HT`1p0nq during the precomputation (i.e., before getting the timed-release en-
cryption), and then recover m quickly later. But TREih is one-way without offline-queries, so we can
later use the transformation from Appendix F to remove this restriction.

Theorem 12 (Iterated hashing is one-way without offline-queries) TREih from Definition 11
is T -one-way without offline-queries. (Assuming the parallel oracle-query timing model.)

A concrete security bound can be found at the end of the proof (page 49, (30)).

Proof. The adversary pA0, A1q against T -one-wayness without offline-queries has to output V ‘HT`1p0nq
given V within time T . (This includes A0, because we consider the case without offline-queries and thus
A0 runs in time T with respect to oracle-query timing.) To show that TREih is T -one-way without
offline-queries it is therefore sufficient to show the following: For any T -time algorithm A, AHpq outputs
HT`1p0nq with negligible probability.

We assume that the state of A is composed of three quantum systems A, K “ pK1, . . . ,Kqq, V “
pV1, . . . , Vqq. Then an execution of A leads to the final state pUOHqT´1|Ψy where |Ψy is the initial state,
OH : |a, pk1, . . . , kqq, pv1, . . . , vqqy Ñ |a, pk1, . . . , kqq, pv1 ‘Hpk1q, . . . , vq ‘Hpkqqqy is an oracle query (on
q inputs), and U is A’s state transition operation. A’s output is produced by applying a measurement
M to A’s final state.

Given a function H : t0, 1un Ñ t0, 1un, and a tuple x “ px1, . . . , xT`1q, we define Hx to be the
function resulting from H by setting Hpxi´1q :“ xi for i “ 1, . . . , s with x0 :“ 0n where s is the largest
index such that xs did not already occur (formally, the largest s such that xs ‰ xj for all 0 ď j ă s) or
s “ T ` 1 if no duplicates occur in 0, x1, . . . , xT`1.

Let |ΨH,x
i y be the result of running the adversary i steps on oracle Hx. I.e., |ΨH,x

i y “ pUOHx
qi|Ψy.

A family of states t|ΨH,xyuH,x we call i-good if for any x and x
1 with px1, . . . , xiq “ px1

1, . . . , x
1
iq we

have that |ΨH,xy “ |ΨH,x1y. I.e., a family of states is i-good if it does not depend on xi`1, . . . , xT`1.
Given two families t|ΨH,xyuH,x and t|ΦH,xyuH,x, their distance is defined asř

H,x
1
N
TDp|ΨH,xy, |ΦH,xyq. where N :“ p2nq2np2nqT`1 is the number of values H,x. Notice

that the distance satisfies the triangle inequality, and is invariant under the application of unitary
transformations UH,x (that may depend on H,x) to the states.

Claim 1 Fix 0 ď i ă j ď T ` 1. Fix a measurement M . Fix an i-good family t|ΨH,xyuH,x. Thenř
H,x

1
N
Prrmeasuring |ΨH,xy using M yields xjs “ 2´n.

We show this claim. Let “ |ΨH,xy ÞÑ xj” abbreviate “measuring |ΨH,xy using M yields xj”. Let x ‘ p

be short for px1, . . . , xj´1, xj ‘ p, xj`1, . . . , xT q. Since x ‘ p ranges over the same tuples as x, we have
for any p P t0, 1un: ÿ

H,x

1
N
Prr|ΨH,xy ÞÑ xj s “

ÿ

H,x

1
N
Prr|ΨH,x‘py ÞÑ xj ‘ ps. (28)
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and thus

ÿ

H,x

1

N
Prr|ΨH,xy ÞÑ xjs

(28)“
ÿ

p

2´n
ÿ

H,x

1

N
Prr|ΨH,x‘py ÞÑ xj ‘ ps

p˚q“
ÿ

p

2´n
ÿ

H,x

1

N
Prr|ΨH,xy ÞÑ xj ‘ ps

p˚˚q“ 2´n
ÿ

H,x

1

N
loomoon

“1

ÿ

p1

Prr|ΨH,xy ÞÑ p1s
looooooooooomooooooooooon

ď1

“ 2´n.

Here p˚q holds because for i-good families, |ΨH,x‘py “ |ΨH,xy. And p˚˚q substitutes p1 :“ xj ‘ p. The
claim follows.

Claim 2 For i ď T , if t|ΨH,xyuH,x is i-good, then tOHx
|ΨH,xyuH,x has distance at most

2´n{2`1
a
qpT ´ i` 2q from an pi ` 1q-good family of states.

To prove this claim, we first fix H : t0, 1un Ñ t0, 1un and x P pt0, 1unqT`1 and also some y P t0, 1un.
Let xy :“ px1, . . . , xi`1, y, . . . , yq.

For a set of values W Ď t0, 1un, we define a projector P˚
W on K as P˚

W :“ ř
|x1, . . . , xqyxx1, . . . , xq|

where the sum ranges over all x1, . . . , xq P t0, 1un with tx1, . . . , xqu X W ‰ ∅. That is, P˚
W measures

(in the computational basis) whether at least one Ki contains a value in W . We write short P˚
abc... for

P˚
ta,b,c,... u.

In the following calculation, let « denote trace distance at most 2‖OHx
P˚
xi`1...xT`1y

|ΨHxy‖.

OHx
|ΨHxy “ OHx

P˚
xi`1...xT`1y

|ΨHxy `OHx
p1 ´ P˚

xi`1...xT`1y
q|ΨHxy

p˚q“ OHx
P˚
xi`1...xT`1y

|ΨHxy `OHxy
p1 ´ P˚

xi`1...xT`1y
q|ΨHxy

p˚˚q« OHxy
P˚
xi`1...xT`1y

|ΨHxy `OHxy
p1 ´ P˚

xi`1...xT`1y
q|ΨHxy

“ OHxy
|ΨHxy p̊ ˚̊ q“ OHxy

|ΨHxyy.

Here p˚q uses that the responsesHx andHxy
differ only on inputs xi`1, . . . , xT , y. And p˚˚q uses Lemma 7

and the fact that |Φ˚y :“ OHxy
p1 ´ P˚

xi`1...xT`1y
q|ΨHxy “ OHx

p1 ´ P˚
xi`1...xT`1y

q|ΨHxy is orthogonal
to both |Ψ˚

1 y :“ OHx
P˚
xi`1...xT`1y

|ΨHxy and |Ψ˚
2 y :“ OHxy

P˚
xi`1...xT`1y

|ΨHxy. And p˚˚˚q uses that
t|ΨHxyuHx is i-good by assumption and thus |ΨHxy “ |ΨHxy y.

Thus we have that for any H : t0, 1un Ñ t0, 1un and x P pt0, 1unqT`1 and y P t0, 1un,

TD
`
OHx

|ΨHxy, OHxy
|ΨHxyy˘ ď 2‖OHx

P˚
xi`1...xT`1y

|ΨHxy‖. (29)

We abbreviate “given state |Ψy, measuring K1, . . . ,Kq in the computational basis yields pz1, . . . , zqq
with tz1, . . . , zqu X ta, b, c, d, . . . u ‰ ∅” with “ |Ψy ÞÑ abcd . . . ”. And “given state |Ψy, measuring Ki in
the computational basis yields z P ta, b, c, d, . . . u” with “ |Ψy ÞÑi abcd . . . ”.

Let δy be the distance between tOHx
|ΨHxyuHx and tOHxy

|ΨHxyyuHx. We then have

ÿ

yPt0,1un

2´nδy “
ÿ

y

2´n
ÿ

H,x

1

N
TDpOHx

|ΨHxy, OHxy
|ΨHxy yq

(29)ď
ÿ

H,x,y

1

N2n
2‖OHx

P˚
xi`1...xT`1y

|ΨHxy‖ “
ÿ

H,x,y

1

N2n
2‖P˚

xi`1...xT`1y
|ΨHxy‖

“
ÿ

H,x,y

1

N2n
2

b
Prr|ΨH,xy ÞÑ xi`1 . . . xT`1ys

p˚qď 2

d ÿ

H,x,y

1

N2n
Prr|ΨH,xy ÞÑ xi`1 . . . xT`1ys
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ď 2

gfffffe

qÿ

i“1

ÿ

H,x,y

1

N2n
loooomoooon

“1

T`1ÿ

j“i`1

Prr|ΨH,xy ÞÑi xj sloooooooooomoooooooooon
“2´n pClaim 1q

`
qÿ

i“1

ÿ

H,x

1

N2n
looomooon

“2´n

ÿ

y

Prr|ΨH,xy ÞÑi ys
looooooooooomooooooooooon

“1

“ 2
a
qpT ´ i` 1q2´n ` q2´n “ 2´n{2`1

a
qpT ´ i ` 2q “: ε.

Here p˚q uses Jensen’s inequality.
Since

ř
yPt0,1un 2

´nδy ď ε, there is a y0 with δy0
ď ε.

Thus tOHx
|ΨHxyuHx and tOHxy0

|ΨHxy0 yuHx have distance at most δy0
ď ε “ 2´n{2`1

a
qpT ´ i` 2q.

And tOHxy0
|ΨHxy0 yuHx is pi` 1q-good by construction (since xy0

“ px1, . . . , xi`1, y0, . . . , y0q is indepen-
dent of xi`2, . . . , xT`1). Claim 2 follows.

Claim 3 If t|ΨH,xyuH,x is i-good and U is unitary, then tU |ΨH,xyuH,x is i-good.

This follows immediately from the definition of i-good.

Claim 4 t|ΨH,x
i yuH,x has distance

ři´1

i“0 2
´n{2`1

a
qpT ´ i` 2q from an i-good family of states.

To show this claim, first note that |ΨH,x
0 y “ |Ψy is independent of x1, . . . , xT`1, hence t|ΨH,x

0 yuH,x

is 0-good. By induction over i and using Claim 2 and Claim 3 and the fact that the distance between
families is invariant under unitaries U and satisfies the triangle inequality, we get that t|ΨH,x

i yuH,x has
distance

ři´1

i“0 2
´n{2`1

a
qpT ´ i ` 2q from an i-good family, showing the claim.

The final state of the adversary running with oracle Hx is |ΨH,x
T y. Thus the probability that the

adversary outputs xT`1 with oracle Hx is pH,x :“ Prrmeasuring |ΨH,x
T y yields xT`1s. By Claim 1,ř

H,x
1
N
Prrmeasuring |ΦH,xy yields xT`1s “ 2´n for pT `1q-good t|ΦH,xyuH,x. By Claim 4, t|ΨH,x

T yuH,x

has the following distance from a pT ` 1q-good family:

2´n{2`1?
q

Tÿ

i“0

1 ¨ ?
T ´ i` 2

p˚qď 2´n{2`1?
q

gffepT ` 1q ¨
Tÿ

i“0

T ´ i` 2

“ 2´n{2`1?
q

b
pT ` 1q ¨ `pT ` 1qpT ` 2q ´ T pT`1q

2

˘

ď 2´n{2`1?
q
a

pT ` 2q3{2 “ 2´n{2a
2qpT ` 2q3{2.

Here p˚q uses the Cauchy-Schwarz-Inequality. Hence
ř

H,x
1
N
pH,x ď 2´n{2?

2qpT ` 2q3{2 ` 2´n. Thus

Prrx1 “ xT`1 : H
$Ð pt0, 1un Ñ t0, 1unq, x1, . . . , xT`1

$Ð t0, 1un, x1 Ð AHxpqs ď 2´n{2a
2qpT`2q3{2`2´n.

Observe that, if 0, x1, . . . , xT`1 does not contain duplicates, xT`1 “ pHxqT`1p0nq. The probability of
0n, x1, . . . , xT`1 containing duplicates is at most pT`1qpT`2q

2
2´n. Hence

Prrx1 “ pHxqT`1p0nq : H $Ð pt0, 1un Ñ t0, 1unq, x1, . . . , xn $Ð t0, 1un, x1 Ð AHxpqs
ď 2´n{2a

2qpT ` 2q3{2 ` 2´n ` pT ` 1qpT ` 2q
2

2´n ď 2´n{2a
2qpT ` 2q3{2 ` 2´n´1pT ` 2q2

Notice that for H and x1, . . . , xn chosen uniformly at random, Hx is uniformly distributed. Hence we
can replace Hx by H in the above probability and get

Prrx1 “ HT`1p0nq : H $Ð pt0, 1un Ñ t0, 1unq, x1 Ð AHpqs
ď 2´n{2a

2qpT ` 2q3{2 ` 2´n´1pT ` 2q2 (30)

The latter probability is the probability of A breaking the timed-release encryption TREih . Since
2´n{2?

2qpT ` 2q3{2 ` 2´n´1pT ` 2q2 is negligible for polynomially-bounded T (number of queries) and
q (number of inputs per query), TREih is T -one-way.

We can also directly derive the concrete security for the sequential oracle-query timing model by
setting q :“ 1. l
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H Hash-based revocable timed-release encryptions

We can now combine our results on timed-release encryptions in the random oracle model with the
construction of a revocably one-way timed-release encryption (Section 3) to get the following revocably
hiding timed-release encryption in the random oracle model.

Definition 12 (Hash-based revocable timed-release encryption) Let ℓ be an integer and η the
security parameter. Assume three random oracles G : t0, 1uη Ñ t0, 1uℓ and H : t0, 1u2η Ñ t0, 1uη and
L : t0, 1u2η Ñ t0, 1u2η. We construct a revocable timed-release encryption RTREhash with message space
t0, 1uℓ.
Encryption of a message m P t0, 1uℓ:

• Pick k, k˚, p, B, a
$Ð t0, 1uη.

• Construct the state |Ψy :“ |k ‘ pyB.
• h1 :“ HT`1

a p0nq ‘ k˚ where Hapxq :“ Hpa}xq.
• h2 :“ Lpa}k˚q ‘ pB}pq.
• c :“ Gpkq ‘m.
• The timed-release encryption consists of V :“ ph1, h2, a, cq and |Ψy.

Decryption is performed as follows:
• Given V “ ph1, h2, a, cq, compute pB}pq :“ h2 ‘ L

`
a}ph1 ‘HT`1

a p0nqq˘
.

• Measure |Ψy in basis B; call the outcome γ.
• Return m :“ Gpγ ‘ pq ‘ c.

The revocation protocol is the following:
• The recipient sends |Ψy back to the sender.
• The sender measures |Ψy in basis B; call the outcome γ.
• If γ “ k ‘ p, revocation succeeds (sender outputs 1).

Theorem 13 (RTREhash is revocably hiding) The timed-release encryption RTREhash from Defini-
tion 12 is T -revocably hiding and T -hiding in the random oracle model, assuming the parallel oracle-query
timing model.

Proof. The timed-release encryption TREih from Definition 11 (with n :“ η and using an oracle H :

t0, 1uη Ñ t0, 1uη) is T -one-way without offline-queries by Theorem 12 and has message space t0, 1uη.
Applying the transformation from Theorem 10 (with n “ m “ η and using an oracle L : t0, 1uη Ñ
t0, 1u2η), we get a timed-release encryption with message space t0, 1u2η that is T -hiding without offline-
queries and uses oracles H : t0, 1uη Ñ t0, 1uη and L : t0, 1uη Ñ t0, 1u2η. Applying the transformation
from Theorem 11 (with ℓ :“ η), we get a timed-release encryption with message space t0, 1u2η that is
T -hiding and uses oracles H : t0, 1u2η Ñ t0, 1uη and L : t0, 1u2η Ñ t0, 1u2η. (To apply Theorem 11, we
can assume that the oraclesH,L are encoded into a single oracle.) By using this timed-release encryption
as TRE0 in the construction from Definition 7 (with n :“ η), we get a revocable timed-release encryption
with message space t0, 1uη that is T -revocably one-way by Theorem 1. (Note for this that δowT “ 0 if we
measure time in oracle queries because none of the operations listed in Theorem 1 query the oracle.) And
it is T -hiding by Theorem 2 and thus, since its message space has superpolynomial size, also T -one-way.
We then apply the transformation from Theorem 10 (with oracle G : t0, 1uη Ñ t0, 1uℓ), this leads to
the timed-release encryption RTREhash from Definition 12. By Theorem 10, RTREhash is T -hiding and
T -revocably hiding. l

I Unknown recipient encryption

We describe an application of revocable timed-release encryptions: unknown recipient encryption (URE).
Unknown recipient encryption allows a sender to encrypt a message m in such a way that any recipient
but at most one recipient can decrypt it. That is, the sender can send a message to an unknown recipient,
and that recipient can, after decrypting, be sure that only he got the message, even if the ciphertext
was transferred over an insecure channel. Think, e.g., of a client connecting to a server in an anonymous
fashion, e.g., through (a quantum variant of) TOR [DMS04], and receiving some data m. Since the
connection is anonymous and the client has thus no credentials to authenticate with the server, we
cannot avoid that the data gets “stolen” by someone else. However, with unknown recipient encryption,
it is possible to make sure that the client will detect if someone else got his data. We stress that URE
is non-interactive, so this works even if no bidirectional communication is possible.
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How does this work? Basically, unknown recipient encryption consists of a T -revocably hiding timed-
release encryption V containing the message m. Then the sender sends V over the network to the
recipient, and the recipient runs the revocation protocol to test whether V is unopened (we assume
revocation to be non-interactive here). If revocation succeeds and the recipient got V within time T
after sending, the T -revocable hiding property guarantees that no-one else could learn m. (From the
point of view of the revocable timed-release encryption, the network channel becomes the timed-release
encryption-recipient, and the network channel then gives the timed-release encryption back, but not to
the URE-sender, but to the URE-recipient.)

There are several reasons why the above does not work with arbitrary timed-release encryptions.
First, the revocation protocol might be destructive, i.e., after revocation, the recipient cannot decrypt
the message any more. Fortunately, the timed-release encryptions described in this work do not have
this problem.

Second, how does the recipient know how to perform the revocation test? For example, in the timed-
release encryptions RTREhid , he needs to know the bases B, the indices Q, and the bits r. Fortunately,
in the construction of RTREhid , anticipating this section, we included the values B,Q, r inside the
inner timed-release encryption V0, even though only Q was needed for decrypting the timed-release
encryption.25

Third, to be able to refuse a URE that arrives more than time T after sending (and thus might
have been copied), we need to let the recipient know the time t0 of sending in a secure way. Similarly,
we need to make sure that the values B,Q, r used for revocation are not modified by the attacker. To
solve this problem, we assume a public key infrastructure, but we use it the other way around than is
usual with encryption: the sender signs the values B,Q, r, t0, and the recipient can then check these
using the sender’s public key. (We need to be careful here: transmitting the signature in clear would
be problematic since it might leak data about B,Q, r which could be used to cheat in the revocation.
Instead, we include the signature inside the inner timed-release encryption V0.)

We now proceed to describe URE in more detail.

Definition 13 (Unknown recipient encryption) An unknown recipient encryption (URE) scheme
with message space M consists of a time parameter T , of a key generation algorithm keygen1, an encryp-
tion algorithm enc1 and a decryption algorithm dec1. Here keygen1pq produces a classical key pair ppk , skq,
enc1psk , id ,mq returns a (quantum) ciphertext C with plaintext m with unique id id ,26 dec1psk , Cq re-
turns a pair pm, idq.

Unknown recipient encryption is assumed to have correctness: for any adversary A, the following
probability is overwhelming:

Prrm “ m1 ^ id “ id 1 : ppk , skq Ð keygen1, pm, idq Ð Appk q,
C Ð enc1psk , id ,mq, pm1, id 1q Ð dec1ppk , Cqs.

Note that we have included a message id id in the definition of UREs. It will be assumed that no two
messages are sent using the same id. The use of message ids greatly simplifies the definition of security
below.

We assume a global clock available to all parties. When a computation takes time T (with respect to
the timing model underlying the timed-release encryptions used below) then the global clock advances
by at least T between start and end of that computation.

We now proceed to define security of UREs. Since we wish to use the same secret key for several
encryptions, we need to model a security definition in which a number of messages can be encrypted.
Basically, a URE guarantees is that any message that is successfully decrypted will be semantically secure.
We model this by a game in which the adversary can produce a number of message pairs pm0,m1q to
be encrypted with different ids id . For each id , it is randomly chosen which message to encrypt. If one
of these messages is successfully decrypted by the recipient, then the adversary should be unable to tell
which of the two message were encrypted for that id .

Definition 14 (Security of UREs) We call an URE pkeygen1, enc1, dec1q secure iff for any sequential-
polynomial-time adversary A (that may share state between invocations), the following is negligible
∣

∣Prrb1 “ bid˚ : ppk , skq Ð keygen1pq, bK
$Ð t0, 1u, C Ð AEppk q, pm, id˚q Ð dec1ppk , Cq, b1 Ð AEppk , id˚qs´ 1

2

∣

∣.

25Note that in the case of RTREow , we cannot include the necessary information in V0 because the revocation protocol
of RTREow uses, besides other information, the message m itself. Including m in V0 would make RTREow non-revocable.
Instead, we would have to change the revocation test of RTREow to test only a subset of the bits, as done in RTREhid .

26The id could also be picked by enc1 itself, e.g., at random or sequentially. Then the security definition (Definition 14)
has to be changed in a straightforward way so that the adversary does not pick the id himself but gets it from enc1.
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Here E is an oracle that upon invocation Epm0,m1, idq does: If E was already called with that id, return

K. Else pick bid
$Ð t0, 1u and return enc1psk , id ,mbid q.

Notice that our security definition does not guarantee any flavor of integrity or non-malleability.
However, such could be easily added to an existing URE: Instead of encrypting m, encrypt a signed
message m.

We can now proceed to formalize our URE construction (that was sketched above). Our construction
is based specifically on the timed-release encryption RTREhid from Section 4.

Definition 15 (URE from timed-release encryptions) Let psigkeygen , sign , verifyq be an existen-
tially quantum-unforgeable signature scheme. Let TRE0 be a revocable timed-release encryption. Let
RTREsk ,t0,id be defined like RTREhid (Definition 9), except that V0 Ð TRE0pB,Q, r, pq is replaced
by σ :“ signpsk , pB,Q, r, t0, idqq, V0 Ð TRE0pB,Q, r, p, σq. We define an unknown recipient encryption
scheme UREpT 1q (parametric in a time duration T 1) as follows:

• Key generation: keygen1pq :“ sigkeygenpq.
• Encryption: enc1psk , id ,mq does: Let t0 be the current time (more precisely, any time not later

than the time when enc1 returns). Let V :“ RTREsk ,t0,id pmq. Return C :“ pt0, id , V q.
• Decryption: dec1ppk , pt0, id , V qq does: Let t1 be the current time. Decrypt the timed-release

encryption V0 contained in V to get B,Q, r, p, σ. Run the revocation test of RTREsk ,t0,id using
those values B,Q, r. Run verifyppk , σ, pB,Q, r, t0, idqq. Check if t1 ď t0 ` T 1. If all three checks
succeed, decrypt V (as specified in the definition of RTREhid) to get m and return pm, idq. If one
of the three checks fails, return pK,Kq.

Finally, we can show security.

Theorem 14 Assume that the timing model satisfies the following condition: For any algorithm A1, the
following algorithm can be implemented in time T 1: Run algorithm A1 and abort if A1 runs more than
time T 1.27

Assume the conditions of Theorem 3 are satisfied. Let δhidT , ℓ be as in Theorem 3. Let T 1 :“ T ´ δhidT .
Then UREpT 1q is a secure URE with message space t0, 1uℓ.

This even holds if we allow the adversary A to be computationally unlimited after the invocation of
dec1 in Definition 14 (i.e., we have everlasting security).

Proof. We prove this with a sequence of games. The first game is the game from Definition 14.

Game 1 (Original game)
(a) ppk , skq Ð keygen1pq.
(b) bK

$Ð t0, 1u.
(c) C Ð AEppk q.
(d) pm, id˚q Ð dec1ppk , Cq.
(e) b1 Ð AEppk , id˚q.

We need to show that
∣

∣Prrb1 “ bid˚ : Game 1s ´ 1
2

∣

∣ is negligible.
We now unfold the definition of dec1. For convenience, for a timed-release encryption V returned

by RTREsk ,t0,id , let getV0 pV q return the contained timed-release encryption V0 contained in V . Let
decTRE0 pV q denote the decryption of getV0 pV q (using the decryption algorithm of TRE0). Let
revocRTRE pV,B,Q, rq denote the revocation test of RTREsk ,t0,id on timed-release encryption V using
values B,Q, r.

Note that in the following game, we omitted the computation of m (by dec1) because m is never used
anyway.

Game 2 (Unfolding dec1)
(a) ppk , skq Ð keygen1pq.
(b) bK

$Ð t0, 1u.
(c) pt0, id , V q Ð AEppk q.
(d) pm, id˚q Ð dec1ppk , V q
(e) t1 Ð currentTimepq

27Parallel and sequential oracle-query timing-models satisfy this. Also “real life” satisfies this (at least approximately)
because one can just use a timer to abort after T 1 steps.
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(f) pB,Q, r, p, σq “ decTRE0 pgetV0 pV qq.
(g) ok Ð revocRTRE pV,B,Q, rq.
(h) sigOk Ð verifyppk , σ, pB,Q, r, t0, idqq
(i) timeOk Ð pt1 ď t0 ` T 1q
(j) allOk :“ ok ^ sigOk ^ timeOk .
(k) If allOk “ 1, id˚ :“ id . Else id˚ :“ K.
(l) b1 Ð AEppk , id˚q

We then immediately have Prrb1 “ bid˚ : Game 1s “ Prrb1 “ bid˚ : Game 2s
During the first invocation of A (step (c)), A makes a number of queries Ep¨, ¨, idq. Invocations

Ep¨, ¨, idq with an id that was not used before we call fresh. Let id j denote the id used in the j-th fresh
query.

Let Bid , Qid , rid denote the values chosen by RTREsk ,t0,id during the fresh oracle query Ep¨, ¨, idq,
and let t0,id denote the value t0 chosen in that query.

We now change the revocation test in the previous game such that instead of using B,Q, r as extracted
from V , we use the original values Bid , Qid , rid , t0,id used in the creation of the timed-release encryption.
Additionally, we assign a default value for the session id output by A if it is not an existing session, and
finally we guess the session which the adversary attacks (but that guess j is not used anywhere yet). Let
#E denote a polynomial upper bound on the number of oracle queries performed by A during its first
invocation.

Game 3 (Using Bid , Qid , rid)

(a) j
$Ð t1, . . . ,#Eu.

(b) ppk , skq Ð keygen1pq.
(c) bK

$Ð t0, 1u.
(d) pt0, id , V q Ð AEppk q.
(e) t1 Ð currentTimepq
(f) If Ej.id “ id j, then id :“ id1.
(g) pB,Q, r, p, σq “ decTRE0 pgetV0 pV qq.
(h) ok Ð revocRTRE pV,Bid , Qid , rid q.
(i) sigOk Ð verifyppk , σ, pB,Q, r, t0, idqq.
(j) timeOk Ð pt1 ď t0,id ` T 1q.
(k) allOk :“ ok ^ sigOk ^ timeOk .
(l) If allOk “ 1, id˚ :“ id . Else id˚ :“ K.
(m) b1 Ð AEppk , id˚q.

Games 2 and 3 only differ when
`pB,Q, r, t0q ‰ pBid , Qid , rid , t0,id q _ Ej.id “ id j

˘ ^ sigOk “ 1

in Game 2. But pB,Q, r, t0q ‰ pBid , Qid , rid , t0,id q _ Ej.id “ id j implies that E did not sign
pB,Q, r, t0, idq before step (i) (by construction of enc1 and the fact that each invocation of E uses
a different id). In this case sigOk “ 1 implies that σ is a forgery, which happens only with neg-
ligible probability since sign is existentially quantum-unforgeable. (In the statement of the lemma,
we have allowed A to be computationally unlimited after invoking dec1. However, this impacts
only step (m), all other steps remain polynomial-time, hence we can apply unforgeability here.) So
Prr`pB,Q, r, t0q ‰ pBid , Qid , rid , t0,id q _ Ej.id “ id j

˘ ^ sigOk “ 1 : Game 2s ď µ1 for some negligible µ1

and hence
∣

∣Prrb1 “ bid˚ : Game 2s ´ Prrb1 “ bid˚ : Game 3s∣∣ ď µ1.
Now we will only allow A to make its final guess when we guess correctly which session A will attack.

(More precisely, if the guess is wrong, we set allOk :“ 0 which means that A then has probability exactly
1
2

of guessing bid˚ “ bK.)

Game 4 (Guessing the session)

(a) j
$Ð t1, . . . ,#Eu.

(b) ppk , skq Ð keygen1pq.
(c) bK

$Ð t0, 1u.
(d) pt0, id , V q Ð AEppk q.
(e) t1 Ð currentTimepq
(f) If Ej.id “ id j, then id :“ id1.
(g) pB,Q, r, p, σq “ decTRE0 pgetV0 pV qq.
(h) ok Ð revocRTRE pV,Bid , Qid , rid q.
(i) sigOk Ð verifyppk , σ, pB,Q, r, t0, idqq.
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(j) timeOk Ð pt1 ď t0,id ` T 1q.
(k) allOk :“ ok ^ sigOk ^ timeOk ^ id “ id j.
(l) If allOk “ 1, id˚ :“ id . Else id˚ :“ K.
(m) b1 Ð AEppk , id˚q.

First, observe that due to step (f), id “ id j holds for some j P t1, . . . ,#Eu. Thus id “ id j holds
with probability 1{#E and whether it holds is independent of the state of A and of all other random
variables before step (k). Furthermore, if id ‰ id j , then in (m) we have id˚ “ K and hence b1 “ bid˚

with probability exactly 1
2
. Thus

∣

∣Prrb1 “ bid˚ : Game 4s ´ 1
2

∣

∣ “
∣

∣

∣

`
“ 1

2hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj
Prrb1 “ bid˚ |id ‰ id j : Game 4s ´ 1

2

˘
Prrid ‰ id j : Game 4s

` `
Prrb1 “ bid˚ |id “ id j : Game 4sloooooooooooooooooooomoooooooooooooooooooon

“Prrb1“bid˚ :Game 3s

´ 1
2

˘
Prrid “ id j : Game 4slooooooooooooomooooooooooooon

“ 1
#E

∣

∣

∣

“ 1
#E

∣

∣Prrb1 “ bid˚ : Game 3s ´ 1
2

∣

∣.

Thus so far we have
∣

∣Prrb1 “ bid˚ : Game 1s ´ 1
2

∣

∣ ď µ1 ` #E ¨ ∣∣Prrb1 “ bid˚ : Game 4s ´ 1
2

∣

∣.

We now change the game such that in the revocation test, we always use B,Q, r from session j.

Game 5 (Revocation from session j)

(a) j
$Ð t1, . . . ,#Eu.

(b) ppk , skq Ð keygen1pq.
(c) bK

$Ð t0, 1u.
(d) pt0, id , V q Ð AEppk q.
(e) t1 Ð currentTimepq
(f) If Ej.id “ id j, then id :“ id1.
(g) pB,Q, r, p, σq “ decTRE0 pgetV0 pV qq.
(h) ok Ð revocRTRE pV,Bidj

, Qidj
, ridj

q.
(i) sigOk Ð verifyppk , σ, pB,Q, r, t0, idqq.
(j) timeOk Ð pt1 ď t0,id ` T 1q.
(k) allOk :“ ok ^ sigOk ^ timeOk ^ id “ id j.
(l) If allOk “ 1, id˚ :“ id . Else id˚ :“ K.
(m) b1 Ð AEppk , id˚q.

If id “ id j , then Bidj
, Qidj

, ridj
“ Bid , Qid , rid , and if id ‰ id j , then b1 “ bid˚ “ bK with probabil-

ity 1
2
, no matter which inputs are given to revocRTRE . Hence Prrb1 “ bid˚ : Game 5s “ Prrb1 “ bid˚ :

Game 4s.
Now we split the adversary: The first invocation of A is split into two parts: A0ppk , jq performs all

steps before the j-th fresh query to E and outputs E’s input pm0,m1, id
1q. And A1

1 takes as input the
reply to the j-th fresh query and continues with the computation. Furthermore, we rename the second
invocation of A to be A2. Also, we unfold the definitions of E and enc1 for the j-th query. (And the values
B,Q, r, t0, id from that query are now called B˚, Q˚, r˚, t˚0 , id

1 instead of Bidj
, Qidj

, ridj
, t0,idj

, id j .)

Game 6 (Splitting A)

(a) j
$Ð t1, . . . ,#Eu.

(b) ppk , skq Ð keygen1pq.
(c) bK

$Ð t0, 1u.
(d) pt0, id , V q Ð AEppk q.
(e) pm0,m1, id

1q Ð AE
0 ppk , jq.

(f) b
$Ð t0, 1u. bid 1 :“ b. t˚0 Ð currentTimepq. V ˚ Ð RTREsk ,t˚

0 ,id 1 pmbq.
(g) Denote the values B,Q, r chosen by RTREsk ,t˚

0 ,id 1 with B˚, Q˚, r˚.

(h) pt0, id , V q Ð pA1
1qEppt˚0 , id 1, V ˚qq.

(i) t1 Ð currentTimepq
(j) If Ej.id “ id j, then id :“ id1.
(k) pB,Q, r, p, σq “ decTRE0 pgetV0 pV qq.
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(l) ok Ð revocRTRE pV,B˚, Q˚, r˚q.
(m) sigOk Ð verifyppk , σ, pB,Q, r, t0, idqq.
(n) timeOk Ð pt1 ď t˚0 ` T 1q.
(o) allOk :“ ok ^ sigOk ^ timeOk ^ id “ id 1.
(p) If allOk “ 1, id˚

:“ id . Else id
˚
:“ K.

(q) b1 Ð AE
2 ppk , id˚q.

We have only split the adversary and unfolded the definitions of E and enc1, all computations stay
the same. Hence Prrb1 “ bid˚ : Game 6s “ Prrb1 “ bid˚ : Game 5s.

Now we constrain A1
1 to run at most time T 1. That is, let A1 be like A1

1, except that it aborts after
time T 1 (including the time spent by the oracle E).

Game 7 (A1 runs time T 1)

(a) j
$Ð t1, . . . ,#Eu.

(b) ppk , skq Ð keygen1pq.
(c) bK

$Ð t0, 1u.
(d) pm0,m1, id

1q Ð AE
0 ppk , jq.

(e) b
$Ð t0, 1u. bid 1 :“ b. t˚0 Ð currentTimepq.

(f) V ˚ Ð RTREsk ,t˚
0 ,id 1 pmbq.

(g) Denote the values B,Q, r chosen by RTREsk ,t˚
0 ,id 1 with B˚, Q˚, r˚.

(h) pt0, id , V q Ð AE
1 ppt˚0 , id 1, V ˚qq.

(i) t1 Ð currentTimepq
(j) If Ej.id “ id j, then id :“ id1.
(k) pB,Q, r, p, σq “ decTRE0 pgetV0 pV qq.
(l) ok Ð revocRTRE pV,B˚, Q˚, r˚q.
(m) sigOk Ð verifyppk , σ, pB,Q, r, t0, idqq.
(n) timeOk Ð pt1 ď t˚0 ` T 1q.
(o) allOk :“ ok ^ sigOk ^ timeOk ^ id “ id 1.
(p) If allOk “ 1, id˚ :“ id . Else id˚ :“ K.
(q) b1 Ð AE

2 ppk , id˚q.

If A1
1 runs more than T 1 steps, we will have t1 ą t˚0 `T 1 and thus timeOk “ 0, and then the adversary

guesses bid˚ “ bK with probability exactly 1
2
, independent of whether A1

1 continues to run or not. Thus
Prrb1 “ bid˚ : Game 7s “ Prrb1 “ bid˚ : Game 6s.

Furthermore, if allOk “ 0, then id˚ “ K and hence b1 equals bid˚ “ bK with probability 1
2
. Similarly,

pb1 ^ allOk q “ 0 equals bid˚ “ bK with probability 1
2
. And if allOk “ 1, then b1 “ pb1 ^ allOk q. Thus

Prrb1 “ bid˚ : Game 6s “ Prrpb1 ^ allOk q “ bid˚ : Game 6s.
Moreover, if allOk “ 1, then bid˚ “ b. And if allOk “ 0, then pb1 ^ allOk q “ 0 has the same

probability of being bid˚ “ bK and of being b (namely 1
2
). Thus Prrpb1 ^ allOk q “ bid˚ : Game 6s “

Prrpb1 ^ allOk q “ b : Game 6s.
Thus so far we have

∣

∣Prrb1 “ bid˚ : Game 1s ´ 1
2

∣

∣ ď µ1 ` #E ¨ ∣∣Prrpb1 ^ allOkq “ b : Game 7s ´ 1
2

∣

∣.

Let B0pq run steps (a)–(e), except for picking b and bid 1 , and let B0 return pm0,m1, sk , t
˚
0 , id

1q. Let
B1pV ˚q run pt0, id , V q Ð A1ppt˚0 , id 1, V ˚qq (here id 1, V ˚ are known to B1 because they were chosen by B0)
and return V . Let B2pok q run steps (i)–(k) and steps (m)–(q) and return pb1 ^ allOk q. All of B0, B1, B2

also simulate the oracle E themselves, this is possible since sk is known to B0, B1, B2. When writing
revocRTRE pV q, we mean an execution of the revocation test of RTREsk ,t˚

0 ,id 1 . (I.e., revocRTRE pV q is
the same as revocRTRE pV,B,Q, rq using the values B,Q, r chosen by the earlier call RTREsk ,t˚

0 ,id 1 .)
Then we can rewrite Game 7 as follows:

Game 8 (Using B)

(a) b
$Ð t0, 1u.

(b) pm0,m1, sk , t
˚
0 , id

1q Ð B0pq.
(c) V ˚ Ð RTREsk ,t˚

0 ,id 1 pmbq.
(d) V Ð B1pV ˚q.
(e) ok Ð revocRTRE pV q.
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(f) b2 “ B2pok q.
And we get Prrpb1 ^ allOk q “ b : Game 7s “ Prrb2 “ b : Game 8s.
Thus so far we have

∣

∣Prrb1 “ bid˚ : Game 1s ´ 1
2

∣

∣ ď µ1 ` #E ¨ ∣∣Prrb2 “ b : Game 8s ´ 1
2

∣

∣.

Let Game 8p0q denote Game 8 with b :“ 0 fixed, and analogously Game 8p1q.
Then we have

∣

∣Prrb2 “ b : Game 8s ´ 1
2

∣

∣ “ ∣

∣

1
2
Prrb2 “ 1 : Game 8p1qs ` 1

2
p1 ´ Prrb2 “ 1 : Game 8p0qsq ´ 1

2

∣

∣

“ 1
2

∣

∣Prrb2 “ 1 : Game 8p1qs ´ Prrb2 “ 1 : Game 8p0qs∣∣ “: µ2.

For the next step, we will need the security of RTREsk ,t˚
0 ,id 1 . Theorem 3 states that RTREhid

is T 1-revocably hiding, but RTREsk ,t˚
0 ,id 1 differs from RTREhid by additionally including σ :“

signpsk , pB,Q, r, t˚0 , id 1qq. However, the proof of Theorem 3 still goes through for this modified scheme.
(In fact, σ is a function of public parameters sk , t˚0 , id

1, and of data B,Q, r that is contained contained in
V0 anyway. So it is not surprising that the inclusion of σ does not reduce security.) Thus RTREsk ,t˚

0 ,id 1

is T 1 “ pT ´ δhidT q-revocably hiding even when we allow the adversary to be computationally unlimited
in its last invocation (everlasting security).

Furthermore, B0 and B1 are sequential-polynomial-time, and B1 runs in time T 1 (since B1 just
invokes A1 which aborts after time T 1 by definition). (B2 can be unlimited because in the statement of
the lemma, A is allowed to be computationally unlimited after invoking dec1.) Thus, since RTREsk ,t˚

0 ,id 1

is T 1-revocably hiding with everlasting security, µ2 is negligible.
So altogether we have

∣

∣Prrb1 “ bid˚ : Game 1s ´ 1
2

∣

∣ ď µ1 ` #E ¨ µ2.

which is negligible. Hence UREpT 1q is secure. l

UREs without public key infrastructure. Our construction of UREs requires the sender to sign
part of his messages. Without a public key infrastructure, our security definition (Definition 14) is clearly
unsatisfiable: the adversary could intercept a ciphertext C, decrypt it to get m, reencrypt it, and send
it on (using a fresh time-stamp t0). However, even if we drop the signature from our construction, some
flavor of security seems still to be guaranteed. Roughly: “an encrypted message m that is successfully
decrypted within time T cannot be known to others”. This could still be useful if the message m itself
carries some proof about its creation time (e.g., if it depends on public data that was produced only
recently). We leave it as an open question what security can be achieved with UREs that do not use a
public key infrastructure.
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sigkeygenpq Key generation for signature scheme 52
signpsk ,mq Signing algorithm (signature scheme) 52
verifyppk , σ,mq Verification algorithm (signature scheme) 52
RTREsk ,t0,id Variant of revocable timed-release encryption RTREhid , used in URE scheme 52
RTREhash Revocably hiding timed-release encryption from Definition 12 50
enc1 Unknown recipient encryption 51
dec1 Unknown recipient decryption 51
keygen1 Unknown recipient encryption key generation 51
UREpT 1q Unknown recipient encryption scheme 52
PEPR
t EPR states with max. t phase and t bit flips 20

TREih Timed-release encryption by iterated hashing Definition 11 47
ωpxq Hamming weight of x 4
‘ Bitwise XOR 4
rq ` nsq Set of all subsets of t1, . . . , q ` nu of size q 4
|βfey Bell state 4
CK Dual code 4
|Ăxyy EPR state with phase flips f and bit flips e 4
|myB m encoded in basis B 4
~A~ Operator norm of A 4
‖x‖ Euclidean norm of x 4
PEPR
C1{C2

EPR state in CC1{C2 bCC1{C2 30
Puv
x Projector of measurement Muv

X for outcome x 30
RTREow Revocably one-way timed-release encryption from Definition 7 7
TDpρ1, ρ2q Trace distance between ρ1 and ρ2. 4
δhidT Time loss in revocably hiding timed-release encryption 14
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RTREhid Revocably hiding timed-release encryption from Definition 9 13
C{D Quotient of codes C and D 26
δowT Time loss in revocably one-way timed-release encryption 19
|ξxuvy Codewords in CCS code 26
x mod C Projection into quotient code D{C 26
Udec
uv Decoding for the CCS code t|ξxuvyux 27

UEC
uv Error correction and decoding for the CCS code t|ξxuvyux 27

isEPR Boolean indicating whether checking for t-error EPR state succeeded. 22
P“
B Measures if two registers are equal in basis B 20
Muv

X Measure x in a state |ry|ξxuvy, given u, v 30
Puv Projector of measurement MUV for outcome u, v 30
MUV Measures u, v in a state |ry|ξxuvy 30
Pr Projector of measurement MR for outcome r 30
MR Measures first q bits 30
imM Image of operator/function M

Keyword index

clock
global, 51

correctness
unknown recipient encryption, 51

early key revelation, 13
encryption

timed-release, 5
unknown recipient, 51

EPR pair, 4
EPR state, 4

global clock, 51

hiding, 6
revocably, 7
revocably, without offline-queries, 16
without offline-queries, 16

key revelation
early, 13
late, 13

late key revelation, 13

offline-queries
hiding without, 16
one-way without, 16
revocably hiding without, 16

one-way
revocably, 6, 7

without offline-queries, 16
oracle-query timing model

parallel, 15
sequential, 15

parallel oracle-query timing model, 15
polynomial time

sequential, 5
protocol

revocation, 6

revocably hiding, 7
without offline-queries, 16

revocably one-way, 6, 7
revocation protocol, 6

secure (unknown recipient encryption), 51
sequential oracle-query timing model, 15
sequential polynomial time, 5

time
sequential polynomial, 5

timed-release encryption, 5
timing model, 5

parallel oracle-query, 15
sequential oracle-query, 15

TRE, see timed-release encryption

unknown recipient encryption, 51
security, 51

URE, see unknown recipient encryption
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