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A Reciprocity Method for Multiple-Source Simulations

by Leo Eisner* and Robert W. Clayton

Abstract Reciprocity is applied to the situation where numerical simulations are
needed for a number of source locations but relatively a few receiver positions. By
invoking source-receiver reciprocity, the number of simulations can be generally
reduced to three times the number of receiver positions. The procedure is illustrated
for a heterogeneous medium with both single-force and double-couple sources. The
numerical tests using a finite-difference implementation show that the reciprocal
simulations can be performed with the same level of accuracy as the forward cal-

culations.

Introduction

Simulations of waves in complex 3D media have shown
that wave propagation in basinlike structures can cause sig-
nificant variations in amplitudes, travel times, and coda of
the strong ground motion (Graves, 1995; Olsen et al., 1997;
Wald and Graves, 1998). The usual procedure is to evolve
the wave field outward from the source location to a suite
of observation points, which means that one complete simu-
lation needs to be done for each source location. For many
problems such as comparing seismograms recorded for
many earthquakes at a particular site, this straightforward
approach can be computationally expensive. The same sit-
uation is true for iteratively calculating the source response
for inverse problems.

However, with the use of three orthogonal point forces
at the receiver locations and the reciprocity theorem, the
number of numerical calculations can be reduced to three
times the number of the receivers. Here we show a technique
for calculating the Green’s functions for the full elasto-dy-
namic equation that exploits reciprocity to reduce the num-
ber of simulations.

The property of source-receiver reciprocity has been
known for a long time for the elasto-dynamic equations of
motion and has been widely used in exploration seismology.
Claerbout (1976), for example, shows that reciprocity is a
fundamental quality of the elasto-dynamic equation. Reci-
procity of the ray theoretical reflection/transmission in an-
isotropic medium was finally resolved by Chapman (1994),
and a general proof for arbitrary media is given by Cerveny
(2001). de Hoop and de Hoop (2000) gave an extensive
overview of the application of the reciprocity in the remote
sensing including a generalized theory for source inversion.
There are several applications of the reciprocity theorem to
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the full waveform modeling in seismology. Bouchon (1976)
used reciprocity to develop a technique for computation of
synthetic seismograms due to sources in a strongly hetero-
geneous medium. Our article extends the work of Graves
and Clayton (1992) who used reciprocity for acoustic mod-
eling of path effects in 3D basin structures. Recently Graves
and Wald (2000) applied elastic reciprocity to the finite-fault
inversion.

In this article we shall first give a detailed proof of the
reciprocity theorem with sources on the boundary of domain
of interest. Then we shall discuss a numerical implementa-
tion of the reciprocity for a finite-difference method. The
finite-difference method is particularly suitable for the ap-
plication of reciprocity method since the whole 3D volume
is calculated for each run; thus an arbitrary number of
sources can be simulated in the 3D volume. Finally we shall
numerically test the accuracy of the reciprocity method on
several simple models.

The Reciprocity Theorem

The reciprocity theorem is proven in Aki and Richards
(1980) for an elastic anisotropic continuous medium. Dahlen
and Tromp (1998) generalized their proof for anelastic,
piecewise continuous body. In this article we discuss in de-
tail the boundary conditions of reciprocity theorem as
needed for the reciprocity method. We extend proof of Dah-
len and Tromp (1998) for source and receiver positions on
the boundary of an area of interest. The basic statement of
reciprocity is contained in Betti’s theorem by Dahlen and
Tromp (1998), who show Betti’s reciprocal relation for a
piecewise continuous anelastic body with total volume V
bounded by surface X (equation 5.64 of Dahlen and Tromp
[1998]):
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Here s,(x,x"; t — ') is the ith component of the displacement
vector, which is a solution of the elasto-dynamic equations.
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where n is a normal to the boundary of the volume V, ¢;;,(x)
is a tensor of elastic parameters, and p(x) is density char-
acterizing a medium. The vector f represents the body forces
inside the volume V, and the vector g traction on the surface
of the volume V. The barred variables satisfy the analogous
condition
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To derive Betti’s theorem (1), both barred and unbarred
equations must satisfy continuity of the normal stresses at
the discontinuities of ¢;;/(x) and p(x) and the forces f and f
have to be such that their contributions from time ¢ = o and
t = —oo vanish. For an unbounded medium or a partially
unbounded medium (such as a layered halfspace), the
boundary conditions (3) and (5) are satisfied over the un-
bounded part of the medium as the left-hand side of both
conditions (3) and (5) vanish (either the source at infinity
does not exist or, if it does, it takes an infinite time to receive
any information about its existence), and so does the right-
hand side of (3) and (5) as the vector of displacement must
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be zero at infinity. Therefore, the traction conditions (3) and
(5) act only on the boundaries at finite distance.

Now we shall make a special choice of the source and
receiver for the barred and unbarred variables and derive the
reciprocity of the source and receiver position. By taking t
to be zero at the 9V, and f impulsive,

fx, x;t0, 1) = eo(x’ — x)(" + 0, tx, x5, 1) =0,
or T impulsive at the 9V, and f zero everywhere in V
fx, x5 1, 1) = 0, ¥x, X, 1, ') = d(x' — )3 + 1),

where €; is a unit vector in a direction of jth axis, and body
force f and traction t are oriented along the vector e;. The
ith component of the displacement vector s becomes by def-
inition the ith component of the Green’s function due to
force acting along the e; vector:

Gix, x's —t + 1) =5 x'; —t + 1)

Hence, equation (1) reduces to
s;(x,x'; t—1') = f j C_},-l-(x,x’; —t+)f(x,x'; t+1', 00V dt
. P
+ J J Gix,x'; —t+1)(x,x; t—1t', 0)dZdt.
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And further by letting t to be zero at the 9V, and f im-
pulsive

fx, x', ¢, ') = ed(x — x)@t — 1), t(x, x', 1, t') = 0,
or t impulsive at the dV, and f zero everywhere in V:

fx, x', 1, ') = 0, t(x, X', t, ') = ed(x — x)@FE — 1),
and analogously, the jth component of the displacement vec-

tor s becomes by definition the jth component of the Green’s
function due to force acting along the e; vector:

Gyx, x'; t — ') = s(x, X't — ).
We obtain from (6) the reciprocal relation:
Gjx, x',t — 1) = Gux', x, t — 1'). @)

This proof of reciprocity is valid anywhere in the volume V
or on its boundaries dV. Equation (7) allows the source and
receiver points to be interchanged, and identical seismo-
grams will be recorded if the sources or receivers are situated
inside the volume V or on its boundary dV. The proof is
valid for a solution of elasto-dynamic equation (2, 4) with
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linearized attenuation represented by a stress-strain rela-
tionship

1
o(x, 1) = f7 Ci(X, t — They(x, T)dr.

Equation (7) can be directly applied for evaluating the
elastic fields from a single force point source by placing
three single force sources at the receiver site (x) and calcu-
lating response at the source area (x'). However, elastic
fields due to a double-couple (or a single-couple, or an ex-
plosive) point source require evaluation of the derivatives of
the Green’s functions:

dC_}ji(x, x,t—1t) N

ux, x',t —t') =
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My(x', 1)

where * represents time convolution over time. This equa-
tion can be evaluated by taking a numerical derivative of the
reciprocal Green’s functions of equation (7):
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Equations (7) and (8) allow us to evaluate a response due an
arbitrary point source (double-couple, single-couple, explo-
sive, or single force) without using body force equivalent
forces (Burridge and Knopoff, 1964; Graves, 1996).

Numerical Implementation for the
Finite-Difference Method

For the problem of wave simulation in complex three-
dimensionally heterogeneous medium, we propose to cal-
culate reciprocal Green’s functions by interchanging the
source and receiver positions. This is done by a standard
finite-difference algorithm with a source placed at the re-
ceiver position. The results are then postprocessed to gen-
erate the seismograms that would have been obtained if the
source and receiver had not been interchanged. The effi-
ciency of the reciprocal method comes with the fact that for
each reciprocal simulation, a number of pseudoreceivers can
be recorded. When the postprocessing reverses the source-
receiver relationship, this translates to synthetic seismo-
grams due to many sources recorded at the same receiver.

The finite-difference technique we used is a velocity-
stress equation solved by a staggered grid scheme (Virieux,
1984; Graves, 1996). For the receivers not situated on the
free surface, no special treatment is necessary for the recip-
rocal calculations. However, if the receiver is situated di-
rectly on the free surface, a more careful implementation of
the three orthogonal point forces is necessary. We empiri-
cally found the reciprocity is best satisfied by horizontal
body forces implemented right at the free surface boundary
and vertical force half a grid point below the free surface.
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This fits better than averaging over the two staggered vertical
components above and below the surface. Equation (8) can
be evaluated as recorded response to the three orthogonal
point forces sources at the receiver site. This is simple for
implementation in the finite-difference calculation since the
response for the whole model for each time step is evaluated.
To get G;;;, we can use numerical spatial derivatives of the
displacement centered at the source locations. Either the nu-
merical derivatives or the corresponding 6,., itself can be
saved at each pseudosource point. One advantage of saving
the Gij comes if the source position is not known precisely
and we would like to perturb its location. To save storage
space we may store only certain products of the 6,-]»‘,(. For
example, if we are interested in the explosive sources, we
only need to store G ;, G;p5, Gi33, or if we are interested
in pure double-couple sources, we only need G, G,,
Gip + G, Gus + Gy, Gz + Gip.

One issue that arises in the practical application of the
reciprocity method is that the boundary conditions are not
completely reciprocal for finite-difference modeling. The
most common boundary conditions used in finite-difference
modeling are the free surface and absorbing boundaries. Free
surface boundary condition satisfies in theory the condition
of reciprocity relation (7) however, different finite-differ-
ence formulations of free surface boundary suffer various
degree of inaccuracy (Zahradnik et al, 1993; or Graves,
1996). Discrepancies between direct and reciprocal seis-
mograms can be used as a criteria for accuracy of the free
surface boundary condition as has been suggested by Del-
linger (1997). An absorbing boundary satisfies reciprocity to
the extent that it mimics perfectly the unbounded homoge-
neous space. Imperfections in the numerical implementation
of the different versions of absorbing boundaries do not in
general satisfy the reciprocity. In the examples we show, we
generally try to avoid any contamination of our seismograms
with reflections from absorbing boundaries.

The Numerical Test

The reciprocal method can be tested by showing that
identical seismograms can be obtained comparing standard
forward calculations with reciprocal ones. We apply this test
to synthetic seismograms computed for the three cases: an
unbounded homogeneous medium, a case with a 1D varia-
tion of the medium parameters and a free surface, and a case
with a 3D variation of the medium parameters. In each case,
the results are computed with spatially fourth-order stag-
gered-grid finite-difference scheme and second-order time
derivatives. The finite-difference parameters are chosen to
provide a reasonable level of modeling accuracy without
prohibitive cost. The absorbing boundary conditions are the
Al of Clayton and Engquist (1977) and additional attenu-
ating zone to minimize the artificial reflections.

Homogeneous Unbounded Medium

Figure 1 shows all nine components of the direct and
reciprocal Green’s functions G;(x, x', t — ¢’ and G;; (x, X/,
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Figure 1. Nine pairs of Green functions Gij(x, x,t— t)and G; (x, x', t — t'):
loc1 (solid line) represents source at 0.0 km, 0.0 km, and 0.0 km and receiver at 3.0
km, 3.0 km, and 3.0 km, loc2 (dashed line) represents source at 3.0 km, 3.0 km, and
3.0 km and receiver at 0.0 km, 0.0 km, and 0.0 km. The first three letters denote the
seismogram represent source type: six is single force into x direction, sty is single force
into y direction, and sfz is single force into z direction. The last letter denotes component
at the receiver. The unbounded homogeneous medium was chosen with o = 2.0 km/
sec, B = 1.0 km/sec, and p = 2.6 g/m>. Absorbing boundaries were placed at 12.0
km from the origin (0.0 km, 0.0 km, and 0.0 km).

t — t') for homogeneous unbounded medium computed with merical noise generated by the finite-difference method. We
the staggered-grid finite difference. The finite-difference re- can see the reciprocal pairs match within the thickness of
sults are accurate only for periods longer than 3 sec, how- the line. The solutions start to diverge slightly for time
ever, we present unfiltered seismograms to demonstrate the around 13-18 sec, which corresponds to the artificially re-
reciprocity of not only the direct signal but also of the nu- flected waves from boundaries. The nonreciprocal mismatch
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increases with proximity to the absorbing boundary (as the
waves hit boundary under more nonnormal incidence) and
are caused by both P and S wave reflected from the boundary.

Free Surface and 1D Heterogeneous Medium

Figure 2 shows three components of the direct and re-
ciprocal seismograms recorded in the vicinity of the free
surface from a source at free surface. The 1D model and the
source mechanism are described in the caption. The 1D
structure traps energy in the upper layer of the model. Small
discrepancies between the direct and reciprocal solution ap-
pear with the first arriving energy when the synthetic seis-
mograms are computed with coarse sampling (five points
per wavelength). These discrepancies are caused by inac-
curacies in the implementation of the free surface boundary
condition not exactly satisfying the continuity of the normal
traction. The discrepancy diminishes as more accurate re-
sults are compared (right column with 7.5 points per S-wave

X-component
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Figure 2.
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wavelength in the top layer). Also note the slightly smaller
amplitude computed with the finer grid; the more accurate
computation evaluates more precisely the surface wave
(which has a shorter wavelength than direct shear wave and
therefore was computed with even less points per wave-
length). This phenomena demonstrates the error due to the
numerical implementation of the reciprocity (single force
source at the free surface and numerical derivatives of the
Green’s functions) is smaller than error due to the finite-
difference computation (i.e., accuracy of the scheme, free
surface boundary condition accuracy, and absorbing bound-
aries).

Laterally Heterogeneous Medium

Figure 3 shows three pairs of components of a reciprocal
and direct computation in strongly heterogeneous media.
The 3D model and the source mechanism are described in
the Figure 3 caption. We have simulated response due to a

X-component

Z-component
O, 1 0 T I T I T I T

_018 1 | 1 ' Il | i

Three pairs of components of the acceleration (in mm/sec?) due to double-

couple source at 0.0 km, 0.0 km, and 3.6 km recorded at receiver 3.0 km, 3.0 km, and
0.0 km. The seismograms correspond to an earthquake of magnitude 1.0 with dip-slip
(strike 0°, rake 90° and dip 90°); x axis is positive to the north, y axis is positive to the
east and z axis is positive down. Solid line represents direct computation. Dashed line
represents reciprocal computation. Left column was computed with five grid points
per wavelength right column of seismograms was computed with 7.5 points per wave-
length. Seismograms recorded in 1D heterogeneous medium with parameters: o« =
2.0 km/sec, p = 1.0 km/sec p = 2.0 g/m> from surface to 3.0 km depth; « = 4.0
km/sec, p = 2.0 km/sec p = 2.3 g/m> from 3.0 km to 6.6 km depth; and o = 6.0
km/sec, B = 4.0 km/sec p = 2.7 g/m® from 6.6 km and deeper.
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Figure 3.

Three pairs of components of acceleration (in um/sec?) due to a double-

couple source in laterally heterogeneous velocity model of Southern California SCEC
version 1 (Magistrate et al. [1996]). The event simulates an aftershock of the North-
ridge earthquake (34.24°N, 118.47°W and depth z = 15.1 km) as recorded at Pasadena
station (34.14°N, 118.17°W). The mechanism for point source double-couple of the
aftershock is strike 109°, dip 63°, and rake 82° with magnitude 4.0 (coordinate system
as that of Fig. 2. The velocity model includes strong lateral variations of both P- and
S-wave velocities as well as densities due to the presence of the deep basins (Los
Angeles and San Fernando in this case). The solid line represents the direct solution.
The dashed line is a reciprocal seismogram recorded the free surface.

small earthquake in strongly heterogeneous medium. There
are many arrivals caused by diffracted energy trapped in the
sedimentary basin. Overall, we can see the fit is very good
and direct calculation may be replaced with the reciprocal
simulation. The discrepancy on the east component around
10 sec is caused by an artificial reflection from a model
boundary that was close to the deep source used in the
model. Note the largest discrepancies are on the smallest
component.

Sampling of the Green’s Functions
in Heterogeneous Medium

Finally we would like to test the most efficient way
of storing the derivatives of the Green’s functions @,-j used
for more complex sources suitable for iterative implemen-
tation of equation (8). We wanted to test if Green’s functions
Eij can be stored instead of derivatives of the Green’s func-
tion G;,. This way we hoped to be able to store Green’s
functions G; on coarse grid and reevaluate the derivatives

of Green’s functions (_703,( in the postprocessing where
needed. However, we show the accuracy of such an ap-
proach is not satisfactory.

Figure 4 shows three components of the two approxi-
mations of the seismograms due to single couple. The two
approximations differ in the accuracy of evaluation of the
Eij’k(x, x', t—1') of equation (8). The solid line (same as in
Fig. 2) represents numerical derivative of the second order
over the smallest possible grid step (1/5 of the shortest wave-
length of the S wave), the same as used in the finite-
difference run. The dashed line was calculated from the
second-order numerical derivative over the three grid steps
(1.8 km). We can see the dashed line does not match the
more accurate calculation both in amplitude (all compo-
nents) and in phase. We have tested only second-order de-
rivative of the Green’s function as we compare with a direct
solution evaluated with the second-order approximation of
the moment tensor (Graves, 1996). Therefore, we need to
directly store derivatives of the Green functions G, evalu-
ated on a fine grid.
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Figure 4.  Three pairs of components of the acceleration due to single-couple source
at 0.0 km, 0.0 km, and 2.6 km recorded at receiver 3.0 km, 3.0 km, and 0.0 km. Only
component M,, of the single couple was excited. Solid line represents the reciprocal
computation from numerical derivatives of the Green’s functions with spacing 0.6 km.
Dashed line represents the reciprocal computation from numerical derivatives of the
Green’s functions with spacing 1.8 km. Seismograms recorded in 1D heterogeneous

medium parameters as that of Figure 2.

Conclusions

The reciprocal method can be used to save a significant
amount of calculations where seismograms from many
sources at a few receivers are desired. The numerical tests
show that the errors due to the numerical implementation of
reciprocity method itself are less than the errors of the finite-
difference method. The accuracy of the procedure is depen-
dent upon calculation of the derivatives of the Green’s func-
tions to the same level of accuracy as the finite difference
itself. The method is suitable for source inversion and source
relocation, where large number of sources at different lo-
cations and with arbitrary mechanism can be quickly simu-
lated. Another application is in determining the anticipated
size of strong ground motions at particular site due to an
earthquake at many locations.
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