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ABSTRACT

This paper presents the Contrast Invariant and Affine Optical Flow
(CIAO), a dense area-based sub-pixel image matching algorithm.
CIAO does not force the estimated disparity field between two im-
ages to be smooth and allows for contrast and brightness changes.
It is robust to drastic changes in the images’ content thanks to an
adaptive weighting of the neighboring pixels. In addition, the pro-
posed model considers local affine displacements instead of simpler
translations. CIAO proves particularly useful to extract high quality,
high accuracy, and high density disparity maps from pairs of stereo-
scopic images. Comparative results with real and synthetic data are
provided.

Index Terms— Optical flow, affine and contrast invariant, re-
mote sensing, Digital Elevation Model (DEM), sub-pixel disparity.

1. INTRODUCTION

Although extracting disparity maps from pairs of images has been
widely studied, ensuring high accuracy and robustness remains a
challenge due to difficult situations arising in natural image se-
quences. Disparities to be estimated are not usually smooth, contrast
variations between images are common, and large occlusions can
be present. Dense disparity maps are typically used to recover the
3D information from stereoscopic image pairs, where corresponding
points between images must be matched. However, the accuracy
of such methods is not usually well documented, and we are here
interested in computing disparity maps with sub-pixel accuracy. Im-
age matching methods commonly rely on correlation [1] and phase
correlation techniques [2] [3].

The aim of this work is to push further the accuracy limit of im-
age matching techniques by enhancing the well-known optical flow
method, which has long been used for 3D reconstruction, and also
for motion estimation and image registration problems. Many ap-
proaches have been proposed since the publication of the two mile-
stone papers by Horn and Schunck [4] and by Lucas and Kanade
[5]. We refer to [6] for a comprehensive review of the different
optical flow techniques. The work we present is closer to the ap-
proach in [5] since our model does not consider global smoothness
constraints as in [4]. In fact, optical flow methods can be separated
into locally and globally parameterized methods. The global meth-
ods have risen in popularity in the last years [7] because they better
solve the aperture problem [8]. Indeed, local image patches may
not contain sufficient information to reliably estimate all disparities,
causing many outliers in poor textured regions of the images. How-
ever, global methods with regularity terms tend to over-smooth the
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estimated disparity field and are quite sensitive to the parameteriza-
tion used. For instance, [9] and [10] combine both approaches to
strike a balance between local and global methods. Our decision to
only focus on local methods stems from two main concerns: (1) Our
desire to estimate potentially irregular and discontinuous disparity
fields with high accuracy and high spatial resolution; (2) Our desire
to propose an algorithm that is adequate for parallel computing with
no or little communication between computing cores or nodes, e.g.,
GPU or distributed computing.

The classic optical flow formulation assumes radiometric con-
sistency between images and a smooth underlying disparity field [7].
However, these assumptions are often too restrictive and make the
optical flow technique unsuitable in a general setting, in particular
for remote sensing applications. Indeed, such images may have been
acquired at different times, under different illuminations, and the dis-
parity field may present variations that are not well approximated by
local translations. We introduce the Contrast Invariant and Affine
Optical Flow (CIAO), a generalized sub-pixel optical flow model
which does not force the estimated disparity field to be smooth, and
which allows for contrast and brightness changes by considering bias
and gain parameters as suggested in [5]. Furthermore, CIAO is ro-
bust to drastic radiometric changes thanks to an adaptive weighting
of the neighboring pixels. The algorithm is based on a multi-scale
approach since the optical flow linear equation is only a first order
approximation. At each scale, when the linear equation is not solv-
able or when the estimation is unreliable, a bilateral filter [11] ex-
trapolates the disparity field. Finally, the proposed model considers
affine displacements instead of simpler translations, which are rarely
valid in real scenes with complex disparities. This more complex
model produces finer measurements between corresponding points,
especially when the images are transformed by a locally large tilt or
shear. Indeed, image distortions arising from viewpoint changes are
locally well modeled by affine planar transforms. For instance, [12]
and [13] already suggested affine models in optical flow for registra-
tion and video tracking, respectively. In both cases, an affine defor-
mation is estimated for a large region of the image or for the whole
image instead of the local deformations we suggest here. Two rel-
evant formulations appear in [14] and [15] where affine local mod-
els in optical flow are considered. In [14] the aim is to compute
DEM’s from satellite images. The local approach they present is es-
sential for this specific application since a global modeling may not
realistically represent the image changes. Their work mainly differs
from ours in the parameters estimation (noise and affine parameters)
which is performed with a Bayesian approach having high computa-
tional complexity. Besides that, the robustness and attainable preci-
sion of their method is undocumented. Similar to our approach, [15]
also describes a hierarchical approach with an affine model. How-
ever, in addition to combining the most audacious ideas found in the
literature, we achieve greater accuracy and robustness by introducing
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two decisive ideas in optical flow: (i) an accurate interpolation of the
images and (ii) a robust method to avoid outliers. To the best of our
knowledge such a robustness and accuracy have not been achieved
with optical flow techniques making it one of the best methods to
compute DEM’s for remote sensing applications.

2. THE MATHEMATICAL MODEL

Let x = (x, y) and w = (u, v) and let consider the deformation
model between two images I1 and I2, such that:

I2(x+w) = α(x) · I1(x) + β(x) := Ĩ1(x) , (1)

where α and β are the parameters controlling the gain and offset at
each point, and the local disparity field follows the affine model:(

u(x, y), v(x, y)
)
=

(
ax+ by + c, dx+ ey + f

)
. (2)

In order to estimate the disparity w, and inspired by [16], an iterative
scheme is proposed, with:

w0 = (0, 0) and wk+1 = wk + δwk . (3)

From now on, we consider the following notations

ϕk
x0

(x) := ϕ(x0,x,w
k), Ikx (x) :=

∂

∂x
I2(x+wk) ,

Ikt (x) := I2(x+wk)− Ĩ1(x), Iky (x) :=
∂

∂y
I2(x+wk) .

For each iteration k, the unknown disparity increment δwk =
(δuk, δvk) = (δakx + δbky + δck, δdkx + δeky + δfk) at x0 is
estimated minimizing:

Ek+1
x0

=

∫
Px0

ϕk
x0

(x)
(
I2(x+wk+1)−αk(x0)·I1(x)−βk(x0)

)2

dx ,

(4)
where Px0 is an image patch centered at x0 and ϕ is an adaptive
function weighting the quadratic error such that:

ϕk
x0

(x)=exp
(−||x0 − x||2

2σ2
1

)
· exp

(−Ikt (x)
2

2σ2
2

)
· χ[|Ikt (x)|<2σ2]

,

(5)
where χ is the characteristic function. Note that the first exponential
term is a spatial weighting and the second term penalizes the pixels
in the patch where I2(x + wk) differs considerably from Ĩ1(x) at
iteration k. When this difference is too large, the third term is null.
Therefore, if an object in the scene appears differently between the
two images, the pixels of that object are considered with smaller
weights than the more similar pixels, or they are simply disregarded
if the difference is too large (e.g., occlusions).

In practice, the contrast change parameters α and β are com-
puted before the energy minimization using:

βk(x0) = I2(x0 +wk)− I1(x0) , (6)

αk(x0) =

∫
Px0

ϕk
x0

(
I2(x+wk)− βk(x0)

)
I1(x) dx∫

Px0
ϕk

x0I
2
1 (x) dx

, (7)

where I(x) indicates the gray mean value of I over Px. Remark
that this choice of parameters allows local affine contrast changes.
In particular, β subtracts the gray mean value of the image patches
in Eq. (4) compensating the image offset and α is the bias parameter
such that:

αk(x0) = argmin
λ

∫
Px0

ϕk
x0

(x)
(
I2(x+wk)−λ I1(x)−βk(x0)

)2

dx .

(8)
Then, the minimum of Ek+1

x0
is reached when the partial derivatives

are zero, i.e.:

∂

∂ δak
Ek+1

x0
= 0 ⇔

∫
xϕk

x0
Ik+1
t Ik+1

x dx = 0 , (9)

and similarly for the derivatives w.r.t. δbk, δck, δdk, δek and δfk.
Now, using Eq. (3) we write the first order Taylor expansions:

Ik+1
t = Ikt + Ikx δuk + Iky δvk , (10)

Ik+1
x = Ikx + Ikxx δu

k + Ikxy δv
k , (11)

Ik+1
y = Iky + Ikxy δu

k + Ikyy δv
k . (12)

Since the disparity increments are supposed to be small, the terms
containing (δuk)2, (δvk)2, and (δuk · δvk) can be neglected and
from Eq. (9) we obtain the linear system:

Ak Xk = Bk , (13)

where Xk = (δak δbk δck δdk δek δfk)T (see the next
top page for Ak and Bk.)

When the displacement to be estimated is greater than one pixel,
Eq. (13) will unlikely hold. Nevertheless, large disparities can be
estimated with a multi-scale approach, where the result of the last
iteration at a coarse scale is used as initialization in a finer scale.

2.1. Detecting and removing outliers

To decrease the number of outliers, [17] introduced robust cost func-
tions instead of the least-squares estimation, and [8] suggested to
jointly estimate the outlier process and the disparities with a proba-
bilistic mixture framework. However, these techniques do not com-
pletely rule out outliers in real scenes with complex situations (poor
textured regions, moving or disappearing objects, non local radiom-
etry changes, etc.) In these situations, an incorrect disparity can be
estimated at a certain scale, and propagated to the next ones. In our
model, the second and third penalty terms in the weighting function
(Eq. (5)) meaningfully attenuate that problem. CIAO also considers
two extra security tests which, combined with the weighting func-
tion, are able to discard most false matches. More precisely, we will
consider that δwk(x) = ∅ when

• The linear system is not solvable: rcond(Ak) < 0.0011,
where Ak is the associated matrix computed over Px.

• The displacement is not consistent with the mathematical
model: δwk(x) > 1 pixel.

Then, an iterative bilateral filter extrapolates the empty disparity
values.

3. THE CIAO ALGORITHM

At each scale, 3 iterations are performed. At each iteration k the
following steps are performed:

1. Compute Ikt by warping the second image I2

2. Compute ϕ(x0,x,w
k), ∀x0 using Eq. (5) (α=1, β=0)

3. Compute αk(x0), β
k(x0), ∀x0 using Eq. (6) and Eq. (7)

4. Update ϕ(x0,x,w
k)

1rcond(A) is an estimate of the reciprocal of the condition of A
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Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(14)

Bk =
(∫

xϕk
x0

Ikt I
k
x

∫
y ϕk

x0
Ikt I

k
x

∫
ϕk

x0
Ikt I

k
x

∫
xϕk

x0
Ikt I

k
y

∫
y ϕk

x0
Ikt I

k
y

∫
ϕk

x0
Ikt I

k
y

)T

(15)

5. Estimate the disparity increment δwk using Eq. (13)

6. Extrapolate the disparity field using the bilateral filter [11] for
the points where no displacement has been found.

7. wk+1 = wk + δwk

The parameters of the algorithm have been fixed once to the
values: size of the patch image Px = s × s with s = 11 pixels,
σ1 = s/3 pixels and σ2 = 5.

To increase computational speed, the disparity model at the
coarsest scales is only a translation model, the affine model being
only necessary at the last and finest scale.

Second image warping The first step of the algorithm at each
iteration performs a warping of the second image using the esti-
mated displacement from the previous iteration. Traditionally, this
is accomplished using a bicubic [7] (or bilinear [14]) interpolation
method, but we have seen that this entails a significant loss of ac-
curacy. Instead, we propose to use a sinc interpolation. Indeed, we
have used a truncated sinc (with size 17×17) in the last scale which
is a reasonable increase of complexity while the accuracy improves
by a factor of 10 (see Fig. 1-c). The remaining error still has a pe-
riodic pattern, which could be further reduced using a larger kernel
but at a larger computational cost. The parameters used provide a
good compromise between accuracy and complexity.

4. EXPERIMENTAL RESULTS

To illustrate the difference between the translation and the affine
model, we have performed a test where the second image has been
simulated from the first image (Fig. 1-a) with an affine horizontal
displacement (Fig. 1-b). Fig. 1-d shows the difference between the
same algorithm using the affine model at the finest scale, or only
using the translative model. In this error profile we observe that
the result is noisier when only the translative model is considered.
The periodic pattern of the error, which has a maximal amplitude of
3/1000 pix., comes from the limited support of the sinc interpolator
used to warp the image.

To quantify the error close to disparity discontinuities we have
simulated, using the same image as in Fig. 1-a, a piecewise affine
displacement in the horizontal direction (see the profile of the dis-
placement in Fig 2-a). We observe in Fig. 2-b that the error pro-
file around the discontinuity is considerably larger (≈1 pix) with the
translative model than with the affine model (≈0.4 pix). The larger
error appears in a region of 11 pixel wide, which is the size of our
window patch Px. Smaller windows will decrease the errors at the
discontinuities but the overall result will be noisier.

Fig. 3 compares the result of the CIAO algorithm on real satellite
(SPOT) images with the state-of-the-art algorithm presented in [7].
Images were acquired before and after the 1999 Mw 7.1 Hector Mine
earthquake with two years interval [2], showing shadowing and tex-
ture differences. In this example, the North-South fault displacement

appears clearly in our sub-pixel disparity field, where the maximum
disparity offset is on the order of 1/2 of the pixel size. On the con-
trary, the algorithm presented in [7] is completely false because of
the outliers and the over-smoothing of the regularity term. Finally,
the results obtained with two other algorithms published on line in
[18] and [19] can be seen in the public archives of their website2.

5. CONCLUSION

We presented CIAO, a new optical flow algorithm to estimate locally
affine disparity maps with sub-pixel accuracy. On the one hand, our
results show that the affine model is more accurate than the classic
translative model over smooth surfaces and around discontinuities.
Indeed, the disparity error of our algorithm is smaller than 3/1000 of
the pixel size for smooth disparities, and it is 60% smaller than that
obtained from a translative model around disparity discontinuities.
On the other hand, we have shown that the sinc interpolation used
in our algorithm improves the accuracy by a factor of 10 compared
to bicubic interpolation.To the best of our knowledge, the sub-pixel
accuracy reached by CIAO has not been rivaled by any other opti-
cal flow method (the website http://vision.middlebury.edu/flow eval-
uates different optical flow methods but the groundtruth is not accu-
rate enough to validate very precise sub-pixel algorithms [1]). Fur-
thermore, CIAO is robust to significant changes in the image content
thanks to its mathematical model, which allows for contrast changes
and includes an adaptive weighting function. Further research will
be directed to automatically adapt the parameter σ2 depending on
the local image dynamic. Accurately and robustly estimating dispar-
ity maps is a crucial element to derive high quality digital elevation
models from aerial or satellite stereoscopic images. In fact, CIAO
will be used to process a great amount of satellite images to measure
very precisely ground deformations, which is of uttermost interest to
Earth Sciences.
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