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ABSTRACT
Data Driven Time Synchronization (DDTS) provides
synchronization across sensors by using underlying char-
acteristics of data collected by an embedded sensing sys-
tem. We apply the concept of Data Driven Time Syn-
chronization through a seismic deployment consisting
of 100 seismic sensors to repair data that was not time
synchronized correctly. This deployment used GPS for
time synchronization but due to system faults common
to environmental sensing systems, data was collected
with large time offsets. In seismic deployments, offset
data is often never used but we show that Data Driven
Time Synchronization can recover the synchronization
and make the data usable. To implement Data Driven
Time Synchronization to repair the time offsets we use
microseisms as the underlying characteristics. Micro-
seisms are waves that travel through the earth’s crust
and are independent of the seismic events used for the
study of the earth’s structure. We have developed a
model of microseism propagation through a linear seis-
mic array and use the model to obtain time correction
shifts. By simulating time offsets in real data which does
not have offsets, we determined that this method is able
to repair the offset to less than 0.2 seconds. Our ongo-
ing work will attempt to refine the model to correct the
offsets to 0.05 seconds and evaluate how errors in the
correction affect seismic results such as event location.
Data Driven Time Synchronization may be applicable
to other high data rate embedded sensing applications
such as acoustic source localization.
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1. INTRODUCTION
Time synchronization is a core requirement of embed-

ded sensing applications because the time provides the
means to correlate events across sensors.

The use of the correlation varies by application but
one common use is event source localization. In seis-
mic applications the arrival of events at stations is used
for localization of earthquakes. Timing differences in
the features of the events such as P-waves and S-waves
are used for building models of the crust and mantle
(seismic tomography). In existing embedded sensing
applications time synchronization is provided by a GPS
receiver or by a network time synchronization service.
These solutions work well but are not always fault toler-
ant enough because they are susceptible to poor wireless
connectivity, network partitions, start up lag, and un-
reliable and unpredictable hardware. When such faults
occur, the data is deemed unusable. In current prac-
tice, if the time synchronization is known to be off for a
particular station in a seismic network, the research the
data can be used for is limited since there is no good
way to consistently recover the data.

We propose an approach called Data Driven Time
Synchronization (DDTS) to recover data that is com-



promised by time synchronization faults. DDTS uses
an underlying characteristic of the data being collected
to provide synchronization. The DDTS process builds a
model for the characteristic and uses it to compute time
correction shifts to apply to the time offset data.

We explore DDTS by applying the concept to recently
recorded seismic data from the MesoAmerica Subduc-
tion Experiment (MASE). These data contain time off-
sets due to equipment faults. MASE was a joint project
between the Center for Embedded Networked Sensing
(CENS), the Tectonics Observatory Caltech, and the
Universidad Nacional Autonoma de Mexico (UNAM) [9].
The 2 year deployment involved installation of a string
of 100 seismic stations seen in Figure 1 stretching 500
km from Acapulco, through Mexico City, to Tampico.
Time synchronization was performed by the analog to
digital converter (ADC) which converted the GPS sig-
nal to a time stamp in the data. As with any deploy-
ment, even with this robust hardware, there still were
problems: GPS cables were cut and ADCs were miscon-
figured. These problems combined with transient power
failures were exacerbated by a fault in the ADCs which
caused large time offsets after a reboot. Up to 7% of the
data has time offsets ranging from 10’s of seconds up to
3000 seconds. Figure 2 shows an approximate 260 sec-
ond time offset discovered for the ZACA station during
a local event approximately 140 km South East of the
MASE array.

We apply DDTS to the time offset data from the
MASE deployment. The underlying characteristics used
to obtain the time offsets are microseisms: background
seismic noise generated by winds in the oceans, which
has no correlation to actual seismic events of interest.
We have developed a model of the microseism propa-
gation through the MASE seismic array and use it to
derive time correction shifts to repair the time offsets
to within 0.2 seconds. We apply this to our near-linear
array in Mexico. Future work involves extending our
approach to areal arrays. Many portable seismic exper-
iments have been conducted in the past with the data
stored at the IRIS (Incorporated Research Institutes for
Seismology) [1] data center. Most suffer similar loss of
time as was experienced in the MASE experiment. Our
method could be applied to these data rendering them
useful for further analysis.

Section 2 introduces Data Driven Time Synchroniza-
tion and microseisms. Section 3 explains how we detect
the time offsets. Section 4 details our model of micro-
seism propagation and the processes of recovering time.
In section 5 we evaluate Data Driven Time Synchroniza-
tion. Sections 6, 7, and 8 discuss the broader applica-
bility of data driven time synchronization, related work,
and our future work.
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Figure 1: A map of the MASE deployment.

2. DATA DRIVEN TIME SYNCHRONIZA-
TION

Data Driven Time Synchronization (DDTS) uses a
characteristic of the data collected by the sampling sys-
tem to recover incorrectly time-synchronized data. The
success of DDTS depends on developing a model of a
characteristic of the signal to apply to the data to be
synchronized. Ideally, there are two requirements of
the underlying characteristic for DDTS to be success-
ful. First, the characteristic used is not correlated to
the features of the phenomena for which time synchro-
nization is required. Using the same characteristic to re-
synchronize data and to obtain a scientific result from
the data introduces an unacceptable amount of uncer-
tainty. For example, using teleseisms, large distance
earthquakes, to resynchronize the data and then using
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Figure 2: An example of the time offset experienced at
the ZACA station during a local event.
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Figure 3: 60 seconds of raw unfiltered data and filtered
data from MASE. A spectrum of 17 minutes of MASE
data. The 6 second microseisms are visible in both the
time and frequency domains.

the repaired teleseisms to do tomography is undesirable.
Second, the characteristic should be either omnipresent
or occur at regular intervals such that DDTS can be
applied over the entire deployment.

2.1 Microseisms
A microseism is a type of seismic wave that is gener-

ated by the interference of oceanic surface waves. The
interference creates enough pressure on the ocean floor
to generate the seismic waves [12] [10]. Microseisms
travel through the oceanic and continental crusts. The
microseism period depends on the ocean depth and the
oceanic surface wave period generated by the wind.

Microseisms are omnipresent and exist in the 0.03 to
0.3 Hz frequency range, requiring the use of broadband
seismometers. In the MASE data, the dominant period
of the microseism energy traveling north through the

array is 6 seconds, while the dominant period of the
microseism energy traveling south through the array is
approximately 20 seconds. Figure 3 shows a frequency
spectrum of 17 minutes of MASE data (100Hz data fil-
tered and decimated to 1Hz). The approximate 6 sec-
ond period energy is the peak in the spectrum. Figure 3
also shows the waveform for 60 seconds of 100Hz MASE
data, both unfiltered and filtered. The approximate 6
second period microseisms is clearly visible in the fil-
tered data.

Microseisms are ideal for applying DDTS because they
meet both requirements: they are independent of earth-
quakes and are omnipresent. Microseisms are not gener-
ated by earthquakes and they do not cause earthquakes.
This independence makes them ideal for DDTS because
it allows earthquakes to be used as the primary means
to create models of the crust and the mantle.

Like all seismic signals, microseisms can be traced as
they travel across a seismic network. The propagation of
microseisms between two stations is called travel time.
Our goal is to develop a model of the microseism travel
time between stations so we can apply DDTS. With a
successful model we can predict the travel time for an
incorrectly time synchronized station and use that to
derive a time correction.

Unlike earthquakes, microseisms are continuous and
do not have an obvious starting point to try to line up
and track the signal across stations. To compute the
travel time, we use the lag-time of the peak value of the
cross correlation of windows of data from two stations.
The lag-time of the peak of the cross correlation is the
average travel time of the microseisms over the window.
The longer the window of data, the easier it is to deter-
mine the peak in the correlogram. Because microseisms
are weak, cross correlating very short windows results
in correlograms with no clear peak. For our work we
use 24 hour windows, which we refer to as short data
windows, and 360 day windows which we refer to as long
data windows.

An example of cross correlating two 360 day windows
of data from 2006 is shown in Figure 4. The corre-
lation is from South to North using station EL40 and
station TONA. The data was filtered with a bandpass
filter around 6 seconds then cross correlated by multi-
plying spectra obtained using the Fast Fourier Trans-
form (FFT) method. The period of the correlogram
shows that there exists a 6 second period oscillation in
the signals from both stations. The lag is the amount
of time the peak value is offset from zero and gives the
time one of the signals must be shifted to best line up
with the other signal. The positive lag indicates this
energy is traveling North, through EL40 to TONAa.

Surface wave energy travels at the group velocity which
is different from the phase velocity of the oscillations.
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Figure 4: The results of cross correlating 360 days of
data from stations EL40 and TONA. The envelope of
the correlogram is the dashed line. The group peak is
the peak in the envelope. Its lag-time is used to deter-
mine group velocity. Phase velocity, which we use, is
determined from the lag-time of a particular phase of
the oscillations. We use the peak of the oscillations as
a reference phase.

The correlogram has two peaks from which we can cal-
culate the corresponding travel times. The travel time
of the group peak is the lag-time of the peak of the en-
velope of the correlogram. The envelope is the overall
shape defined by the amplitude of the signal and is the
dashed line in Figure 4. The group velocity of the micro-
seisms is determined by the time of the group peak di-
vided into the distance between the stations. The group
velocity of the microseisms is around 2.5 km/s. The
phase peak is the peak of any one of the oscillations in
the correlogram. The phase velocity of the microseisms
is determined by the time of the phase peak divided
into the distance between the stations. For the 6 sec-
ond period phase the velocity is around 3 km/s. The
position of a specific phase peak depends on the dis-
tance between the stations, so when we look at any pair
of stations we have to take care in choosing the correct
phase peak. For DDTS and our data, we use the phase
velocity since in our experience, the group velocities are
more scattered and inconsistent between stations.

We can also cross correlate across the entire MASE
array, both North to South and South to North and see
microseisms traveling both directions. Figure 5 shows
the North to South cross correlation of all the stations
against the TEMP station in the North using 360 days
of data. Beacuse we cross correlated from the North to
South, the 6 second period North traveling microseisms
show up with a negative lag and the 20 second period
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Figure 5: The correlograms for a North to South cross
correlation sourced at station TEMP. Both the approx-
imately 6 second period South to North moving micro-
seisms and the approximately 20 second period North
to South microseisms are visible.

South traveling microseisms show up with a positive lag.

3. IDENTIFYING TIME OFFSETS
There were a total of 100 seismic stations in the MASE

array. 50 of the stations were managed by CENS and 50
stations were managed by Caltech. The CENS stations
deliver data through a wireless ad-hoc network and con-
sisted of a broadband Guralp T3 seismometer, an analog
to digital convertor (ADC), a CENS station a communi-
cations controller, and supporting power equipment [9].
The Caltech stations used Guralp seismometers, data
loggers, ADC’s, and supporting power equipment. Time
synchronization was performed by the built in GPS re-
ceiver on the ADC: a RefTek 130 on the Caltech stations
and a Kinemetrics Q330 on the CENS stations. The
pulse per second signal and time stamp provided by the
GPS receiver are extremely accurate and are used to
adjust the internal clock on the ADC. Without a GPS
signal the ADC internal clock only drifts a few seconds
a month [11], but even this small offset can render the
data unusable.
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Figure 6: The correlograms for daily cross correlations
between CASA and ZACA in the MASE network for the
second half of September and the first half of October
2005. The station lost track of time during September
27, 2005 and we can see this as a shift in the correlo-
grams.

As mentioned previously, cut GPS cables and miscon-
figured ADCs combined with transient power failures
caused the large time offsets after a reboot. These are
problems that are inherent to these types of systems. 18
CENS stations and 5 Caltech stations experienced the
offset. The offsets were always negative (delayed) and
averaged less than 1000 seconds. They ranged from 10’s
of seconds up to 3000 seconds.

To determine how much data was incorrectly time
synchronized we used the travel time of microseisms.
The velocity of the microseisms through the crust is ap-
proximately 3 km/s and the distance between all the
stations is known. First we selected stations in our net-
work and from the permanent SSN network [3] which
we know have no timing issues and have a nearly com-
plete a record. We know these stations do not have time
synchronization problems because they have a GPS log
showing multiple active GPS locks for every day. For
each day we cross correlated the reference stations with
each of the stations in the MASE network and obtained
the travel time from the phase peak. Using the known
distance between stations and the phase velocity of 3
km/s, we can determine the expected travel time. If
the computed travel time from the cross correlation is
more than a second or two off the expected travel time,
then we know there is a time offset.

Figure 6 is an example of the final step in this process
for a pair of stations. It shows the daily cross correla-
tions between CASA and ZACA in the MASE network
for the end of September and the beginning of October
2005. CASA is a station with good time synchroniza-
tion. The stations are 38.6 km apart so the travel time
is approximately 12 seconds. The x-axis shows the lag
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Figure 7: Travel times for April and May 2006 for four
station pairs. The ∗’s represent the calculated travel
times and the lines are the travel times generated by
Equation 1. The RMSE for each station pair is approx-
imately 0.05 seconds.

of the cross correlation. The y-axis represents each day
where day 0 is September 16th, 2005. There is a shift
in the travel time from minus 12 seconds to 250 seconds
during September 27th, 2005. This indicates the station
rebooted and lost track of time.

During the processes of identifying incorrectly time
synchronized stations, we can also identify drift. We
can fit a line to the phase peaks across multiple days of
offset data. If the line has a significant slope over the
course of a month, then the station is potentially drift-
ing. For example by fitting a line to the phase peaks of
the offset data in Figure 6, we know there is an approx-
imate 2 second drift over the course of October 2005.
For stations which have a more dramatic drift, it is easy
to visually identify the drift in the correlograms.

Using this method we calculated that almost 7% of
the 59,633 station-days in the MASE dataset have time
synchronization errors.

4. RECOVERING TIME
The first version of our model assumed that the travel

time of the microseisms determined from the correla-
tions would be constant in time and not change from
one day to the next. Although this is true to within one
or two seconds, coherent fluctuations occur across the
network, presumed to be caused by changing patterns
in the microseisms source. Our current model of micro-
seisms propagation with which we apply DDTS is based
on this new observation. We discovered that the time
series of daily travel times between pairs of stations fluc-



tuates by up to two seconds but are correlated with one
another across independent pairs of nearly aligned (5-
10 degrees apart) stations. The structure of the crust
is different between all the stations of the network so
the velocity of the microseisms is also different between
different pairs of stations. However it is expected to re-
main constant in time. The fluctuating travel time is
not visible in Figure 6 due to scale, but a two month
stretch of travel times for four station pairs can be seen
as the *’s in Figure 7. So we were left with two ques-
tions: why are the travel times fluctuating and why are
they correlated between pairs of nearly aligned stations?

We have concluded that the fluctuations in the travel
times are to due the changing nature of the microseisms.
Microseisms are ultimately dependent on the weather so
the apparent source of microseisms changes over time.
The opposing surface waves that generate microseisms
are created by the wind. Patterns of where and when the
opposing surface waves generate microseisms constantly
shift around due to variations in the weather. There
is also not just one source for the microseisms: there
are many sources that are changing all the time. The
multiple changing random sources are introducing a bias
into the signal and causing the fluctuating travel time.
Being able to correlate the fluctuations in the travel time
between different pairs of stations suggests that there is
a common bias in the arriving energy. The bias in the
sources must be in the far-field because it is common-
mode across the array.

Theoretical work [15] has shown that if there are mul-
tiple random sources of a signal, only those sources
along the receiver line (the straight line joining and ex-
tending beyond the stations) stack constructively in the
cross correlation as seen in Figure 9. According to the-
ory, when we cross correlate the signals of station A
and station B, if the off-receiver line sources are ran-
dom, they will cancel out and only the energy gener-
ated along the receiver line and within the Fresnel zone
of the two stations contributes to the cross correlation.
In this case, the travel time computed from the cross
correlation represents the straight line time between the
stations. However, if the pattern of microseism sources
on either side of the receiver line is non-random, then
from one day to the next, the travel times do not rep-
resent the straight line time between the stations. This
explains the fluctuating travel time: the sources of mi-
croseisms over the short daily cross correlation windows
are biased to one side or the other side of the receiver
line. This also implies that with a large cross correla-
tion window the microseism sources are more likely to
appear random and the bias will be canceled out.

4.1 Microseism Model
To repair time offsets and drift we have developed a

Station A
dA,B

Station B

Bias

Receiver line

Figure 8: For large cross correlation windows the bias
microseism sources cancel out and only the sources
along the receiver line stack constructively. For small
cross correlation windows, the bias sources become non
random and change the phase of the microseisms along
the receiver line.

model which relates the fluctuations in travel time be-
tween multiple pairs of stations and enables us to pre-
dict the travel time for the incorrectly time synchronized
stations. The model describes the phase change by the
biased energy from the off receiver line sources to the
averaged microseism energy traveling along the receiver
line of two stations.

tt =
d

v
− S

d

v
+ S

d

v
cos(Z − θ) + f (1)

The values tt, d, v, and Z are the travel time, distance,
seismic velocity, and angle between two stations. These
values are all constants or can be computed using cross
correlation. The remaining parameters S, θ, and f rep-
resent the strength, S, of the bias field treated as an
incident plane wave with angle θ and with f an offset
term. They are unknown and are dependent on the par-
ticular station pairs and the days we are looking at.

We can solve for S, θ, and f as follows. Suppose we
have 4 station pairs with 10 days of well correlated travel
times for the station pairs. We will be solving for a total
of 24 unknowns: an unknown S1...S10 for each day, an
unknown θ1...θ10 for each day, and an unknown offset
parameter for each station pair f1...f4. We input the
travel times, distances, velocities, and angles between
all the station pairs into Equation 1 for a total of 40
equations. This gives us an over determined system of
equations we can solve with non-linear least squares.

4.2 Time Correction Process
The process to correct the time on an offset or a drift-

ing station has 8 steps. The main idea behind the pro-
cesses is to obtain parameters for the model about the
daily travel time fluctuations using correctly time syn-
chronized data and to use those parameters to predict
the travel time for the stations with bad data. Before
we perform any cross correlations in the processes, the
data is filtered with a bandpass filter around 6 seconds.
The data is conditioned with the sign bit method to



remove any high amplitude events, for example earth-
quakes, that can affect the cross correlation.1 Finally
the cross correlation is computed using the FFT method
and all the travel times are computed from the phase
peak. We have tried various cross correlation window
sizes to track the travel time fluctuations and have been
most satisfied with a 24 hour window size: it provides
the best balance of not averaging out the off receiver line
microseisms source bias and providing an easily pickable
consistent travel time peak from the cross correlation.

1. Identify the broken stations. We follow the process
described in Section 3 to identify the offset and drifting
stations. Briefly, we calculate the travel time between
a known good station and all the other station. Any
travel time which is not within the expected 3 km/s
means the station has offset time. This step only needs
to be performed once.

2. Calculate the absolute velocities. Our model re-
quires the true velocity between stations. As was dis-
cussed earlier in Section 4, short cross correlation win-
dows do not provide a good estimate because the bias
in the microseisms sources affects the travel time. To
resolve this we calculate the velocity using cross correla-
tion windows that are as large as possible: 360 days and
larger. The larger window means that over that longer
period of time all the normally non-random microseism
sources that introduce bias into the signal do appear
random and do cancel each other out. The result is a
single velocity for the station pair which is a reasonable
estimate of the true velocity. This step only needs to be
performed once.

3. Select good data. We select a station and window
of data we want to resynchronize. We call the station
we want to resynchronize the resync station and the
data window we want to resynchronize for that station
the resync window. For the resync station we need to
select a segment of good data as close to the incorrectly
synchronized data as possible. The segment should be
about a month of data that does not have any time
synchronization issues. We call this segment of data the
synced data and use it with other stations in the next
two steps to obtain parameters for the model. We run
a daily cross correlation over the synced data and the
resync window for all station pairs and pick the correct
phase peak taking care to avoid cycle skips by using tt

estimated from step 2.
4. Select highly correlated stations. Using the resync

station we select a couple (3 to 6) station pairs (one
of the pairs must include the resync station), for which
the travel times correlate well. In other words, for the
month of good data, we find station pairs where the fluc-

1The sign bit method rewrites the data, setting any sample
greater than zero to one, and any values less than zero to
zero.

tuations of the daily travel times follow the same pattern
and one of these station pairs must be the resync sta-
tion. These station pairs are easy to find by correlating
the time series of the daily travel times and finding in-
dependent pairs which have a correlation value of 0.9 or
greater. There are some limitations described in Sec-
tion 4.3. We use these station pairs in the next step to
find the offset parameter for the resync station.

5. Solve the model for offset parameter. Next we
solve the model as described in Section 4.1 using the
synced data and the station pairs from the previous step.
We store the offset parameter for the station pair which
includes the resync station. We will call this offset fg

for the good offset.
6. Solve the model for remaining parameters. Finally,

we solve the model as described in Section 4.1, except
this time we use the data from the resync window ex-
cluding the station pair with the resync station. This
step gives us daily S and θ parameters since we did not
include any of the incorrectly time synchronized data.
We will refer to these parameters as Sg and θg.

7. Calculate correct travel times. Using fg, Sg, θg,
the distance, velocity, and angle for the station pair in-
cluding the resync station, we calculate the travel time
for the resync window for the resync station. We call
this the predicted travel time.

8. Subtract to get time correction shift and apply. We
use the predicted travel time and the offset travel time
to obtain the correction shift. For each day, we now
have a value to shift all the data by to make that day
be the average.

4.2.1 Drift

Our method transparently corrects any drift. The
predicted travel time is entirely independent from the
broken data so for each day we are shifting from the off-
set and drifted travel time to the predicted travel time.
Since the predicted travel time follows the common-
mode variation which does not contain any drift our
time corrects are compensating for the drift. We ini-
tially believed we could correct for drift before the en-
tire processes by using least squares to fit a line to the
travel times. However, we found situations where over
the course of a month, the drift changes a number of
times. This means we have no way to tell whether what
we think is drift is actually drift and not just a trend
in the data. Beacuse of these cases our method is the
ideal solution.

4.2.2 Applying the Corrections

The raw data from the MASE deployment is stored on
a server and is made available through the Seismogram
Transfer Program (STP) [2]. This program supports
on-the-fly time corrections based on the corrections es-
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timated as described in this paper. The time corrections
are stored in a table with columns start date, start time
offset, end date, and end time offset. Correction within
the start/end dates are derived by linear interpolation.

In Section 2.1 we explained that the travel time cal-
culated from the daily cross correlation represents the
average travel time of the microseisms between the sta-
tions for that day. For this reason we set the time cor-
rections as the middle of the day and let the server in-
terpolate across the corrections. For example, if our
method specifies that for 2005/10/10 we add -266.2 sec-
onds, on 2005/10/11 we correct by -266.0 seconds, and
on 2005/10/12 we correct by -266.1 seconds, we specify
two time corrections as shown in Table 1. For the be-
ginning edge cases we extrapolate back using the sub-
sequent corrections and for the ending edge cases we
extrapolate forward using the preceding corrections.

4.3 Model Limitations
There are three limitations to our method. First, the

station pair selection process reveals some limiting fac-
tors of the model and of this particular application of
DDTS. In order to estimate model parameters, we re-
quire good data from the station with the incorrectly

time synchronized data. If during the course of the de-
ployment, if a station never has good data, then we can
only estimate the travel time to within a second or two
based on the distance between the stations. Some good
data must exist because we need an estimate of the off-
set parameter f in the model and we can only determine
f with good data.

The second limiting factor is there needs to be at least
a few stations pairs that share receiver lines. We have
found that station pairs with receiver lines that are far-
ther than 5 to 10 degrees apart tend to not follow the
model as well as stations for which the receiver lines are
relatively aligned. The sources that are off the receiver
line (and outside the Fresnel zone) will average together
differently for stations pairs which are not aligned result-
ing in varied effects on the microseism phase. Choosing
aligned stations for the processes ensures there exist sta-
tions pairs for which the model does apply and for which
the travel time fluctuations follow the same pattern. So
far, we have always found there to be some combina-
tion of station pairs with valid data that share receiver
lines by looking for high correlations of the time series of
the travel times of stations pairs. We do expect to find
some cases where we are unable to repair the data and
in these cases the alternative is to use a less accurate
method to obtain a time correction shift.

The final limitation is the station pairs need to be
more than 50 km apart. For stations which are within
50 km, the travel time computed from the cross corre-
lations can vary by up to 6 seconds. This is because the
interference in the correlogram of the North and South
traveling microseisms. We can see this interference in
the North most stations in Figure 5. It is not possible to
differentiate or filter the north moving energy and the
south moving energy in the cross correlation for sta-
tions within 50 km of each other. The variations in the
travel time caused by this interference do not correlate
between stations so we are unable to apply our model.

5. EVALUATION
To evaluate DDTS in three ways using the actual data

collected by the MASE array. First, we show how well
the model is able to predict the travel time of the mi-
croseisms. Second, we show how the accuracy of the
prediction affects the result of a simple local earthquake
localization method. The third evaluation is to show our
method applied to real time offset data. For the first two
evaluation methods, we use good data and introduce an
artificial time offset error. This provides us with the
ability to compare the data to the ground truth.

5.1 Model Prediction Evaluation
Out of the two years of data we focus on March, April,

May, and July of 2006. There is an immense amount of



Start time Offset End Time Offset

2005/10/10,12:00:00.00 -266.2 2005/10/11,12:00:00.00 -266.0
2005/10/11,12:00:00.00 -266.0 2005/10/12,12:00:00.00 -266.1

Table 1: Sample time correction to the MASE STP server.

data to work with and we feel that these months provide
a good cross section of the scenarios we are interested
in. We select two months of good data and we run the
daily cross correlations for all pairs of stations to obtain
the travel times. One of the months is designated as the
resync window described in Section 4.2 and a randomly
selected station is set as the resync station. We follow
the processes to obtain a time correction shift for the
resync station as if it was actually offset. Briefly, we
obtain fg for the resync station using the first month of
data, and obtain the Sg and θg parameters from the sec-
ond month of data not including the station pair with
the resync station when we solve the model. We simu-
late the time offset by not including the station when we
solve the model with the travel times from the resync
window. We then compare the predicted travel time for
the resync station to the actual travel time for the resync
station and compute the RMSE. Finally the whole pro-
cesses is repeated with a separate set of stations and
two different time windows.

5.1.1 Results

The results of the evaluation for the model prediction
are in Table 2. As described earlier, we select a pair of
months such that the first month is used to calculate
needed parameters to predict a time offset in the sec-
ond month. For each pair of months, we randomly select
5 or 6 station pairs according to the criteria described
above. We run the model on the first month of travel
times to obtain the parameters. We then run the model
on the second month of travel times, minus one of the
station pairs, to obtain the final parameters. Combin-
ing the parameters from both months, we predict the
travel time for the station pair removed from the sec-
ond month and compare the result to the actual travel
times for that station. We then compute the RMSE of
the prediction. This processes is done 10 times for each
pair of months, each time using station pairs that have
not been used before. The results in the right most col-
umn in the table are the mean and standard deviation
of the 10 RMSE calculations for each month pair. We
are able to predict the travel time for the station with
the simulated offset to within 0.2 seconds.

The table also shows the mean RMSE for how well
the model was able to fit the data from the first month:
the month used to determine the offset parameter. This
was also averaged across the selection of 10 stations.

The RMSE of the model fit is within 0.1 seconds.

5.2 Local Earthquake Localization
We have determined that we can repair the time off-

sets to within 0.2 seconds, but still leaves us with the
question of whether the 0.2 second accuracy is good
enough to be able to the data within the broader science
processes. To answer this question we perform a simple
sensitivity analysis within the context of our deployment
on the processes of localization of local earthquakes. We
use local earthquakes recorded by the MASE array and
compute how different time offsets affect the localization
result in terms of distance from the real hypocenter (the
x, y, and z location of the earthquake). We localize an
earthquake by using multilateration. This processes is
straightforward: we choose the arrival times of the p-
waves and the locations of the stations to solve for the
hypocenter using non linear least squares.

We have chosen two local earthquakes as examples
both located in the South of the array: the first oc-
curred on April 1, 2007 at 22:25 GMT and the second
occurred on January 13, 2007 at 02:25 GMT. After com-
puting the hypocenter using 9 stations for each of the
earthquakes, we choose the closest station to each of the
quakes and offset the time from -3 second to 3 second in
0.1 second increments. The selected results of this pro-
cesses are in Table 3. At +-1 second the hypocenter of
the first earthquake is already greater than 30 km away
from the true hypocenter for that earthquake. Figure 10
shows a three dimensional view of the stations, the true
hypocenter, and the hypocenter location for +-1 second
offsets in 0.1 increments.

Temporary arrays such as MASE are expected to be
able to localize local events to within 1 km horizontally
and 3 km vertically. Table 3 shows that this expected
accuracy is not achieved once the time offsets are greater
than 0.1 seconds for the April 2007 event and greater
then 0.2 seconds for the January 2007 event. This means
that our method is correcting the time offsets to right
around the accepted accuracy.

5.3 Real Data Repair
For our final evaluation we repair a real offset and

drift in data from the MASE deployment. We selected
September and October of 2005 and identified the sta-
tion ZACA as having incorrect time synchronization us-
ing the method described in Section 3. Figure 6 shows
that on September 27th, 2005 the station can see the



Month Pair First ’good’ month mean/stddev of Mean/stddev of the RMSE of the
the RMSE for the entire model fit predicted travel times

March-April 0.073 / 0.006 0.115 / 0.028

May-July 0.075 / 0.009 0.126 / 0.028
March-July 0.077 / 0.013 0.142 / 0.024

Table 2: The first column is the mean/standard deviation of the RMSE across 10 runs for the first month of ’good’
travel times. The second column is the mean/standard deviation of the RMSE across 10 runs of the predicted travel
time for a station pair during the second month.

Seconds Apr 07 EQ Dist Jan 07 EQ Dist
Offset from hypocenter from hypocenter

-5.00 52.64 58.37

-2.00 55.96 31.59

-1.00 35.49 14.64

-0.50 15.46 7.14

-0.20 6.09 2.82

-0.10 3.04 1.41

0.10 3.05 1.40

0.20 6.13 2.78

0.50 15.63 6.89

1.00 33.10 13.62

2.00 81.58 26.88

5.00 22716.55 68.84

Table 3: Distance in km from the real hypocenter when
time offsets are introduced to the station closest to the
real hypocenter for two local earthquakes in the South-
ern portion of the MASE array.

data go bad during September 27th, 2005. We apply
the processes described in Section 4.2 and update our
data server with the time corrections. We then reran
the processes used to generate Figure 6 and the results
can be see in Figure 11. The time offset is corrected
and the drift has been removed. Figure 12 shows the
same local event as Figure 2 after our method has been
applied to repair the ZACA for October 2005.

6. BROADER APPLICABILITY
This work can be applied to other seismic deploy-

ments, in particular the large catalogs available from
IRIS [1]. Time synchronization problems are common
enough in these deployments that the possibility of re-
visiting past experiments and recovering the data is ex-
citing. Our application of DDTS can also be applied
as a primary form of time synchronization for ocean
bottom seismic arrays. These arrays lack the ability to
use GPS for time synchronization and in current prac-
tice the clocks are just allowed to drift. In conjunction
with coastal seismometers which can maintain time us-
ing GPS receivers, microseisms can be used to keep the
drift in check: the travel times would appear to be in-
creasing or decreasing over time and our model can be
used to repair the drift.

It is possible to apply the idea of DDTS to repair time
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Figure 10: The effects of +-1 second offset in .1 sec-
ond increments on an April 2007 earthquake localization
with 9 stations in the south of the MASE array. The dis-
tance from the real hypocenter at +-1 second is greater
than 30 km.

synchronization faults in acoustic source localization ap-
plications. These applications typically use direction of
arrival (DOA) methods to localize a source [6], [4]. Be-
fore these systems can perform source localization they
must self localize and determine the location of each
of the sensors. The self localization processes requires
time synchronization because it uses time of flight in ad-
dition to DOA to provide accurate results. If a station
is not time synchronized during the self localization it
can not participate in the source localization. This is
where data driven time synchronization comes in. Since
DOA does not require time synchronization, the DOA
results from the broken station combined with the DOA
results from the working stations from the self localiza-
tion steps could be used to estimate the position of the
broken node. Once the position of the broken node is
known, a time offset for the time synchronization can
be estimated. The exact processes and whether this
can be used to increase the accuracy of the final source
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Figure 11: The correlograms for daily cross correlations
between CASA and ZACA in the MASE network for the
last half of September and the first half of October 2005
after applying the time correction from our method. See
Figure 6 for the daily correlograms before the data was
time corrected.

localization result remains as future work.
We are interested in trying to correlate background

noise in acoustic signals in the same we correlate the
background seismic noise. We have a number of data
sets from past acoustic source localization experiments
and plan to explore whether this is possible as future
work.

DDTS can be applied to environmental sensors as
well. Sundial [7] successfully applies the DDTS idea
to light sensors tracking solar patterns.

7. RELATED WORK
The physics behind our model is descried in [15].
Sundial [7] is an independently developed system which

implements the DDTS idea for environmental sensors.
The work successfully reconstructs time stamps by cor-
relating annual solar patterns with readings from light
sensors available on their nodes.

11 years of data from three stations have been stud-
ied by Stehly [16] to attempt to detect changes in the
travel time of microseisms between the stations due to
physical change in the crust. They are unable to detect
changes in travel time due to physical change, but iden-
tify changes due to clock drift and other instrumental
errors. They attempt to separate the offset in time due
to clock drift and instrumental errors from the change in
the location of the microseism sources. They use a long
6 year period which had no timing errors as a reference
and compare to this short 1 month and 6 months win-
dows of data. The comparisons enables them to iden-
tify time offsets due to clock drift and instrumental er-
rors and use these to repair the data independent of
the travel time. There is no evaluation of how accurate

0 50 100 150 200 250 300 350 400

MAXE

SAGR

SATA

ZACA

TEPO

TOMA

CIEN

BUCU

Time (s)

S
ta

tio
n 

ID

M 4.1 Event on 2005/10/11,04:17:12.90 −− Time Corrected

Figure 12: A local event after the time offset and drift at
ZACA has been repaired with out method. See Figure 2
to see the data without the time correction.

the results are. The variations in the travel time due
to changing microseisms source locations are evident,
but the work does not use the microseism variation to
resynchronize the data as we do here.

There is a growing body of work which uses micro-
seisms for tomography such as [5] and [13]. These study
how microseisms can reveal the structure of the crust
and attempt to determine if it changes over time. Other
work studies microseisms and attempts to locate the ori-
gin of dominant sources [10] [14].

Werner-Allen [17] experienced network time synchro-
nization instability and errors during a wireless embed-
ded sensing deployment on a volcano. The errors were
due to bugs in the software system and lasted for a few
hours at a time. Their approach to detecting and repair-
ing the synchronization problems is not data driven: it
does not use the data collected by the sensors in the net-
work. Instead they take advantage of the system itself:
as the data streams from the network the base station
adds an addition an additional timestamp to the data.
They are able to build piecewise linear models between
the clocks in the system: base station clock, the global
time from the network time synchronization, and the
local node time. The models provided a time reference
and conversion for the data to be repaired.

8. FUTURE WORK
Our primary focus is to increase the accuracy of our

methods down toe 0.05 seconds for seismic arrays. This
involves exploring various avenues: using higher data
rate data such as the real 20 or 100 Hz data, using the
North to South 20 second period microseisms, as well as



expanding the model to work for more than just station
pairs which have receiver lines within a few degrees of
each other. We will also begun correlating microseisms
with potential sources such as the wind and the signifi-
cant wave height models for the oceans. This correlation
has the potential of enhancing the model and increasing
its accuracy.

We believe it is possible to remove the limitation of
the linear array. We will investigate the use of the cor-
relation of coda of correlation method for this purpose.

We will evaluate the accuracy of our method by com-
paring the results to a recently developed deep tomog-
raphy velocity model [8]. This model was built using
teleseisms detected by the MASE array and can be used
to predict the time the teleseisms should have arrived
for the stations with time offsets. We can compare this
prediction to the prediction generated by our methods.

We will also perform more in depth evaluation on how
much of a difference the corrected time and any error
introduced with the corrected time has on the science
results from the deployment such as the deep tomogra-
phy velocity model.

9. CONCLUSION
Data driven time synchronization is a viable time syn-

chronization method. We are able to applying the con-
cept of DDTS to repair time offset data from the MASE
deployment data. Our application makes use of a new
observation about microseisms and models this obser-
vation across a linear array of broadband seismometers.
The model is able to predict the travel time of micro-
seisms in a 24 hour period enabling the time offset sur-
rounding seismic events of interest to be repaired. There
are limitations to our current implementation, however
the results are good enough to motivate further investi-
gation in other applications.
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