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Abstract. This paper proposes the computation of the Tate pairing,
Ate pairing and its variations on the special Jacobi quartic elliptic curve
Y 2 = dX4 +Z4. We improve the doubling and addition steps in Miller’s
algorithm to compute the Tate pairing. We use the birational equivalence
between Jacobi quartic curves and Weierstrass curves, together with a
specific point representation to obtain the best result to date among
curves with quartic twists. For the doubling and addition steps in Miller’s
algorithm for the computation of the Tate pairing, we obtain a theoretical
gain up to 27% and 39%, depending on the embedding degree and the
extension field arithmetic, with respect to Weierstrass curves [2] and
previous results on Jacobi quartic curves [3]. Furthermore and for the
first time, we compute and implement Ate, twisted Ate and optimal
pairings on the Jacobi quartic curves. Our results are up to 27% more
efficient, comparatively to the case of Weierstrass curves with quartic
twists [2].

Keywords: Jacobi quartic curves, Tate pairing, Ate pairing, twists,
Miller function.

1 Introduction

Bilinear pairings were first used to solve the discrete logarithm problem on el-
liptic curve groups [4, 5]. But they are now useful to construct many public key
protocols for which no other efficient implementation is known [6, 7]. A survey of
some of these protocols can be found in [8]. The efficient computation of pairings
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of Pairing 2012.



depends on the model chosen for the elliptic curve. Pairing computation on the
Edwards model of elliptic curves has been done successively in [9, 10] and [11].
The recent results on pairing computation using elliptic curves of Weierstrass
form can be found in [12, 2]. Recently in [3], Wang et al. have computed the
Tate pairing on Jacobi quartic elliptic curves using the geometric interpretation
of the group law. In this paper, we focus on the special Jacobi quartic elliptic
curve Y 2 = dX4 + Z4 over fields of large characteristic p ≥ 5 not congruent to
3 modulo 4.
For pairing computation with embedding degree divisible by 4, we define and
use the quartic twist of the curve Y 2 = dX4 + Z4. Our results improve those
obtained by Wang et al. in [3] and they are more efficient than those concerning
the Tate pairing computation in Weierstrass elliptic curves [2].

Furthermore, the Miller algorithm is the main tool in the Tate pairing compu-
tation, and its efficiency has been successfully improved in the last years leading
to other pairings such as:

– The Eta-pairing [13] on supersingular elliptic curves.

– Ate and twisted Ate pairings introduced in [14] that are closely related to the
Eta-pairing, but can be used efficiently with ordinary elliptic curves. These
pairings can be more efficient than the Tate pairing, essentially due to the
reduction of the number of iterations in the Miller algorithm.

– In [15] and [16], Vercauteren and Hess generalize the method with the notion
of optimal pairings and pairings lattices that can be computed using the
smallest number of basic Miller’s iterations.

The computation of these different pairings has been done by Costello et al. [2] in
the case of Weierstrass curves. As a second contribution of this work, we extend
the results on the special Jacobi quartic in [1] to the computation of Ate pairing
and its variations. We show that among known curves with quartic twists, the
Jacobi model Y 2 = dX4 +Z4 offers the best performances for all these different
pairings.
The rest of this paper is organized as follows: Section 2 provides a background on
the Jacobi elliptic curve, and notions on pairings that are useful in the paper. In
Section 3, we present the computation of the Tate pairing on the Jacobi quartic
curve mentioned above using birational equivalence and we compare our results
to others in the literature. In Section 4, we determine the Miller function and
rewrite the addition formulas for Ate pairing. We also provide a comparative
study of these pairings on the curves in Jacobi and Weierstrass forms. In Section
5 we provide an example of pairing friendly curve of embedding degree 8. An
implementation of the Tate, Ate and optimal Ate pairings based on this example
has been done using the Magma computer algebra system. This enable to verify
all the formulas given in this paper. Finally, we conclude in Section 6.

The following notations are used in this work.
Fq: A finite field of characteristic p ≥ 5, not congruent to 3 modulo 4.
mk, sk : Cost of multiplication and squaring in the field Fqk , for any integer k



mc: Cost of the multiplication by a constant in Fq

2 Background on Pairings and on Jacobi Elliptic Curves

In this section, we briefly review pairings on elliptic curves and the Jacobi quartic
curves. We also define twists of Jacobi’s curves.

2.1 The Jacobi Quartic Curve

A Jacobi quartic elliptic curve over a finite field Fq is defined by

Ed,µ : y2 = dx4 + 2µx2 + 1

with discriminant 4 = 256d(µ2 − d)2 6= 0. In [17] Billet and Joye proved that
if the Weierstrass curve E : y2 = x3 + ax + b has a rational point of order 2
denoted (θ, 0), then it is birationally equivalent to the Jacobi quartic Ed,µ with
d = −(3θ2 + 4a)/16 and µ = −3θ/4. In the remainder of this paper, we will
focus our interest on the special Jacobi quartic curve

Ed,0 : y2 = dx4 + 1

because this curve has interesting properties such as a quartic twist which will
contribute to an efficient computation of pairings.
The addition and doubling formulas on Ed,0 are deduced from [18].
The point addition (x3, y3) = (x1, y1) + (x2, y2) is given by :

x3 =
x2
1−x

2
2

x1y2−y1x2
and y3 = (x1−x2)

2

(x1y2−y1x2)2
(y1y2 + 1 + dx21x

2
2)− 1.

The point doubling (x3, y3) = 2(x1, y1) on Ed,0 is given by:

x3 = 2y1
2−y21

x1 and y3 = 2y1
2−y21

(
2y1
2−y21

− y1
)
− 1.

The birational equivalence, deduced from [17], between the Weierstrass curve
Wd : y2 = x3 − 4dx and the Jacobi quartic curve Ed,0 is given by

ϕ : Ed,0 −→Wd

(0, 1) 7−→ P∞
(0,−1) 7−→ (0, 0)

(x, y) 7−→
(
2y+1
x2 , 4

y+1
x3

)and

ϕ−1 : Wd −→ Ed,0
P∞ 7−→ (0, 1)
(0, 0) 7−→ (0,−1)

(x, y) 7−→ ( 2x
y ,

2x3−y2
y2 )

From now on, and for efficiency reasons, we adopt for the first time in pairings
computation a specific points representation namely (x, y) = (XZ ,

Y
Z2 ). The curve

Ed,0 is then equivalent to

Ed : Y 2 = dX4 + Z4.



The addition and doubling formulas on Ed are as follows. The point addition
[X3 : Y3 : Z3] = [X1 : Y1 : Z1] + [X2 : Y2 : Z2] on Ed is given by :X3 = X2

1Z
2
2 − Z2

1X
2
2 ,

Z3 = X1Z1Y2 −X2Z2Y1,
Y3 = (X1Z2 −X2Z1)2(Y1Y2 + (Z1Z2)2 + d(X1X2)2)− Z2

3 .

The point doubling [X3 : Y3 : Z3] = 2[X1 : Y1 : Z1] on Ed is given by :X3 = 2X1Y1Z1,
Z3 = Z4

1 − dX4
1 ,

Y3 = 2Y 4
1 − Z2

3 .

The birational equivalence between the projective model Ed : Y 2 = dX4 + Z4

and the Weierstrass curve Wd : y2 = x3 − 4dx becomes

ϕ : Ed −→ Wd

[0 : 1 : 1] 7−→ P∞
[0 : −1 : 1] 7−→ (0, 0)

[X : Y : Z] 7−→
(

2Y+Z2

X2 , 4Z(Y+Z2)

X3

) .

ϕ−1 : Wd −→ Ed
P∞ 7−→ [0 : 1 : 1]

(0, 0) 7−→ [0 : −1 : 1]
(x, y) 7−→ [2x : 2x3 − y2 : y].

The Sage software code to verify the correctness of our formulas is available here:
http://www.prmais.org/Implementation-Pairings-Jacobi.txt.

2.2 Pairings on Elliptic Curves

In this section, we first recall the Tate pairing. Then, the notion of twists of
elliptic curves is defined to recall the definition of Ate pairing ant its variations.
Let E be an elliptic curve defined over a finite field Fq. The neutral element of
the additive group law defined on the set of rational points of E is denoted P∞.
Let r be a large prime divisor of the group order ]E(Fq) and k be the embedding
degree of E with respect to r, i.e. the smallest integer such that r divides qk−1.
The set E

(
Fq
)

[r] = {P ∈ E
(
Fq
)

: [r]P = P∞} is the set of r−torsion points

with coordinates in an algebraic closure Fq of Fq, where [ ] : P 7−→ [r]P is the
endomorphism defined on E(Fq) which consists to add P to itself r times. The
integer k is also the smallest integer such that E

(
Fq
)

[r] ⊂ E(Fqk) and this is
the main property that we use in this work.

The Tate pairing. Consider a point P ∈ E(Fq)[r] and the divisor D = r(P )−
r(P∞), then according to [19, Corollary 3.5, Page 67], D is principal and so there
is a function fr,P with divisor Div (fr,P ) = D. Let Q be a point of order r with
coordinates in Fqk and µr be the group of r-th roots of unity in F∗qk . The reduced
Tate pairing er is a bilinear and non degenerate map defined as

er : E(Fq)[r]× E(Fqk)[r]→ µr,

(P,Q) 7→ fr,P (Q)
qk−1
r .



The value fr,P (Q) can be determined efficiently using Miller’s algorithm [20].
Indeed, for an integer i, consider the divisor Di = i(P ) − ([i]P ) − (i − 1)(P∞).
We observe that Di is a principal divisor and so there is a function fi,P such
that Div(fi,P ) = i(P )− ([i]P )− (i− 1)(P∞). Observe that

for i = r one has Dr = r(P )− r(P∞) = Div(fr,P ).

Thus, to obtain the value of fr,P (Q), it suffices to apply an iterative algorithm
using an addition chain for r, that is, a sequence (1, i1, i2, ...., r) such that each
ik is the sum of two previous terms of the sequence. This is justified by the fact
that the functions fi,P are satisfying the following conditions:

f1,P = 1 and fi+j,P = fi,P fj,Ph[i]P,[j]P (1)

where hR,S denotes a rational function such that

Div(hR,S) = (R) + (S)− (S +R)− (P∞),

with R and S two arbitrary points on the elliptic curve. In the case of elliptic
curves in Weierstrass form, hR,S =

`R,S
vR+S

where `R,S is the straight line defining

R+ S and vR+S is the corresponding vertical line passing through R+ S.
Miller uses the double-and-add method as the addition chains for r (see [21,

Chapter 9] for more details on addition chains) and the properties of fi,P to
compute fr,P (Q). The Miller algorithm that computes efficiently the pairing of
two points is given in Algorithm 1.

Algorithm 1: Miller’s Algorithm

Input : P ∈ E(Fq)[r], Q ∈ E(Fqk )[r], r = (1, rn−2, ....r1, r0)2.

Output: The reduced Tate pairing of P and Q : fr,P (Q)
qk−1
r

1: Set f ← 1 and R← P
2: For i = n− 2 down to 0 do
3: f ← f2 · hR,R(Q)
4: R← 2R
5: if ri = 1 then
6: f ← f · hR,P (Q)
7: R← R+ P
8: end if
9: end for

10: return f
qk−1
r

Fig. 1. The Miller algorithm for the computation of the reduced Tate pairing

More informations on pairings can be found in [22] and [23].
Let us now define twists of elliptic curves and specialise to the case of Jacobi
quartic curves. This notion of twists enable to work on smaller base fields for
pairings computations.



Twists of elliptic curves. A twist of an elliptic curve E defined over a finite
field Fq is an elliptic curve E′ defined over Fq that is isomorphic to E over an
algebraic closure of Fq. The smallest integer δ such that E and E′ are isomorphic
over Fqδ is called the degree of the twist.
Let E : y2 = x3 +ax+ b be an elliptic curve in Weierstrass form defined over Fq.
The equation defining the twist E′ has the form y2 = x3 + aω4x+ bω6 where ω
belongs to an extension Fqk of Fq and the isomorphism between E′ and E is

ψ : E′ −→ E
(x′, y′) 7−→ (x′/ω2, y′/ω3).

More details on twists can be found in [2].

Twist of Jacobi quartic curves. To obtain the twist of the Jacobi quartic
curve Y 2 = dX4 +Z4, we use the birational maps defined in Subsection 2.1 and
the twist of Weierstrass curves defined above. Let k be an integer divisible by 4.

Definition 1 [1] A quartic twist of the Jacobi quartic curve Y 2 = dX4 + Z4

defined over the extension Fqk/4 of Fq is a curve given by the equation

Eωd : Y 2 = dω4X4 + Z4

where ω ∈ Fqk is such that ω2 ∈ Fqk/2 , ω3 ∈ Fqk\Fqk/2 and ω4 ∈ Fqk/4 .
In other terms {1, ω, ω2, ω3} is a basis of Fqk as a vector space over Fqk/4 .

Proposition 1 Let Eωd defined over Fqk/4 be a twist of Ed. The Fqk -isomorphism
between Eωd and Ed is given by

ψ : Eωd → Ed,
[X : Y : Z] 7→ [ωX : Y : Z] .

We explain in Section 2.3 and in Section 3.1 how twists are very useful for an
efficient computation of pairings.

Ate pairing and its variations. In this section, we briefly define Ate and
twisted Ate pairings. The results in this section are very well described in the
original article of Hess et al. [14]. We recall that fi,R is the function with divisor

Div(fi,R) = i(R)− ([i]R)− (i− 1)(P∞).

Let

πq : E
(
Fq
)
→ E

(
Fq
)

(x, y) 7→ (xq, yq)



be the Frobenius endomorphism on the curve, and t be its trace. The character-
istic polynomial of πq is X2− tX + q, see [24, Chapter 4]. Using the fact that πq
satisfies its characteristic polynomial (Cayley Hamilton theorem), we have the
following equality:

π2
q − tπq + q = 0.

The relation between the trace t of the Frobenius endomorphism and the group
order is given by [24, Theorem 4.3]:

]E(Fq) = q + 1− t.

The Frobenius endomorphism πq has exactly two eigenvalues. Indeed, using the
Lagrange theorem in the multiplicative group (F∗q ,×), it is clear that 1 is an
eigenvalue. We then use the characteristic polynomial to conclude that q is the
other one. This enables to consider P ∈ G1 = E

(
Fq
)

[r]∩ Ker(πq − [1]) =

E(Fq)[r] and Q ∈ G2 = E
(
Fq
)

[r]∩ Ker(πq − [q]). The Ate pairing is defined as
follows:

Definition 2 (The Ate pairing) The reduced Ate pairing is the map:

eA : G2 ×G1 → µr,

(Q,P ) 7→ fT,Q(P )
qk−1
r ,

where T = t− 1.

The following theorem gives some properties of Ate pairing, in particular its
relation with the Tate pairing. This relation makes sense to Definition 2: Ate
pairing is a power of the Tate pairing and therefore is a pairing. A complete
proof can be found in [14]

Theorem 1 [14] Let N = gcd(T k − 1, qk − 1) and T k − 1 = LN . We have

– eA(Q,P )rc = (fr,Q(P )(q
k−1)/r)LN where c =

∑k−1
i=0 T

k−1−iqi ≡ kqk−1 mod
r.

– for r - L, Ate pairing eA is non-degenerate.

Remark 1. The Tate pairing is defined on G1 × E(Fqk), while Ate pairing is
defined on G2×G1 with G2 ⊆ E(Fqk). This means that during the execution of
the Miller algorithm in Ate pairing computation, the point addition is performed
in an extension field of Fq whereas it was performed in Fq in the case of the Tate
pairing. As the arithmetic over Fqk is much more expensive than the arithmetic
over Fq, each step of Ate pairing is more expensive than a step of the Tate
pairing. However the Miller loop length in the case of Ate pairing is log2T which
is less (generally the half) than log2r, the loop length for the Tate pairing.

Observe that if Ate pairing were defined on G1 ×G2, then it will be faster than
the Tate pairing since its Miller loop length will be approximately halved. This
remark yields to the definition of the twisted Ate pairing [14].



Definition 3 (The twisted Ate pairing) [14] Assume that E has a twist of degree
δ and m = gcd(k, δ). Let e = k/m and Te = T e mod r, then the reduced twisted
Ate pairing is defined as follows:

eTe : G1 ×G2 → µr,

(P,Q) 7→ fTe,P (Q)
qk−1
r .

As in the case of Ate pairing, the following theorem ensures that eTe is a pairing.

Theorem 2 [14]

– eTe(P,Q)rc = eT (P,Q)LN where eT (P,Q) is the Tate pairing and c =∑m−1
i=0 T e(m−1−i)qei ≡ mqe(m−1) mod r.

– for r - L, twisted Ate pairing eTe is non-degenerate.

Remark 2. The reduced Tate and twisted Ate pairings are defined on G1×E(Fqk)
and G1×G2 respectively. So they have the same complexity for each iteration of
the Miller algorithm but the Miller loop parameter is T e mod r for the reduced
twisted Ate pairing and r for the Tate pairing. Consequently, the twisted Ate
pairing will be more efficient than the reduced Tate pairing only for curves with
trace t such that T e mod r is significatively less than r.

Optimal pairings. The reduction of Miller’s loop length is an important way
to improve the computation of pairings. The latest work is a generalized method
to find the shortest loop when possible, which leads to the concept of optimal
pairing [15]. Indeed, observe that if k is the embedding degree with respect to r,
then r|qk−1 but r - qi−1 for any 1 ≤ i < k. This implies that r|Φk(q) where Φk
is the k− th cyclotomic polynomial. Since T ≡ q mod r where T = t−1, we have
r|Φk(T ). More generally, if we consider Ate−i pairing, which is a generalisation
of Ate pairing with Miller function fTi,Q where Ti ≡ qi mod r, then

r|Φk/g(Ti), where g = gcd(i, k)

so that the minimal value for Ti is r1/ϕ(k/g) (where ϕ is the Euler’s totient
function) and the lowest bound is r1/ϕ(k), obtained for g = 1. We then give the
following definition of optimal pairing, this is a pairing that can be computed
with the smallest number of iterations in the Miller loop.

Definition 4 [15] Let e : G1×G2 −→ GT be a non-degenerate, bilinear pairing
with |G1| = |G2| = |GT | = r, where the field of definition of GT is Fqk . e is called
an optimal pairing if it can be evaluated with about at most (log2r)/ϕ(k) + ε(k)
Miller iterations, where ε(k) is less than log2k.

The lowest bound is attained for several families of elliptic curves. The following
theorem gives the construction of an optimal pairing.



Theorem 3 [15, Theorem 4] Let E be an elliptic curve defined over Fq. The
embedding degree with respect to a large integer r dividing the order of the group
]E(Fq) is denoted k. Let λ = mr be a multiple of r such that r - m and write

λ =
∑l
i=0 ciq

i. Remember hR,S is the function with divisor Div(hR,S) = (R) +
(S) − (S + R) − (P∞) where R and S are two arbitrary points on the elliptic

curve E. If si =
∑l
j=i cjq

j, the map eo : G2 ×G1 → µr defined as

(Q,P ) 7−→

(
l∏
i=0

fq
i

ci,Q
(P ) ·

l−1∏
i=0

h[si+1]Q,[ciqi]Q(P )

) qk−1
r

defines a bilinear pairing. Furthermore, the pairing is non degenerate if

mkqk 6= ((qk − 1)/r) ·
l∑
i=0

iciq
i−1 mod r.

In Section 5, we apply the previous theorem to provide an example of optimal
pairing on Jacobi quartic curves of embedding degree 8. Observe that the com-
putation of optimal pairings follows the same approach as the computation of
the Ate pairing.

2.3 Use of Twists for Efficient Computation of Pairings

For the applications of twists, observe that the points input of the Tate pairing,
Ate pairing, twisted Ate or optimal pairing on a curve of embedding degree k
take the form P ∈ E(Fq) and Q ∈ E(Fqk). In the case of the Tate pairing and
the twisted Ate pairing, the evaluation of the Miller function is done at the
point Q in the full extention Fqk whereas in the case of Ate and Optimal Ate
pairings, it is the addition of point that is performed there. In both cases, this
can affect the efficiency of computations. However many authors (see for example
[25] or [2]) have shown that one can use the isomorphism between the curve and
its twist of degree δ to take the point Q in a particular form which allows to
perform some computations more efficiently in the sub-field Fqk/δ instead of Fqk .
More precisely, if E is an elliptic curve defined over Fq, E′ its twist of degree
δ defined over Fqk/δ and ψ : E′ −→ E the isomorphism between E and E′,
then the point Q is taken as the image by ψ of a point on the twisted curve
E′(Fqk/δ). In this case, the present form of Q allows many computations either
for additon of points or evaluation of the Miller functions to be done more
efficiently in the subfield Fqk/δ . For example in the present case of this work and
from Proposition 1, instead of taking Q with full coordinates in Fqk , it can be
taken in the form [ωX : Y : Z] where X,Y, Z ∈ Fqk/4 . In this work, we use this
technic for the computation of the Tate, Ate, twisted Ate and Optimal pairings.
As a consequence, the twists can be use to eliminate the denominator of the
function hR,S in the Miller algorithm. See Section 3.1 for applications.



3 The Tate Pairing and Twisted Ate Pairing
Computation on Ed : Y 2 = dX4 + Z4

Wang et al. in [3] considered pairings on Jacobi quartics and gave the geometric
interpretation of the group law. We use a different way, namely the birational
equivalence between Jacobi quartic curves and Weierstrass curves, of obtaining
the formulas. We specialise to the particular curves Ed : Y 2 = dX4 + Z4 to
obtain better results for these up to 39% improvement compared to results in
[3]. The results in this section are from [1].
Given two points P1 = (x1, y1) and P2 = (x2, y2) on the Weierstrass curve
Wd : y2 = x3 − 4dx such that P3 = (x3, y3) = P1 + P2, consider R = [X1 :
Y1 : Z1], S = [X2 : Y2 : Z2] and [X3 : Y3 : Z3] = [X1 : Y1 : Z1] + [X2 :
Y2 : Z2] the corresponding points on the Jacobi quartic Ed. To derive the Miller
function hR,S(X,Y, Z) for Ed, we first write the Miller function hP1,P2(x, y) on
the Weierstrass curve Wd:

hP1,P2
(x, y) =

y − λx− α
x− x3

,

where λ =
y2 − y1
x2 − x1

if P1 6= P2, λ =
3x21 − 4d

2y1
if P1 = P2 and α = y1 − λx1.

Using the birational equivalence, the Miller function for the Jacobi quartic Ed :
Y 2 = dX4 + Z4 is given by hR,S(X,Y, Z) = hP1,P2

(ϕ(X,Y, Z)). We have:

hR,S(X,Y, Z) =
4X2

3X
2

2X2
3 (Y + Z2)− 2X2(Y3 + Z2

3 )

(
ZY+Z3

X3 − 1

2
λ

(
Y + Z2

X2

)
− α

4

)
.

where

λ =


−2X3

1Z2(Y2 + Z2
2 ) + 2X3

2Z1(Y1 + Z2
1 )

X1X2[−X2
1 (Y2 + Z2

2 ) +X2
2 (Y1 + Z2

1 )]
if P1 6= P2,

Y1 + 2Z2
1

X1Z1
if P1 = P2,

(2)

and

α =


−4(Y1 + Z2

1 )(Y2 + Z2
2 )(Z2X1 − Z1X2)

X1X2[−X2
1 (Y2 + Z2

2 ) +X2
2 (Y1 + Z2

1 )]
if P1 6= P2,

−2Y1(Y1 + Z2
1 )

X3
1Z1

if P1 = P2.
(3)

Remark 3. It is simple to verify that our formulas obtained by change of variables
is exactly the same result obtained by Wang et al. in [3] using the geometric
interpretation of the group law.
Indeed, by setting x1 = X1

Z1
, x2 = X2

Z2
, y1 = Y1

Z2
1

and y2 = Y2

Z2
2

in their Miller

function obtained for the curve Ed,µ : y2 = dx4 + 2µx+ 1 (by taking µ = 0), we
get exactly the same result that we found above. However, we take an advantage
based on our coordinates system to obtain more efficient formulas in pairings
computation.
The correctness of the formulas in this work can be checked at
http://www.prmais.org/Implementation-Pairings-Jacobi.txt.



3.1 Simplification of the Miller Function

We apply the twist technique described in Section 2.3 to the present case of
quartic twist (see the isomorphism in Proposition 1). This enables the point Q in
the Tate and twisted Ate pairings computation to be chosen as [ωXQ : YQ : ZQ]
or [xQω : yQ : 1] in affine coordinates where XQ, YQ, ZQ, xQ and yQ are in
Fqk/4 . Thus

hR,S(xQω, yQ, 1) =
2X2

3x
2
Qω

2

X2
3 (yQ+1)−x2

Q
ω2(Y3+Z

2
3 )

(
− 1

2
λ

(
yQ+1

x2
Q
ω4

)
ω2 +

(
yQ+1

x3
Q
ω4

)
ω − α

4

)
.

Write −α4 = A
D and − 1

2λ = B
D then

hR,S(xQω, yQ, 1) =
2X2

3x
2
Qω

2

D(X2
3 (yQ+1)−x2

Q
ω2(Y3+Z

2
3 ))

(
B

(
yQ+1

x2
Q
ω4

)
ω2 +D

(
yQ+1

x3
Q
ω4

)
ω +A

)
.

We can easily see that the denominator D(X2
3 (yQ + 1) − x2Qω2(Y3 + Z2

3 )) and

the factor 2X2
3x

2
Qω

2 of hR,S belong to Fqk/2 . As qk/2− 1 divides qk− 1, they are
sent to 1 during the final exponentiation (last step in the Algorithm 1). So they
can be discarded in pairing computation and we only have to evaluate

h̃R,S(xQω, yQ, 1) = B

(
yQ + 1

x2Qω
4

)
ω2 +D

(
yQ + 1

x3Qω
4

)
ω +A.

Since Q = (xQω, yQ, 1) is fixed during pairing computation, the quantities
yQ+1

x3
Qω

4

and
yQ+1

x2
Qω

4 can be precomputed in Fqk/4 , once for all steps. Note that each of the

multiplications D
(
yQ+1

x3
Qω

4

)
and B

(
yQ+1

x2
Qω

4

)
costs k

4m1, since A,B,D ∈ Fq.

Efficient computation of the main multiplication in Miller’s algorithm
Depending on the form of the function h̃R,S and the field Fqk , the main mul-
tiplication in Miller’s algorithm which enables to update the function f can be
done efficiently. In this work, the expression of h̃R,S has a nice form: the term

ω3 is absent and A ∈ Fq. So, The multiplication by h̃R,S will be more efficient
than the multiplication with an ordinary element of Fqk (which is denoted mk)

– If the schoolbook multiplication is used for the multiplication in Fqk , the

cost of the multiplication by h̃R,S is not mk but
(
1
k + 1

2

)
mk. See Appendix

A for details.

– if we are using pairing friendly fields for elliptic curves with quartic twists,
the embedding degree will be of the form k = 2i (see [25]). Then we follow
[26] and the cost of a multiplication or a squaring in the field Fqk is 3i

multiplications or squaring in Fq using Karatsuba multiplication method.

Thus, the cost of a multiplication by h̃R,S is
(

2·3i−1+2i−1

3i

)
mk. See Appendix

A for details.



In the following of this section β stands for 1
k + 1

2 or 2·3i−1+2i−1

3i so that the cost

of the multiplication of the function f in the Miller algorithm by h̃R,S is βmk

instead of mk for an ordinary multiplication in Fqk .
In what follows, we will compute A, B and D. For efficiency the point is rep-
resented by (X : Y : Z : X2 : Z2) with Z 6= 0. This is the first time that this
representation is used when d 6= 1. Thus we will use the points P1 = (X1 : Y1 :
Z1 : U1 : V1) and P2 = (X2 : Y2 : Z2 : U2 : V2) where Ui = X2

i , Vi = Z2
i , i = 1, 2.

Remark 4. Note that if X2 and Z2 are known, then expressions of the form XZ
can be computed using the formula ((X + Z)2 − X2 − Z2)/2. This allows the
replacement of a multiplication by a squaring presuming a squaring and three
additions are more efficient than a multiplication. The operations concerned with
this remark are followed by ∗ in Tables 1 and 2.

3.2 Doubling Step in the Miller Algorithm

When P1 = P2, from Equations (2) and (3), we have

A = Y1(Y1 + Z2
1 ),

B = −X2
1 (Y1 + 2Z2

1 ),
D = 2X3

1Z1.

The computation of A, B, D and the point doubling can be done using the
algorithm in Table 1 with 3m1 +7s1 +1mc (or 4m1 +6s1 +1mc according to the
Remark 4). Thus, the doubling step in the Miller algorithm requires a total of
βmk + 1sk +

(
k
2 + 3

)
m1 + 7s1 + 1mc (or βmk + 1sk +

(
k
2 + 4

)
m1 + 6s1 + 1mc).

Operations V alues Cost

U := U2
1 U = X4

1 1s1
V := V 2

1 V = Z4
1 1s1

Z3 := V − dU Z3 = Z4
1 − dX4

1 1mc
E := ((X1 + Z1)2 − U1 − V1)/2 * E = X1Z1 1s1 (or 1m1)
D := 2U1E D = 2X3

1Z1 1m1

A := (2Y1 + V1)2/4− U A = Y1(Y1 + Z2
1 ) 1s1

B := −U1(Y1 + 2V1) B = −X2
1 (Y1 + 2Z2

1 ) 1m1

X3 := 2EY1 X3 = 2X1Y1Z1 1m1

V3 := Z2
3 V3 = Z2

3 1s1
Y3 := 2V − Z3 Y3 = dX4

1 + Z4
1 = Y 2

1 -
Y3 := 2Y 2

3 − V3 Y3 = 2Y 4
1 − Z2

3 1s1
U3 := X2

3 U3 = X2
3 1s1

Total cost: 3m1 + 7s1 + 1mc (or 4m1 + 6s1 + 1mc )
Table 1. Combined formulas for the doubling step.



3.3 Addition step in the Miller algorithm

When P1 6= P2, from Equations (2) and (3), we have

A = (Y1 + Z2
1 )(Y2 + Z2

2 )(Z1X2 − Z2X1),
B = X3

1Z2(Y2 + Z2
2 )−X3

2Z1(Y1 + Z2
1 ),

D = X1X2[−X2
1 (Y2 + Z2

2 ) +X2
2 (Y1 + Z2

1 )].

Using the algorithm in Table 2 the computation of A, B, D and the point
addition can be done in 12m1 + 11s1 + 1mc (or 18m1 + 5s1 + 1mc according to
Remark 4). Applying mixed addition (Z2 = 1) which can always be done in our
case, this cost is reduced to 12m1 + 7s1 + 1mc (or 15m1 + 4s1 + 1mc).

Operations V alues Cost

U := Y1 + V1 U = Y1 + Z2
1 -

V := Y2 + V2 V = Y2 + Z2
2 -

R := ((Z2 +X1)
2 − V2 − U1)/2 * R = Z2X1 1s1 (or 1m1)

S := ((Z1 +X2)
2 − V1 − U2)/2 * S = Z1X2 1s1 (or 1m1)

A := S − R A = Z1X2 − Z2X1 -
A := AV A = (Y2 + Z2

2 )(Z1X2 − Z2X1) 1m1

A := AU A = (Y1 + Z2
1 )(Y2 + Z2

2 )(Z1X2 − Z2X1) 1m1

U := U2U U = X2
2 (Y1 + Z2

1 ) -
V := U1V V = X2

1 (Y2 + Z2
2 ) 1m1

B := RV − SU B = X3
1Z2(Y2 + Z2

2 )−X
3
2Z1(Y1 + Z2

1 ) 2m1

D := ((X1 +X2)
2 − U1 − U2)/2 * D = X1X2 1s1 (or 1m1)

E := dD2 E = d(X1X2)
2 1mc+ 1s1

D := D(U − V ) D = X1X2[−X2
1 (Y2 + Z2

2 ) +X2
2 (Y1 + Z2

1 )] 1m1

X3 := (R + S)(R− S) X3 = X2
1Z

2
2 − Z

2
1X

2
2 1m1

W1 := ((X1 + Z1)
2 − U1 − V1)/2 * W1 = X1Z1 1s1 (or 1m1)

W2 := ((X2 + Z2)
2 − U2 − V2)/2 * W2 = X2Z2 1s1 (or 1m1)

Z3 := W1Y2 −W2Y1 Z3 = X1Z1Y2 −X2Z2Y1 2m1

U := Y1Y2 U = Y1Y2 1m1

V := ((Z1 + Z2)
2 − V1 − V2)/2 * V = Z1Z2 1s1 (or 1m1)

V := V 2 + E V = (Z1Z2)
2 + d(X1X2)

2 1s1
E := (R− S)2 E = (X1Z2 −X2Z1)

2 1s1
U3 := X2

3 U3 = X2
3 1s1

V3 := Z2
3 V3 = Z2

3 1s1
Y3 := E(U + V )− V3 Y3 = (X1Z2 −X2Z1)

2(Y1Y2 + (Z1Z2)
2+

d(X1X2)
2)− Z2

3 1m1

Total cost: 12m1 + 11s1 + 1mc (or 18m1 + 5s1 + 1mc )

Table 2. Combined formulas for the addition step.

Thus, the addition step in the Miller algorithm requires a total of βmk +(
k
2 + 12

)
m1 + 7s1 + 1mc (or βmk +

(
k
2 + 15

)
m1 + 4s1 + 1mc).

3.4 Comparison

The comparison of results is summarized in Table 3 and Table 4. The costs pre-
sented are for one iteration of the Miller algorithm and are both for the Tate
and twisted Ate pairings and curves with a quartic twist. In each case, we also
present an example of comparison in the cases k = 8 and k = 16 since these
values are the most appropriate for cryptographic applications when a quartic



twist is used [25]. In Table 3, we assume that Schoolbook multiplication method
is used for the arithmetic in the extension fields Fqk .

Curves Doubling Mixed Addition
Weierstrass 1mk + 1sk + ( k2 + 2)m1+ 1mk + ( k2 + 9)m1 + 5s1
(b=0)[2] 8s+ 1mc

Jacobi quartic 1mk + 1sk + ( k2 + 5)m1 + 6s1 1mk + ( k2 + 16)m1 + 1s1+
(a=0)[3] 1mc

This work ( 1
k + 1

2 )mk + 1sk + ( k2 + 3)m1+ ( 1
k + 1

2 )mk + ( k2 + 12)m1+
7s1 + 1mc 7s1 + 1mc

Example 1 k = 8 m1 = s1 = mc k = 8 m1 = s1 = mc
Weierstrass 98m1 + 16s1 + 1mc 115m1 77m1 + 5s1 82m1

(b=0)[2]
Jacobi quartic 101m1 + 14s1 115m1 84m1 + 1s1 + 1mc 86m1

(a=0)[3]
This work 75m1 + 15s1 + 1mc 91m1 57m1 + 6s1 + 1mc 64m1

Example 2 k = 16 m1 = s1 = mc k = 16 m1 = s1 = mc
Weierstrass 386m1 + 24s1 + 1mc 407m1 273m1 + 5s1 278m1

(b=0)[2]
Jacobi quartic 389m1 + 22s1 411m1 280m1 + 1s1 + 1mc 282m1

(a=0)[3]
This work 275m1 + 23s1 + 1mc 299m1 144m1 + 27s1 + 1mc 172m1

Table 3. Comparison of our Tate and twisted Ate pairings formulas with the previous
fastest formulas using Schoolbook multiplication method

Remark 5. If we assume that m1 = s1 = mc and k = 16 then we obtain in this
work a theoretical gain of 26% and 27% with respect to Weierstrass curves and
previous work on Jacobi quartic curves for the doubling step. Similarly, for the
addition step we obtain a theoretical gain of 38% and 39% over Weierstrass and
Jacobi quartic curves respectively. In the case k = 8, the theoretical gain is 22%
and 26% with respect to Weierstrass curves and Jacobi quartic curves for the
addition step and 26% for the doubling step, see Table 3.

In Table 4, we assume that Karatsuba method is used for the arithmetic in
Fqk for curves with k = 2i.

Remark 6. We assume again that m1 = s1 = mc. For k = 8 and for the dou-
bling step we obtain a theoretical gain of 8% over Weierstrass curves and Jacobi
quartic curves (a=0)[3]. For the addition step, the improvement is up to 6% over
the result on Jacobi quartic curves in [3]. When k = 16 the gain is 11% for the
doubling step over Weierstrass curves. The improvement is 16% in addition step
over Jacobi quartic curves, see Table 4.

Remark 7. The security and the efficiency of pairing-based systems requires us-
ing pairing-friendly curves. The Jacobi models of elliptic curves studied in this



Curves Doubling Mixed Addition
Weierstrass 1mk + 1sk + ( k2 + 2)m1+ 1mk + ( k2 + 9)m1 + 5s1
(b=0)[2] 8s+ 1mc

Jacobi quartic 1mk + 1sk + ( k2 + 5)m1 + 6s1 1mk + ( k2 + 16)m1 + 1s1+
(a=0)[3] 1mc

This work
(

2·3i−1+2i−1

3i

)
mk + 1sk + ( k2 + 3)m1+

(
2·3i−1+2i−1

3i

)
mk + ( k2 + 12)m1+

7s1 + 1mc 7s1 + 1mc
Example 1 k = 8 m1 = s1 = mc k = 8 m1 = s1 = mc
Weierstrass 33m1 + 35s1 + 1mc 69m1 40m1 + 5s1 45m1

(b=0)[2]
Jacobi quartic 36m1 + 33s1 69m1 47m1 + 1s1 + 1mc 49m1

(a=0)[3]
This work 29m1 + 34s1 + 1mc 64m1 38m1 + 7s1 + 1mc 46m1

Example 2 k = 16 m1 = s1 = mc k = 16 m1 = s1 = mc
Weierstrass 91m1 + 89s1 + 1mc 181m1 98m1 + 5s1 103m1

(b=0)[2]
Jacobi quartic 94m1 + 87s1 181m1 105m1 + 1s1 + 1mc 107m1

(a=0)[3]
This work 73m1 + 88s1 + 1mc 162m1 82m1 + 7s1 + 1mc 90m1

Table 4. Comparison of our formulas for theTate and twisted Ate pairings with the
previous fastest formulas using Karatsuba multiplication method.

work are isomorphic to Weierstrass curves. Thus we can obtain pairing friendly
curves of such models using the construction given by Galbraith et al.[27] or by
Freeman et al.[25]. Some examples of pairing friendly curves of Jacobi quartic
form can be found in [3].

4 Formulas for Ate Pairing and Optimal Pairing on the
Jacobi Quartic Elliptic Curve Y 2 = dX4 + Z4

In this section, we extend the results of the previous section to the computation of
Ate pairing and optimal pairing. Our results show that among known curves with
quartic twists, the Jacobi model Y 2 = dX4 + Z4 offers the best performances
for these different pairings. The section is divided as follows: In Section 4.1,
we rewrite the Miller function and the addition formulas for Ate and optimal
pairings. In Section 4.2 we give the cost of Ate pairing. The Section 4.3 is devoted
to a comparative study of these pairings on the curves of Jacobi and Weierstrass
forms.

4.1 Ate Pairing Computation on Ed : Y 2 = dX4 + Z4

According to the definition of Ate and optimal pairing, the point addition and
point doubling are performed in Fqk . But thanks to the twist we will consider
the points [ωXi : Yi : Zi] where Xi, Yi and Zi belong to Fqk/4 , i = 1, 2, 3 (see
Proposition 1). We also know that for Ate and optimal pairings the point P is
fixed during computations and has its coordinates in the base field Fq. Thus this
point can be taken as [xP : yP : 1].



Point addition and point doubling on Ed for Ate and optimal pairings.
We rewrite here formulas for point doubling and point addition on the curve Ed
from those in Section 2.1 with the difference that points have the form [ωXi :
Yi : Zi] where Xi, Yi and Zi belong to Fqk/4 , i = 1, 2, 3.

Doubling. [ωX3 : Y3 : Z3] = 2[ωX1 : Y1 : Z1] such that

X3 = 2X1Y1Z1,
Z3 = Z4

1 − dX4
1ω

4,
Y3 = 2Y 4

1 − Z2
3 .

Addition. [ωX3 : Y3 : Z3] = [ωX1 : Y1 : Z1] + [ωX2 : Y2 : Z2] such that

X3 = X2
1Z

2
2 − Z2

1X
2
2 ,

Z3 = X1Z1Y2 −X2Z2Y1,
Y3 = (X1Z2 −X2Z1)2(Y1Y2 + (Z1Z2)2 + dω4(X1X2)2)− Z2

3 .

The Miller function for Ate and optimal pairings computation on Ed.
The Miller function on the Jacobi quartic Ed is given in Section 3:

hR,S(X,Y, Z) =
4X2

3X
2

2X2
3 (Y + Z2)− 2X2(Y3 + Z2

3 )

(
ZY + Z3

X3
− 1

2
λ

(
Y + Z2

X2

)
− α

4

)
.

We follow the notations of Section 3.1 by setting −α
4

=
A

D
and −1

2
λ =

B

D
.

When we replace [Xi : Yi : Zi] by [ωXi : Yi : Zi] and [X : Y : Z] by [xP : yP : 1],
a carefully calculation yields to:

hR,S(xP , yP , 1) =
2X2

3x
2
P

Dω2[X2
3 (yP + 1)− x2P (Y3 + Z2

3 )]

(
B
(
yP+1

x2
P

)
ω3 +Aω +Dω4

(
yP+1

x3
P

))
.

The factors A, B and D are exactly the same as in the case of the Tate pairing
but with the main difference that they are in Fqk/4 instead of Fq. The addi-
tion and doubling formulas for (ωXi : Yi : Zi) where Xi, Yi and Zi belong to
Fqk/4 , i = 1, 2, 3 clearly show that X2

3 and Y3 + Z2
3 are also in Fqk/4 such that

2X2
3x

2
P

Dω2[X2
3 (yP + 1)− x2P (Y3 + Z2

3 )]
∈ Fqk/2 . Then it can be discarded in pairing

computation thanks to the final exponentiation, as we explained in the case of
the Tate pairing. Thus we only have to evaluate

h̄R,S(xP , yP , 1) = B

(
yP + 1

x2P

)
ω3 +Aω +Dω4

(
yP + 1

x3P

)
.

Since P = (xP , yP , 1) is fixed during pairing computation, the quantities
(yP + 1)

x3P
and

(yP + 1)

x2P
can be precomputed in Fq once for all steps. Note that

each of the multiplications D

(
yP + 1

x3P

)
and B

(
yP + 1

x2P

)
costs

k

4
m1.



Remark 8. We can use the fact that in the expression of h̄ the term ω2 is absent.
In this case, in Miller’s algorithm, the cost of the main multiplication in Fqk is
not 1mk but (3/4)mk if we use schoolbook method and is (8/9)mk if we use
Karatsuba multiplication with pairing friendly curves, i.e k = 2i. See Appendix
B for details.

Remark 9. Since the coefficients of the Miller function for Ate pairing are the
same as for the Tate pairing, these coefficients and points operations can be
computed in the same manner it was done in the previous section with the main
difference that computations are done in Fqk/4 .

4.2 Cost of Ate and Optimal Pairing on Ed

In Table 5 and Table 6, we summarise and compare the costs for one iteration
for both Ate and optimal Ate pairings on the Jacobi curve Ed : Y 2 = dX4 +Z4

and on the Weierstrass curve Wd : y2 = x3− 4dx. We also present these costs in
the cases of elliptic curves of embedding degrees 8 and 16.
In Table 5 we assume that computations are made in Fqk using schoolbook
method.

Pairings Doubling Mixed Addition
Ate(Q,P) 1mk + 1sk + 2me + 8se+ 1mk + 9me + 5se + 2em1

Weierstrass (b=0)[2] 2em1 + 1mc
Ate(Q,P) 3/4mk + 1sk + 3me + 7se+ 3/4mk + 12me + 7se+
(This work) 2em1 + 1mc 2em1 + 1mc
Example 1 k = 8 m1 = s1 = mc k = 8 m1 = s1 = mc
Ate(Q,P)
Weierstrass (b=0)[2] 112m1 + 24s1 + 1mc 137m1 109m1 + 10s1 119m1

This work 99m1 + 22s1 + 1mc 122m1 107m1 + 14s1 + 1mc 122m1

Example 2 k = 16 m1 = s1 = mc k = 16 m1 = s1 = mc
Ate(Q,P)
Weierstrass (b=0)[2] 464m1 + 48s1 + 1mc 513m1 438m1 + 20s1 458m1

This work 410m1 + 44s1 + 1mc 455m1 430m1 + 28s1 + 1mc 459m1

Table 5. Comparisons of Ate and optimal Ate pairings formulas on Jacobi quartic and
Weierstrass elliptic curves using Schoolbook method

In Table 6 we assume that computations are made in Fqk using Karatsuba
method.

Remark 10. If we assume that m1 = s1 = mc and Schoolbook multiplication
method is used then for Ate pairing computation we obtain in this work a theo-
retical gain of 11% with respect to Weierstrass curves for the doubling step. The
improvement is 4% when Karatsuba method is used. Our addition step is not
better. See Table 5 and Table 6.

4.3 Comparison

Let us now compare different pairings on Jacobi quartic curves and Weierstrass
elliptic curves with quartic twists. Especially we determine the operation counts



Pairings Doubling Mixed Addition
Ate(Q,P) 1mk + 1sk + 2me + 8se + 2em1 + 1mc 1mk + 9me + 5se + 2em1

Weierstrass (b=0)[2]
Ate(Q,P) 8/9mk + 1sk + 3me + 7se+ 8/9mk + 12me + 7se+
(This work) 2em1 + 1mc 2em1 + 1mc
Example 1 k = 8 m1 = s1 = mc k = 8 m1 = s1 = mc
Ate(Q,P) 37m1 + 51s1 + 1mc 89m1 58m1 + 15s1 73m1

Weierstrass (b=0)[2]
Ate(Q,P) This work 37m1 + 48s1 + 1mc 85m1 64m1 + 21s1 + 1mc 86m1

Example 2 k = 16 m1 = s1 = mc k = 16 m1 = s1 = mc
Ate(Q,P) 107m1 + 153s1 + 1mc 261m1 170m1 + 45s1 215m1

Weierstrass (b=0)[2]
Ate(Q,P)This work 107m1 + 144s1 + 1mc 252m1 188m1 + 63s1 + 1mc 252m1

Table 6. Comparisons of Ate and optimal Ate pairings formulas on Jacobi quartic and
Weierstrass elliptic curves using Karatsuba method

for the Tate, twisted Ate, Ate and optimal Ate pairings in a full loop of Miller’s
algorithm, based on the fastest operations counts summarized in Tables 3, 4, 5
and 6. We suppose that we are in the context of optimized pairing such that we
can restricted ourselves to the cost of the doubling step. Indeed, in this case r
is chosen to have a lower Hamming weight such that the computation in Miller
algorithm can be done quickly by skipping many addition steps. For elliptic
curves with embedding degrees k = 8, we consider the parameters for 112 bits
and 128 bits security level. We also consider elliptic curves with embedding de-
grees k = 16 at 128 bits and 192 bits security levels. These values have been
selected such that we obtain approximately the same security level both in the
elliptic curve defined over the base field Fq and in the multiplicative group of
the finite field Fqk .
For these parameters we give the approximate number of operations in the base
field for all the Miller iterations. For the Miller loop in Ate pairing computa-
tion we consider an average trace t ∼ √q. For the values in Table 7, we assume
that m1 = s1 = mc. The rows with abbreviation Kar means that the values
in these rows are obtained using Karatsuba multiplication method whereas the
rows started with Sco means that the values in these rows are obtained using
schoolbook multiplication method. W and J stand for Weierstrass [2] and Ja-
cobi elliptic (this work) curves models respectively, since this work is the first
that present the computation of Ate pairing and its variations on Jacobi elliptic
curves.

From the values in Table 7 we draw the following observation: The different
pairings computed in this work are always faster in the Jacobi quartic elliptic
curves with respect to the Weierstrass elliptic curves. The gain obtained is up to
27% and depends on the method used for multiplications and the security level.



Tate twisted Ate Ate Optimal Ate
Parameters Sec. Arith. W J (This W J (This W J (This W J (This

levels in F
qk

[2] work) [2] work) [2] work) [2] work)

k = 8, r ≈
2224 q ≈ 2336 112

Kar. 15456 14336 23184 21504 14952 14448 4984 4816
Sco. 25760 20384 38640 30576 23016 20496 7672 6832

k = 8, r ≈
2256 q ≈ 2384 128

Kar. 17664 16384 26496 24576 17088 16512 5696 5504
Sco. 29440 23296 44160 34944 26304 23424 8768 7808

k = 16, r ≈
2256 q ≈ 2320 128

Kar. 46336 41472 115840 103680 41760 40320 8352 8064
Sco. 105216 76544 263040 191360 82080 72800 16416 14560

k = 16, r ≈
2384 q ≈ 2480 192

Kar. 69504 62208 173760 155520 62640 60480 12528 12096
Sco. 157824 114816 394560 287040 123120 109200 24624 21840

Table 7. Comparison of the cost of the various Miller algorithms for pairings on Jacobi
quartic curves and Weierstrass curves: s1 = m1 = mc

5 Implementation and Example

In this section we consider the familly of elliptic curves of embedding degree
8 described in [28] to verify our formulas and to implement the Tate, Ate and
optimal Ate pairings. This familly of curves has the following parameters:

r = 82x4 + 108x3 + 54x2 + 12x+ 1,
q = 379906x6 + 799008x5 + 705346x4 + 333614x3 + 88945x2 + 12636x+ 745,
t = −82x3 − 108x2 − 54x− 8.

For x = 24000000000010394, the values of r, q, the trace t and the curve coeffi-
cient d are:

r = 27205632000047130716160030618261401480840452517707677193482845476
817,

q = 726011672004446604951703464791789328991217313776602768811505320697
58156754787842298703647640196322590069,

d = 4537572950027791280948146654948683306195108211103767305071908254359
8847971742401436689779775122701618793,

t = −1133568000001472850432000637893917136092090964291460.

We recall that G1 = E(Fq)[r] and G2 = E
(
Fq
)

[r]∩ Ker(πq − [q]). To ob-
tain an optimal pairing in the Jacobi quartic curve Ed with embedding de-
gree 8, we follow the approach described by Vercauteren in [15]. Applying the
ShortestVectors() function in Magma [29] to the lattice

L =


r 0 0 0
−q 1 0 0
−q2 0 1 0
−q3 0 0 1

 ,

we obtain the following vector

V = [c0, c1, c2, c3] = [x, 0, 0, 3x+ 1].

An optimal pairing is then given by:

eo : G2 ×G1 → µr

(Q,P ) 7→
(
f3q

3+1
x,Q (P ) ·H1

) q8−1
r

,



where H1 = (h[x]Q,[x]Q(P ) ·h[x]Q,[2x]Q(P ) ·h[3x]Q,[1]Q(P ))q
3

and s1 = (3x+ 1)q3.
Indeed, this is a straightforward application of Theorem 3. From that theorem
we have c0 = x, c1 = c2 = 0, c3 = 3x + 1 and si =

∑3
j=i cjq

j . Observe that for

our example s1 = s2 = s3 = c3q
3 = (3x + 1)q3. We then apply Theorem 3 to

obtain the following

eo(Q,P ) =
(
fx,Q(P ) · fq

3

3x+1,Q(P ) · h[s1]Q,[x]Q(P ) · h2[s1]Q,P∞(P )
) q8−1

r

.

Observe also that f1,Q = 1 and h2[s1]Q,P∞(P ) = 1. Also, h[s1]Q,[x]Q(P ) will be sent

to 1 during the final exponentiation because from λ = mr =
∑l
i=0 ciq

i = x+ s1,
we get [s1]Q + [x]Q = P∞. We then apply the Property 1 to express f3x+1,Q

in terms of fx,Q as follows: f3x+1,Q = f3x,Q · h[x]Q,[x]Q · h[x]Q,[2x]Q · h[3x]Q,[1]Q.
Finally, by using the explanation in Section 4.1, the function hR,S is simplified
to hR,S . We can also observe that, if x is negative then by using the divisors we
can take fx,Q = 1/(f−x,Q ·h[x]Q,[−x]Q) and h[x]Q,[−x]Q is also sent to 1 during the
final exponentiation. We remark that for this example, we have log 2(x) ≈ 54
iterations of Miller’s algorithm which is equal to log2(r)/ϕ(8), and this agree
with the definition of an optimal pairing.
The Magma code for the implementation of the Tate, Ate and optimal Ate
pairings is available at
http://www.prmais.org/Implementation-Pairings-Jacobi.txt.

6 Conclusion

In this paper we have computed and implemented the Tate, Ate, twisted Ate and
optimal pairings on the Jacobi quartic curve Ed : Y 2 = dX4 +Z4. The result in
Tate pairing computation is a significative improvement up to 39% of the results
of Wang et al. [3] on the same curve. Comparatively to the Weierstrass curve,
our result is 27% more efficient. Ate pairing, twisted and optimal Ate pairings
are computed on this curve for the first time. Our results are 27% more faster
than in the case of Weierstrass curves [2]. According to our results the Jacobi
quartic curve is then, to date, the best curve among curves with quartic twists
which gives the most efficient result in pairings computation.

Acknowledgements The authors thank the anonymous referees and the pro-
gram committee of Pairing 2012 for their useful comments on the first version
of this work.
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A Cost of the Main Multiplication in Miller’s Algorithm
for the Tate and Twisted Ate pairings

The main multiplication in Miller’s algorithm is of the form f · h̃ where f and h̃
are in Fqk . Since Fqk is a Fqk/4 -vector space with basis {1, ω, ω2, ω3}, f and h̃

can be written as : f = f0 + f1ω+ f2ω
2 + f3ω

3 and h̃ = h0 +h1ω+h2ω
2 +h3ω

3

with fi and hi in Fqk/4 , i = 0, 1, 2, 3. However in our case h3 = 0, h0 ∈ Fq and
k = 2i.

Schoolbook method: A full multiplication f.h̃ costs k2 multiplications in
the base field Fq using schoolbook method. But thanks to the particular form
of h0 and h3, each of the multiplications fi · h0 costs k

4m1 and each of the

multiplications fi · h1, fi · h2 costs k2

16m1. The final cost of the product f · h̃ in

the base field Fq is (8k
2

16 + 4k4 )m1 = (k
2

2 + k)m1. Finally the ratio of the cost in

this case by the cost of the general multiplication is
k2

2 +k

k2 = 1
2 + 1

k .

Karatsuba method: The computation of f · h̃ is done here using a particular
Karatsuba multiplication. Instead of writing f · h̃ in the classical way (see for
example Appendix B), we write it as follows:

f · h̃ = (f0 + f1ω + f2ω
2 + f3ω

3)(h0 + h1ω + h2ω
2) =

(f0 + f1ω + (f2 + f3ω)ω2)(h0 + (h1 + h2ω)ω)

In this form, the product is obtained using the following three products computed
using a classical Karatsuba multiplication: h0(f0+f1ω) which costs 2i−1m1, (f2+
f3ω)(h1+h2ω) which costs 3(3i−2)m1 and (f0+f2+(f1+f3)ω)(h1+(h0+h2)ω)
which costs 3(3i−2)m1. The final cost is then 2 · 3i−1 + 2i−1.

The ratio is 2·3i−1+2i−1

3i .

B Cost of the Main Multiplication in Miller’s Algorithm
for Ate pairing

The main multiplication in Miller’s algorithm is of the form f · h̄ where f and h̄
are in Fqk . Since Fqk is a Fqk/4 -vector space with basis {1, ω, ω2, ω3}, f and h̄



can be written as : f = f0 + f1ω+ f2ω
2 + f3ω

3 and h̄ = h0 +h1ω+h2ω
2 +h3ω

3

with fi and hi in Fqk/4 , i = 0, 1, 2, 3 and h2 = 0.

Schoolbook method: A full multiplication f.h̄ in Fqk costs k2 multiplications
in the base field Fq using schoolbook method. But thanks to the fact that h2 = 0,

each of the 12 multiplications fi · hi costs k2

16m1, i = 0, 1, 2, 3. Then the total

cost of the product f · h̄ is 12k
2

16m1= 3k2

4 m1. Finally the ratio of the cost in this

case by the cost of the general multiplication is
3k2

4

k2 = 3
4 .

Karatsuba method: k = 2i. A full multiplication f.h̄ in Fqk is computed using
Karatsuba multiplication as follows :

f · h̄ = (f0 + f1ω + f2ω
2 + f3ω

3)(h0 + h1ω + h2ω
2 + h3ω

3) =

(f0 + f1ω + (f2 + f3ω)ω2)(h0 + h1ω + (h2 + h3ω)ω2)

In this form, this product is obtained by computing the three products u1 =
(f0 + f1ω)(h0 + h1ω) , v1 = (f2 + f3ω)(h2 + h3ω) and w1 = (f0 + f2 + (f1 +
f3)ω)(h0 + h2 + (h1 + h3)ω). Applying again Karatsuba multiplication to u1, v1
and w1, this costs 3(3i−2)m1 for each product such that the cost of the main
multiplication f · h̄ using Karatsuba is 3im1.
Now in our case, h2 = 0 so that the computation of v1 costs only 2(3i−2) and
the total cost for computing f · h̄ is 8 · 3i−2m1.
The ratio is then 8/9.


