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Abstract

The formation and maintenance of thin layers in the presence of turbulent diffusion is considered through the
development of a formal framework that evaluates the balance between convergence mechanisms and the
diffusive effects of turbulence. Turbulent diffusion acts to broaden layers, thus a convergence is required to
produce a persistent and stable layer structure. Convergence mechanisms considered here include straining by
a sheared velocity profile, organism motility, and particle buoyancy. The balance between each of these
convergences and turbulent diffusion results in a scale estimate for the layer thickness that depends on local
conditions. Comparison of these layer thickness scales for each of the three mechanisms enables us to evaluate
which mechanism is likely to be dominant in particular situations. An example application of the framework is
based on observations of thin layers in East Sound, Washington, for which we conclude that either the buoyancy
or straining mechanism could contribute to the maintenance of the layer. Finally, the analytic framework itself
provides insights into thin layer dynamics, including the prediction of a finite layer lifetime for shear-driven layers
and the effects of mixing events on the convergence mechanisms acting to maintain the layers.

During the last two decades, technology has led to the
discovery of previously undetected thin layers of biological
organisms in the coastal ocean (Cowles et al. 1990; Cowles
et al. 1993; Holliday et al. 1998). These layers are
characterized by vertical thicknesses of the order of
decimeters to meters, but have broad horizontal extent
and are persistent in time (Rines et al. 2002; McManus et
al. 2003). In recent work, Dekshenieks et al. (2001) have
defined a criteria for a feature to be considered a thin layer
that is based on the relative concentration of organisms in
the layer and the thickness of the layer. Specifically, they
argue that a thin layer must be ,5-m thick, must be
observable in multiple profiles, and must have an optical
signal more than three times greater than the background
signal.

In general, the observations of thin phytoplankton layers
indicate that these layers are associated with physically
stratified layers, which are generally stable to shear
instabilities (McManus et al. 2003). Whereas low mixing
levels could explain the persistence of layers, observations
have indicated moderate turbulent levels associated with
many layers (McManus et al. 2003). Further, the absence of

mixing does not, by itself, explain the initial formation of
the layer. Several mechanisms have been explored to
explain the onset and maintenance of these layers. Recent
work by Genin et al. (2005) established the ability of
zooplankton to effectively maintain their position in the
water column through directed swimming. Although it was
unclear what the zooplankters were responding to in
adjusting their swimming, the authors were able to
establish the fact that these copepods could effectively
counter vertical currents as large as 1 cm s21. Earlier work
by Franks (1992) examined the potential for buoyancy to
maintain the position of a phytoplankter along an
isopycnal. In this case, individual phytoplankters are
retained at an equilibrium density; displacements from this
position are opposed by the buoyancy force acting on the
phytoplankter. Finally, Franks (1995) proposed a shear-
driven mechanism for layer formation that was based on
pure straining of a patch of passive phytoplankton by the
horizontal velocities induced by near-inertial internal
waves. In each of these cases, the formation mechanism
provides a convergence into a thin layer, which will act in
opposition to diffusion by turbulent (or molecular) mixing.

In this article, we develop a framework that explicitly
considers the competition between convergence and diffu-
sion. Specifically, we present a scaling approach to
examining the balance between various convergence
mechanisms and diffusion of the layers. The resulting
framework enables us to compare the relative importance
of straining, motility, and buoyancy, including an evalua-
tion of which mechanism is likely to dominate under given
conditions.
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Defining the convergence–diffusion balance

In order for a persistent and relatively coherent thin
biological layer structure to be maintained, processes acting
to expand and collapse the layer must be in balance. Here
we will consider three candidate convergence mechanisms
that would act to thin the layer: straining, motility, and
buoyancy. In each case, as the layer is thinned by the
convergence mechanism, turbulent diffusion becomes in-
creasingly effective at broadening the layer (relative to the
layer thickness), or at least maintaining the layer thickness
and counteracting the effects of the convergence mecha-
nism.

Defining the layer thickness as l, we define the net rate of
change of the layer thickness as
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where the first term on the right (which will be negative by
definition) represents all convergent processes that are
acting to thin the layer and the second term on the right
(positive) represents the diffusive effects of turbulent
mixing. During the formation period, the effects of
convergences exceed the diffusion by turbulence, and the
sum of the two terms in Eq. 1 would be negative as the layer
thins. The reverse is true during layer dissipation, and the
sum in Eq. 1 would be positive. An equilibrium layer
thickness will occur at the point where the broadening of
the layer by turbulent diffusion just balances the effects of
the convergence. The condition for layer maintenance is
therefore described by
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which captures the balance between the diffusive effects of
turbulence acting to increase the layer thickness and
a convergence mechanism acting to collapse or thin the
layer.

Considering the action of turbulent diffusion in the
cross-layer direction (assuming isotropic turbulence), the
broadening of the layer is governed by (see, e.g., Fischer et
al. 1979)
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where K is a locally constant turbulent diffusion coefficient.
Equation 3 reduces to
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which can be substituted into Eq. 2
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which is the condition for an equilibrium layer thickness to
exist.

Based on Eq. 4, the rate of layer broadening caused by
turbulence decreases with layer thickness. Therefore, for
layers greater than the equilibrium condition, the turbu-
lence term in Eq. 5 (which is positive) will be reduced, and
the total Ll

Lt
will be negative because of the effects of the

convergence, assuming that the rate of convergence is

independent of the layer thickness (or decreases in

effectiveness as the layer thins). For layer thicknesses less

than that defined by the balance in Eq. 5, Ll
Lt

is positive

because of the increased effectiveness of turbulence relative

to the convergence mechanism. As a result, we conclude

that the thin layer thickness defined by Eq. 5 will be a stable

equilibrium, with the exception of the case where the

convergence mechanism becomes more effective as the

layer thins, in which case the stability is unclear. This

stability condition should enable layers to persist through

the interaction of convergences and diffusion. In the

following sections, we scale the first term in this equation,

enabling the layer thickness to be estimated for various

convergence–diffusion balances.

Straining

We begin this discussion following the work of Franks
(1995), Osborn (1998), and Eckhart (1940), where the
straining of an initially broad patch of scalar is described.
In this case, we define the initial patch dimensions to be Lx

in the horizontal and Lz in the vertical (Fig. 1a, after
Eckhart 1940). We now assume that this patch is strained
by a sheared velocity profile, which is described by a vertical
variation in the horizontal velocity (Fig. 1a). Locally, this
shear can be approximated as constant, and we define

a ~
LU

Lz
ð6Þ

Initially, turbulent diffusion is not a significant contrib-
utor to the evolution of the patch; as the patch is strained,
however, its thickness is reduced until eventually turbulent
diffusion becomes important in the cross-patch direction
(Fig. 1c).

The use of a constant shear and diffusion coefficient
means that we are considering the local balance between
straining and diffusion. The validity of this assumption will
depend on the scale of the layer relative to variation in
these physical parameters. Even if there is some vertical
variation in these parameters, however, a first-order
approximation using constant values is likely to be
appropriate in defining the steady-state layer structure.

Using the parameters as defined in Fig. 1, we now
consider the evolution of l, the vertical thickness of the
layer, and h, the angle the layer makes with the horizontal
under the action of straining and turbulent diffusion. The
initial conditions on these parameters are l 5 Lz and h 5
p/2.

First, we consider how the straining process will lead to
a thinning of the layer with time, while also tilting the layer
to be more horizontal. As Franks (1995) outlined, the
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geometry of the layer (Fig. 1b) defines

l tð Þ~ Lx tan h ð7Þ

The action of the velocity shear manifests itself through the
tilting of the angle of the layer, which asymptotically
approaches zero:

tan h ~ atð Þ{1 ð8Þ

where a is the local velocity shear, and t is time. To
compare the effectiveness of straining relative to turbulent
diffusion, we need to consider the rate of change of layer
thickness caused by the straining. Substituting the expres-
sion for the layer angle (Eq. 8) into the equation for layer
thickness (Eq. 7) and taking the time derivative gives
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This expression defines layer thickness as a function of
time and initial conditions; fixed relationships between l,
Lx, h, and t (Eq. 7 and Eq. 8) and the assumption that the
angle h is small such that tan h < h, enable us to rewrite this
expression as

Ll

Lt

� �
strain

~ {lah ð10Þ

What we find in this expression is that the thinning rate
of the layer, or the effectiveness of the straining, decreases
as a function of time because the layer approaches
a horizontal position (i.e., h approaches 0). If a layer were
exactly horizontal, straining would no longer be effective at
thinning the layer, and turbulent diffusion would act to
broaden the layer. This trend is reinforced by the de-
pendence of the rate of layer thinning on the layer thickness
itself; as the layer gets thinner through time, the rate of
thinning decreases. Thus, we expect that at some point in
time turbulent diffusion will be able to counteract the

effectiveness of straining. At this point, the broadening
effects of turbulence will balance the thinning effects of the
shear, and a quasi-steady state will result. Note that the
term quasi-steady state is used because the layer thickness
will continue to evolve due to the changing angle the layer
makes with the horizontal, but from this point on, the layer
thickness will be defined by a balance between turbulent
diffusion and straining.

By substituting Eq. 10 into Eq. 5 and solving for the
scale at which straining and diffusion balance, we have

lstrain ~

ffiffiffiffiffi
K

ah

r
ð11Þ

This result defines a scale estimate for layer thickness
caused by a balance between straining and turbulent
diffusion, which we have defined as lstrain. In later sections,
we will compare this layer scale to similar estimates for
buoyancy- and motility-induced convergences. First, how-
ever, we describe the unsteady development of the layer
under the action of straining.

Discussion of time evolution—Using both the geometric
analysis summarized in Fig. 1 and the scaling results of the
previous section, we can now define the time development
of the layer thickness under the combined action of
straining and turbulent diffusion. Initially, the patch is
described by vertical dimension Lz; after a time tstart 5 Lx/
(Lza) (to account for the dimensions of the initial patch),
the layer thickness is given by

l tð Þ~ Lx

at
ð12Þ

where we have assumed that during this initial phase the
development is dominated by the straining.

We now argue that the layer will reach a quasi-steady
state when the pure straining expression (Eq. 12) ap-
proaches the balanced expression (Eq. 11). Equality of
these two expressions (and assuming tan h < h in Eq. 8)
leads to the definition of a timescale for the diffusion-

Fig. 1. A sketch of (a) the straining process and velocity shear and definition of layer
parameters including (b) the layer thickness, l, the angle the layer makes with the horizontal, h;
and (c) the turbulent diffusion coefficient, K.
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straining balance to develop:

tbal ~
L2

x

Ka2

� �1=3

ð13Þ

Before this time, straining is acting to thin the layer; after
this time, the layer gradually broadens because of the
decreasing effectiveness of straining. As a result, the
minimum layer thickness occurs at this time, and is given
by

lmin ~
KLx

a

� �1=3

ð14Þ

In Fig. 2, we present the time evolution of both the layer
thickness and the angle with the horizontal as functions of
time based on Eq. 7 and Eq. 8. It can be seen that the angle
monotonically decreases toward zero, with a representative
timescale of 1/a. The layer thickness first undergoes
a reduction in lengthscale because of the action of straining
until it reaches a condition at which straining and turbulent
diffusion are in balance. The angle that the layer makes
with the horizontal at this transition is given by

tan hbal ~
1

atbal

~
K

aL2
x

� �1=3

ð15Þ

Using the fact that the angle is likely to be quite small
when this balance occurs, we conclude that

hbal ~
K

aL2
x

� �1=3

ð16Þ
For times greater than tbal or angles less than hbal, the

layer thickness evolves as defined by Eq. 11, which
represents a balance between straining-induced conver-
gence and turbulent diffusion.

With this result, we can describe the evolution of layer
thickness under the action of steady shear as

l tð Þ~ Lz for t v tstart ð17Þ

l tð Þ~ Lx

at
for tstart v t vtbal ð18Þ

l tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K= ahð Þ

p
for t w tbal ð19Þ

These relationships are summarized in Fig. 2. After some
initial period (tstart) to account for the initial patch
dimensions, the patch is strained by the velocity shear,
becoming thinner in time as described by Eq. 12. After that
point, the detailed analysis of the interaction between
straining and turbulent diffusion predicts a gradual in-
crease in layer thickness (Eq. 11, Fig. 2a).

Motility

For zooplankton and some phytoplankton (specifically
dinoflagellates), swimming behavior is frequently invoked
to explain the development and maintenance of thin layers
(Rines et al. 2002; Genin et al. 2005). To establish the rate
of convergence created by species motility, we define the
vertical velocity to be

W ~ {ws for z w z0 ð20Þ

W ~ ws for z v z0 ð21Þ

This assumes that the swimming velocity is constant
(defined by ws) and is oriented toward the center of the
layer (at z0). Frequently a hyperbolic tangent formulation
for swimming speed is assumed (see Franks 1992), which
would result from a more diffused ‘‘target’’ layer. From
a scaling perspective, the lengthscale contained in the
hyperbolic tangent formulation brings an explicit thickness
to the analysis; to focus on the convergence–diffusion
interaction, we will use the constant formulation in Eq. 20
and Eq. 21 so as to define a lengthscale for the layer
without specifying other layer thicknesses.

The rate of collapse of a patch under just the action of
a convergent vertical migration is given by the swimming
velocity:

Ll

Lt

� �
swim

~ {ws ð22Þ

Fig. 2. Evolution of (a) the layer thickness scale and (b) layer
angle, including a transition from pure straining (for t , tbal) to
a straining–diffusion balance (for t . tbal). Point of intersection
defines when processes will be in balance (t 5 tbal).
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Balancing this rate of convergence with the turbulent
divergence results in

Ll

Lt

� �
swim

z
Ll
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turb

~ {ws z
K

l
~ 0ð23Þ

which defines a thickness of the layer as

lswim ~
K

ws

ð24Þ

A direct comparison of the influence of swimming and
straining can be considered through the ratio of these
scales:

lstrain

lswim

� �2

~
w2

s

Kah
ð25Þ

This defines a critical condition on the swimming
velocity at which these two processes are of equal
importance:

wcrit
s ~

ffiffiffiffiffiffiffiffiffi
Kah
p

ð26Þ

For ws greater than this value, swimming is more
effective than the shear-driven convergence presented in
the previous section at maintaining a coherent thin layer.
As was reported by Genin et al. (2005) copepods were able
to effectively counter vertical velocities as large as 10 body
lengths per second.

It is important to note that this swimming analysis
assumes that the individuals swim with constant speed
toward an infinitesimally thin ‘‘target’’ layer and will
therefore require some ambient layer structure, established
through other mechanisms, for it to be effective (Genin et
al. 2005).

Buoyancy

A mechanism that is frequently invoked to explain
layer formation and maintenance is particle buoyancy
and the creation of layers on pycnoclines (Franks 1992). In
this case, a particle of density rp is retained along an
isopycnal of equal density (rw 5 rp) by a buoyancy-induced
restoring force. If the particle is displaced from this
equilibrium level, the density difference between the
particle and the surrounding water forces the particle back
toward its equilibrium position. In the low Reynolds
number limit, Stokes’ law can be used to define the velocity
with which it will move back toward its equilibrium
position:

Vsettle ~ {
Dr gD2

r0 18n
ð27Þ

where Dr is the difference between the particle density and
the surrounding water density, D is the particle diameter
(assuming a spherical particle), g is the gravitational
acceleration, and n is the molecular viscosity of water.

If we now consider a particle that is at equilibrium in the
center of a linear density profile (at z 5 z0), then the density
difference is related to the position of the particle as

Dr

r0

g ~ {
g Lr

r0 Lz
z { z0ð Þ~ N2 z { z0ð Þ ð28Þ

where N2 ~ { g
r0

Lr
Lz

is the buoyancy frequency. This

relationship results in a vertical particle velocity of

Vsettle ~ W ~ {
N2D2

18n
z { z0ð Þ ð29Þ

Scaling (z 2 z0) with the layer thickness leads to

Vsettle ~ W ~ {
N2D2

18n
l ð30Þ

Just as in the case of swimming, this settling velocity is
exactly equal to the rate of change of layer thickness caused
by the effects of buoyancy. If this convergence mechanism
is to be effective in establishing a steady layer structure, this
rate of layer collapse must balance the rate of expansion of
the layer by turbulence, which leads to

{
N2D2

18n
l z

K

l
~ 0 ð31Þ

Solving this relationship for layer thickness results in

lbuoy ~

ffiffiffiffiffiffiffiffiffiffiffiffi
18Kn

N2D2

r
ð32Þ

The comparison between buoyancy and straining mech-
anisms can be quantified by considering the ratio of the
layer thicknesses defined by Eq. 11 and Eq. 32, which we
will refer to as lstrain and lbuoy, respectively. That is,

lstrain

lbuoy

� �2

~
N2D2

18nah
ð33Þ

Because a is the velocity shear, we can rewrite this
equation using the gradient Richardson number, Rig ~ N2

a2 :

lstrain

lbuoy

� �2

~ Rig
D2a

18nh
ð34Þ

Focusing on the gradient Richardson number, we can
establish a critical value based on Eq. 34 at which the
effectiveness of buoyancy is equivalent to that of straining:

Ricrit
g ~

18nh

D2a
ð35Þ

For values of Rig less than this value, lstrain is smaller
than lbuoy, which means that the straining process is more
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important in defining the layer thickness. If Rig is greater
than Ricrit

g, then buoyancy is expected to be the dominant
process. We note that this critical threshold does not
depend on the turbulent diffusion coefficient, K, and is
therefore estimable from mean flow variables, provided
a rough estimate of the layer inclination and particle
diameter is available.

Other mechanisms

The framework presented in the introduction to this
section, which evaluates the competition between conver-
gent and divergent processes in establishing the layer
thickness, is applicable to many other processes that are not
presented here. We have limited our development in this
article to these three basic convergent mechanisms (strain-
ing, motility, and buoyancy) which are frequently invoked
in the analysis of thin layers, and we have assumed that
they each act independently. It is probable that in many
layers more than one convergence mechanism is responsible
for the formation and maintenance of the layer. For
example, settling of particles into a layer, or downward
migration into a layer, could dominate the convergence on
the upper side of the layer, whereas straining provides the
convergence mechanism to preserve the sharpness of the
lower side of the layer. In this case, the analysis of
convergence and defining the resulting rate of thinning of
the layer for use in Eq. 5 would rely on the average of the
two convergence mechanisms. Although a detailed de-
velopment of this analysis is beyond the scope of this
manuscript, the framework presented here would be readily
applicable.

In addition to considering each convergence mechanism
separately, we are making the simplifying assumption that
these convergent processes are essentially homogeneous. As
such, we are not, at this time, including other mechanisms
for layer formation, such as spatially variable growth or
grazing rates.

Our analysis framework would also, of course, permit
other divergent mechanisms to be considered beyond the
homogeneous turbulent diffusion discussed here. Examples
of other dissipative mechanisms could include diffusive
(undirected) swimming, out migration from the layer
(directed swimming), or buoyancy regulation. In the case
of each of these other mechanisms, a velocity scale can be
defined that defines the rate of layer thinning or thickening,
which can then be used in the lengthscale analysis described
here.

Finally, internal wave motions could be either a conver-
gent or divergent process, depending on whether isopycnals
are being compressed or expanded by the waves at a point
in time. These effects could easily be incorporated into our
framework through the addition of an additional time
derivative term to account for the waves; this analysis is not
presented in this article.

Detailed analysis of cross-layer structure

The previous results define a scale estimate for layer
thickness for the balance between turbulent diffusion and

three different convergence mechanisms: straining, motili-
ty, and buoyancy. Those scaling results are used in the next
section to differentiate between the various convergence
mechanisms. In this section, we note that in certain cases,
for each of the balances previously described, a more
detailed solution for the structure of the layer is possible.

A common element in many of the observations of thin
layers is that the concentration in the layer tends to have
a sharp maximum around the center of the layer (see, for
example, Rines et al. 2002, fig. 5). This is in direct contrast
to the Gaussian shape that would result from typical
diffusive mixing processes (Fischer et al. 1979), even in the
presence of growth. To be more specific, many observed
layers have a discontinuity in the gradient of the
concentration, with the vertical gradient of concentration
reaching a maximum near the maximum in concentration;
Gaussian distributions are characterized by a zero-gradient
at the maximum concentration. Clearly, the dynamical
balance that is establishing and maintaining the vertical
structure of these layers cannot be described with a purely
diffusive process, even if local growth is included. Instead,
a convergence mechanism is required to maintain the
sharply peaked structure that is evident in many observa-
tions.

Straining–diffusion balance—In a reference frame rotated
to coincide with the axis of the layer, the cross-layer
velocity is convergent and proportional to distance from
the center of the layer (Garrett 1983; Townsend 1951). For
our case, assuming that the angle the layer makes with the
horizontal (h) is small, the cross-layer velocity (Wl) can be
written as

Wl ~ { U0 z azlð Þh ð36Þ

where U0 is the mean velocity of the layer, and zl is the
cross-layer coordinate. In Garrett’s (1983) analysis, the
interaction of straining and diffusion results in a two-
dimensional Gaussian distribution. The advection–diffu-
sion equation can be reduced to the one-dimensional, cross-
layer competition between the convergence and turbulent
diffusion for a highly anisotropic situation such that the
along-layer concentration gradients can be neglected,
which may be appropriate away from the lateral limits of
the layer. Using the velocity in Eq. 36, we can integrate the
advection–diffusion equation across the layer to get

C zlð Þ~ C0 1 { er f
zlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K= ahð Þ
p
 !












 !

ð37Þ

where zl is the cross-layer coordinate; K, a, and h are as
defined above; and C0 is the maximum concentration in the
layer. We expect this solution to hold in the cross-layer
direction (zl), which is nearly vertical for small angles h.
Importantly, this solution will only be valid away from the
edges of the layer in the along-layer direction because of
a necessary assumption of along-layer uniformity in
developing this solution.

This profile is plotted in Fig. 3 and is seen to have
a sharply peaked maximum at the center of the layer, which
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is consistent with the observations of thin layers in the
coastal ocean (Dekshenieks et al. 2001; Rines et al. 2002).
Using our previously defined straining lengthscale (Eq. 11),
and z0 as the center of the layer, then the functional form of
the solution collapses to

C zð Þ~ C0 1 { er f
z { z0

lstrain

� �










� �
ð38Þ

Motility–diffusion balance—With the vertical velocity
given by Eq. 20 and Eq. 21, the advection–diffusion
equation in the cross-layer direction can be solved in each
half-plane through integration, resulting in

C zð Þ~ C0e{ws
K

z { z0j j ð39Þ

where z0 is the center of the layer, K is the diffusion

coefficient, and C0 is the centerline concentration of the

layer. For this exponential decay of concentration from the

center of the layer, the characteristic thickness for the layer

in this case is given by Eq. 24, that is lswim ~ K
ws

.

In Fig. 3, this profile is compared directly with that
created by the straining mechanism for the case where the
layer thickness of the two approaches is equivalent (that is,
lswim 5 lstrain). Whereas there is a difference between the two
curves when lswim 5 lstrain, the two curves would be nearly
identical if a concentration profile were used to estimate the
underlying lengthscales (lswim would be less than lstrain

because of the mathematical form of the two solutions).

Buoyancy–diffusion balance—Examining the rate of layer
collapse caused by buoyancy (Eq. 30), we see that the
effective convergence velocity is proportional to cross-layer
position, just as in the case of straining (Eq. 36). As a result,
the buoyancy convergence has the same mathematical form
as the straining-induced convergence, and the solution
from Eq. 37 can be applied to this case with lbuoy replacing
lstrain:

C zð Þ~ C0 1 { er f
z { z0

lbuoy

� �










� �
ð40Þ

This profile shape is exactly equivalent to that for
straining in Fig. 3, so a comparison of these two
convergence mechanisms would rely on the evaluation of
the lengthscales, as outlined in the previous section.

Example application: East Sound 1996

To illustrate the application of the framework de-
veloped in this work, we apply it to observations of thin
layers, which include coincident measurements of both
shear and stratification. By applying the expressions for
cross-layer scale (Eq. 11 and Eq. 32), we can evaluate the
convergence–divergence balance implied by the observed
layers.

In 1996, a comprehensive data set describing layer
development was collected in East Sound, Washington
(Dekshenieks et al. 2001; Alldredge et al. 2002; Rines et al.
2002). In a paper describing these observations, Dekshe-
nieks et al. (2001) provide a summary of layer thickness,
density gradient, and velocity shear. Table 1 summarizes
the data from several representative events, which consist
of a series of observations of the same layer. The values in
this table represent mean values over the period of layer
observation. Variations around these mean values are
summarized in Figs. 4 and 5 by showing the range of values
observed in the parameters. In Fig. 4, the basic character-
istics of the layers for each event are presented, including
the observed layer thickness (Fig. 4a), the buoyancy
frequency squared (N 2, Fig. 4b), and the shear squared
(S 2, Fig. 4c). In each case, the shear and stratification vary
across a relatively narrow range as does the layer thickness,
with the exception of event B. Across events, however,
there is greater variation in these parameters.

We now consider the dynamics of each of these events in
the context of the framework developed here. We first
pursue an analysis of layer divergence caused by turbulent
mixing, for which we require estimates of turbulent mixing
coefficients. We start this analysis with the estimation of
the Thorpe (or overturning) scale (Thorpe 1977), which is
calculated as the mean displacement scale (based on the
sorting of the density profile) over the segment of the
density profile occupied by an observed thin layer. As seen
in Fig. 5a, the Thorpe scale is much smaller than the
observed layer thicknesses and, again with the exception of
event B, varies over a relatively narrow range within each
event.

Under the assumption that the overturning scale is equal
to the Ozmidov scale (see, e.g., Gregg 1987), the turbulent

Fig. 3. A comparison of normalized straining and buoyancy
solution (solid line) with normalized swimming solution
(dotted line).
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dissipation rate can be estimated as

e ~ L2
t N3 ð41Þ

The assumption that the overturning scale is nearly equal
to the Ozmidov scale has been confirmed by observations
(Dillon 1982) and is consistent with turbulence at maximal
efficiency (Ivey and Imberger 1991). In other words, we are
assuming that the turbulence is in equilibrium with the
stratification (Holt et al. 1992), and that the turbulent
Froude number is unity (Ivey and Imberger 1991). The

dissipation rate for each event is presented in Fig. 5b. In all
cases, the dissipation rate varies from about 5 3
1027 W kg21 to 1 3 1028 W kg21. Once again, event B
shows the widest range of conditions. It is important to
note here the broad uncertainty range associated with these
estimates. Uncertainty in this estimate of the dissipation
rate is caused by three factors: inherent uncertainty in the

Table 1. Observed layer thickness from Dekshenieks et al. (2001) and implications of frameworks presented here. Turbulent
parameters, including the Thorpe scale, the dissipation rate, and the diffusion coefficient, are discussed in the text. The last two columns
report the values of particle diameter and layer angle required for the buoyancy and straining mechanisms to balance turbulent diffusion,
respectively.

Event

Layer numbers
(Dekshenieks

2001)
Average layer
thickness (cm)

Lt N2 S2 e, Lt
2 N3

K, cmixe
N22 dl/dtturb Dbal

Hbal(cm) (s22) (s22) (W kg21) (cm2 s21) (cm s21) (cm)

A 50, 52, 55, 57 90.25 3.6 2.731023 2.131023 1.831027 1.031021 5.631024 2.031022 1.431024

B 51, 53, 56, 58, 61 71.4 4.155 1.531023 1.831023 1.031027 1.031021 7.031024 3.431022 2.331024

C 65, 68, 71, 72 50 2.053 7.131023 1.531024 2.531027 5.331022 5.331024 1.631022 8.831024

D 91, 93, 95, 96, 100 143.5 7.987 3.331024 1.631024 3.731028 1.731021 6.031024 4.831022 3.331024

Fig. 4. Characteristics of layers observed in East Sound
1996. (a) Observed layer thickness, (b) buoyancy frequency
squared, and (c) shear squared associated with each event. See
Table 1 for definition of events.

Fig. 5. Turbulence characteristics associated with layers
observed in East Sound 1996 (see Table 1 for event definitions).
(a) Observed Thorpe scale, (b) estimated dissipation rate of
turbulent kinetic energy, and (c) estimated turbulent diffusion
coefficient.
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estimate of the Thorpe scale, an uncertain relation between
the Thorpe scale and the Ozmidov scale, and natural
intermittency and variability in the local dissipation rate.
As such, the uncertainty limits presented in Fig. 5b are
probably the lower limit for these uncertainties, but are
illustrative of the errors in the estimates.

Using this estimate of the dissipation rate, and assuming
a local balance between shear production, dissipation rate,
and buoyancy flux, we can estimate an upper-bound on the
turbulent diffusion coefficient using (Osborn 1980)

K ~ cmix

e

N2
ð42Þ

The specification of the mixing efficiency (cmix) should
depend on the state of the turbulence through, for
example, the turbulent Froude number (Ivey and Imberger
1991) and will introduce additional uncertainty into the
estimate of divergence by the turbulence. Around a turbu-
lent Froude number of 1, however, the mixing efficiency is
at or near its maximum value of 0.2 (Rf 5 0.15, which is
slightly lower than Ivey and Imberger 1991), which is
consistent with the formulation proposed by Osborn (1980)
and applied regularly in the oceanic thermocline. Based on
this assumption of the mixing efficiency, turbulent diffu-
sion coefficients in the range of 0.01 cm2 s21 to 1 cm2 s21

are estimated for each of the events considered (Fig. 5c).
Using the mean values of these parameters within each

event, as summarized in Table 1, we now apply the
framework developed here. First, based on the turbulent
diffusivity, we calculate the rate of layer broadening caused
by turbulent mixing, which is reported in column nine of
Table 1. These layer growth rates must be offset by
a convergence mechanism in order for a steady layer
thickness to result. For the species observed in East Sound,
motility was unlikely to be a significant mechanism for
convergence (Rines et al. 2002), so we now consider the role
that the buoyancy and straining mechanisms could have
played in layer formation and maintenance.

In each of these cases, there is one parameter in the
formulation of the convergence mechanism that is un-
known; for buoyancy, the effective particle diameter is
uncertain, whereas for straining, the layer angle relative to
the local advection is unknown. Rather than specifying
these parameters based on independent observations or
analysis, we instead define the value of each of these
parameters that would result in an equilibrium between
that mechanism and turbulent diffusion. The equilibrium
particle diameter implied by the buoyancy mechanism is
shown in column 10 of Table 1; the angle of layer
inclination required for the straining mechanism is shown
in column 11 of Table 1. Remarkably, although the
ambient shear and stratification varied widely between
these events, the particle diameter required to offset the
effects of turbulence is quite constant across events and is
not too different from independent estimates of particle size
(0.04 cm). The required angle of inclination is also
relatively uniform across events, and the values that result
are physically plausible based on the observed layer
duration, but without independent measurements of the
inclination of the layer, this result cannot be evaluated.

Together, we conclude that the buoyancy and straining
mechanisms are candidates for the maintenance of the
observed layers in East Sound. In this case, without
independent estimates of the particle diameter and the
layer angle, the analysis cannot distinguish between them.
The framework presented here does, however, provide
a method within which the various convergence mecha-
nisms can be quantitatively compared and analyzed.

Discussion

The analysis presented in this article provides a frame-
work for incorporating turbulent mixing into the analysis
of thin-layer structure and dynamics. We extend Franks’
(1995) analysis of kinematic straining to include cross-layer
diffusion using a scaling approach that characterizes the
unsteady development of a layer under the action of
a sheared velocity profile. Similar scaling analysis for the
action of motility and buoyancy results in scale estimates
for layer thickness under each of the three candidate
balances. A more detailed analysis of the cross-layer
structure shows that the interaction of these convergence
mechanisms with turbulent diffusion results in a sharply
peaked concentration profile that is consistent with the
observations. It is important to note that the relative
importance of each of these convergence mechanisms will
depend on the local conditions (stratification, shear,
particle diameter and motility, and layer inclination) that
are forcing the layer at a point in time. As a result, we
expect that the mechanism dominating layer formation and
maintenance may, in fact, change as the layer evolves.

One of the implications of the framework itself is the
expectation of a finite lifetime for layers produced by
straining. As straining proceeds, the angle of inclination of
the layer continues to approach zero, which makes
straining less effective as a convergence mechanism. In
fact, the time behavior presented in Fig. 2 shows that for
times greater than the balancing point (denoted tbal), the
layer thickness actually increases. Thus, a change in the
level of turbulent diffusion (or other divergence mecha-
nisms) is not required for the layer to dissipate, even if the
straining continues indefinitely. The other convergence
mechanisms considered here (motility and buoyancy),
however, could maintain a thin layer indefinitely and, as
a result, increases in layer divergences could be more
important to the dissipation of these layers.

Although we have presented them as separate processes
here, convergences and divergences cannot be entirely
decoupled because of the interaction of shear, stratifica-
tion, and turbulent mixing. As outlined above, the
comparison between the importance of the straining and
buoyancy convergence mechanisms results in a gradient
Richardson number criteria, with buoyancy becoming
more important for large Richardson numbers. At the
same time, however, we expect an inverse relationship
between the gradient Richardson number and turbulent
mixing through reductions in turbulent energy and perhaps
the mixing efficiency (or, equivalently, the flux Richardson
number). As a result, in strongly stratified conditions, the
buoyancy–diffusion mechanism is reinforced by the re-
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duction in turbulent diffusion. The straining–diffusion
balance, however, is characterized by a negative feedback
because of the expectation for shear to provide a production
mechanism for turbulence, which would both diffuse the
layer and reduce the shear itself. For strongly sheared
flows, therefore, the competition between the straining of
the patch and the production of turbulence by the shear
must be considered.

During the dissipation phase of the layer, however, the
buoyancy and straining mechanisms are reduced by the
turbulent mixing of momentum and density, which reduces
the shear and stratification that may be providing the
required convergence for layer maintenance. As a result,
mixing events that act to dissipate the layer act to both
disperse the layer and reduce the convergence mechanism
that is maintaining the layer. For layers maintained by
motility, however, the connection between turbulent mixing
and changes to the convergence mechanism is less clear.
Although there is some evidence that individuals may swim
to escape turbulent regions (Franks 2001), the net effect on
the layer structure cannot be established at this time.

Application of the framework to observations from East
Sound suggest that the buoyancy mechanism and the
straining mechanism are likely to contribute to the
maintenance of the observed layers, at least to within the
uncertainty in the turbulence analysis. Whereas swimming
is certainly relevant for copepods (Genin et al. 2005), for
the non-motile species considered here, we cannot distin-
guish between the buoyancy and straining mechanisms with
the existing observations.

The formal development of this framework also guides
future data collection efforts. The variation of layer
thickness at short timescales (minutes to hours) can now
be analyzed in the context of the mechanisms that lead to
changes in layer thickness. Simultaneous observation of
turbulence parameters, particularly turbulent dissipation
rate, with the more traditional descriptions of layer
structure and variability can be integrated into a more
complete description of layer formation, maintenance, and
eventually, dissipation. To develop detailed comparisons of
the roles of various convergence mechanisms, however,
other auxiliary measurements would be extremely valuable,
and perhaps necessary. In the case discussed here, in-
dependent knowledge of the particle sizes, perhaps based
on multifrequency acoustics, and layer angle of inclination,
which would require synoptic surveys, would enable a more
complete evaluation of the convergence mechanism re-
sponsible for the observed layers.
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