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ABSTRACT: 

 

This paper presents the performance of an efficient location tracking algorithm based on Alpha-Beta (α-β) filtering with vision-

assisted in a wireless sensor network (WSN) environment. With a vision-assisted calibration technique based on normalized cross-

correlation scheme, the proposed approach is an accuracy enhancement procedure that effectively removes system errors causing 

uncertainty in measuring a dynamic environment. That is, using the vision-assisted approach to estimate the locations of the 

reference nodes as landmarks, an α-β tracking scheme with the landmark information can calibrate the location estimation and 

improve the corner effect. The experimental results demonstrate that the proposed location-tracking algorithm combining vision-

assisted scheme with α-β filtering approach can achieve an accurate location very close to the traditional Kalman filtering (KF) 

algorithm in a ZigBee positioning platform. As compared with the KF-based approach, the proposed tracking approach can avoid 

repeatedly calculating the Kalman gain and achieve reasonably good performance with much lower computational complexity. 

 

 

1. INTRODUCTION 

With the rapid increase in wireless communications, location-

aware services have received a great deal of attention for 

commercial, public safety, and military applications [1]. 

However, most of location-estimation approaches are based on 

the received signal strengths (RSSs) in wireless network 

environment. For positioning systems based on RSSs in small 

areas, there are two major approaches for location estimation of 

a mobile terminal (MT) in wireless networks: one using wireless 

local area networks (WLANs) and the other using wireless 

sensor networks (WSNs). The former approach is cost effective, 

while the latter is energy effective. In addition, for location 

estimation, a client-based deployment or an infrastructure-based 

deployment can be adopted. Nevertheless, one of the key 

challenges is the location accuracy. That is, to estimate an 

accurate location based on one of a client-based deployment or 

an infrastructure-based deployment only using RSS information 

is still a difficult problem for improving the location accuracy. 

 

Traditionally, an accurate location can be improved with 

location tracking algorithms. The role of a tracking algorithm is 

to perform recursive state estimation, which is given by the state 

equation and the observation equation [2]. Furthermore, 

because Kalman filtering (KF) algorithm is considered an 

optimal recursive computation of the least-squares algorithm, it 

has been introduced to enhance the accurate estimation of the 

location-estimation system [2]–[4]. That is, location-estimation 

techniques based on KF algorithm can be considered optimal 

for the linear Gaussian model during location estimation and 

tracking. However, the results of high accurate locations based 

on KF techniques requires high computational complexity, and 

direct implementation of the KF algorithm may be too complex 

for practical systems. To improve location-estimation efficiency 

with algorithm during location tracking, it would be useful to 

develop an algorithm with high location accuracy and low 

computational complexity. Therefore, some fixed coefficient or 

degenerate form algorithms were proposed to avoid repeatedly 

calculating the Kalman gain, and the computational complexity 

of these schemes is much lower than the traditional KF 

algorithm [5]–[6]. However, for location-tracking approaches, 

the dramatic speed changes in a short time may result in the 

corner effect and diminish location accuracy. In addition, for 

wireless services in feature phones, most of location-based 

services (LBSs) only use absolute approaches based on RSSs to 

infer the location of the MT. Namely, to estimate an accurate 

location with absolute schemes is still a difficult problem for 

improving the location accuracy. Recently, a smartphone with 

multi-sensor systems and cooperative capabilities has become 

widely available. Specifically, a smartphone can offer more 

advanced computing ability and allows the user to run multi-

task applications [7]. Consequently, the portable navigation and 

tracking system (a smartphone or an MT) can combine with the 

diverse sensing capabilities. In other words, a location-

estimation system combining with different devices can be 

considered an important technique to improve location accuracy 

[8]. In addition, a landmark technique based on the RFID-

assisted approach can be used to calibrate the location 

estimation, to overcome the corner effect of the dramatic time 

varying environments, and to enhance the system performance 

of the location accuracy [3]. Therefore, according to the features 

of smartphones, to combine the radio ranging scheme with 

video recording data is a natural choice for positioning systems 

to improve the location estimation of MTs in LBSs.  
 

This paper proposed an algorithm combining an efficient 

location-tracking approach with a vision-assisted approach in a 

WSN environment. As compared with the traditional KF 

tracking scheme, a degenerate form algorithms with much low 

computational complexity is proposed to avoid repeatedly 

calculating the Kalman gain. In addition, a vision-assisted 

scheme based on normalized cross-correlation (NCC) approach 

is proposed to detect landmark locations as calibration 

technique, and then the technique is used to alleviate the corner-
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effect problem caused by filtering and tracking algorithms. 

Under a stationary environment, experimental results 

demonstrate that the proposed approach not only can achieve an 

accurate location close to the KF tracking scheme, but also has 

much lower computational complexity. 

 

 

2. BACKGROUND 

2.1 State and Measurement Models 

Consider the dynamic system described in state space form. If 

the system based on probability densities is denoted, the 

mathematical models for the system and measurement on the 

MT at time k can be taken by 

 

 

State equation:  

 
1 1( , ) ( | )k k k k kfun f  

x
x x u x x                            (1) 

 

Observation equation:   

 ( , ) ( | )k k k k kfun h 
z

z x ε z x ,                              (2) 

 

 

where xk, funx (·), uk, zk, funz(·), and 
kε  are the state vector, 

transition function, process noise with known distribution, 

observation vector, observation function, and observation noise 

with known distribution, respectively; 
1( | )k kf x x  and 

( | )k kh z x  are the transition PDF and observation PDF, 

respectively. By these equations, the hidden states xk disturbed 

by uk and the data zk disturbed by 
kε  are assumed to be 

generated by functions funx (·) and funz(·), respectively. 

According to the Markov structure and Bayes’s theorem, the 

prediction-correction recursion can be written as follows. 

 

 

Prediction step (time update) 

1 0: 0: 1( | ) ( | ) ( | )k k k k k k kp p f d  x z x z x x x  .                  (3) 

 

Correction step (measurement update) 
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x z
z z

 ,                   (4) 

 

 

where p(zk+1|z0:k) is the predictive distribution of zk+1 given the 

past observations z0:k. The prediction-correction recursion 

relations in (3) and (4) form the sequential scheme for the 

Bayesian approach. For the linear Gaussian model, the 

mathematical models of the linear dynamic system and of the 

measurement can be denoted as a state space model by 

 

 

State equation 

1 , ( , )k k k k k k   x Φ x u u 0 Q  (5) 

 
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( )
for 

kT

n k k
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Observation equation 

, ( , )k k k k k k  z H x ε ε 0 R                                      (6) 

 
for 

( )
for 

kT

n k k

n k
E k n

n k



  



R
ε ε R

0
             

where xk, kΦ , uk, and Qk are the state matrix, state transition 

matrix, model noise matrix, and model noise covariance matrix, 

respectively; zk, Hk, kε , and Rk are actual measurement matrix, 

measurement transition matrix, measurement noise matrix, and 

measurement noise covariance matrix, respectively. For these 

equations, uk and 
kε  are zero-mean independent Gaussian 

vectors with covariance matrices Qk and Rk, respectively.  

 

2.2 Kalman Filtering 

According to the prediction and correction steps in (3) and (4), 

if the state space model is linear and Gaussian, a KF algorithm 

can be derived from Bayesian approach [9]. Let the vector x = 

[x1,…,xn]
T consist of independent components i = 1,..., n. The 

PDF of x is the production of the individual PDF’s of x1,…,xn; 

( ; , )x m P  is defined as Gaussian density for n dimensions; 

the n-dimension Gaussian density function is defined by 

  

 

1 2 11
( ; , ) 2 exp{ ( ) ( )} ,

2

T
 

 x m P P x m P x m      (7) 

 

 

where x, m, and P are the argument, mean, and covariance, 

respectively. In this paper, the value of vector x(t) at a discrete 

time instant t = tk is denoted by xk; the estimate of x(t) at time t 

= tk given the observations up to time t = tj is denoted by a 

double-subscript notation with |k jx , and then three useful cases 

are denoted as follows: the one-step fixed-lag smoothing is 

| 1k k k x x , the best estimation is |
ˆ

k k kx x , and the best one-

step prediction is 1| 1k k k x x . According to equations (1)–(6), 

the KF algorithm can be applied by [2] 

 

 

1 1( | ) ( ; , )k k k k k kf  x x x Φ x Q                             (8) 

( | ) ( ; , )k k k k k kh z x z H x R  .                             (9) 

 

 

The mathematical equations and phases of the KF algorithm can 

be summarized as a process cycle of Kalman filtering given in 

Figure 1 [3], where ˆ
kx , 

kx , |k je , ˆ
ke , and 

ke  are the state 

estimate matrix, state prediction matrix, state error matrix, 

estimation error matrix, and prediction error matrix, 

respectively; ˆ
kP , 

kP , and Kk are the estimation error 

covariance matrix, prediction error covariance matrix, and 

Kalman Gain, respectively. 
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Figure 1. The process cycle of Kalman filtering. 
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2.3 Location Tracking Using Alpha-Beta Filtering 

An Alpha-Beta (α-β) filtering approach can be based on the 

steady state of the KF-based approach, which does not require 

repeatedly calculating the Kalman gain, and the computational 

complexity of the scheme is much lower than the traditional KF 

algorithm [6]. In this paper, using x for position and v for speed, 

the α-β tracking approach is expressed as follows. 

 

 

Prediction step (time update) 

1
ˆ ˆ  k k k kk   x x v                                             (10) 

1
ˆ

k k v v ,                                                    (11) 

 

 

where 
kx  and 

k kv x  are the predicted location matrix and 

the predicted speed matrix, respectively. 

 

 

Correction step (measurement update)                                   

ˆ ( )  k k k k  x x z x                                       (12) 

ˆ ( )( )k k k k k   v v z x ,                                 (13) 

 

 

where ˆ
kx , ˆˆ

k kv x , and zk are the estimated position matrix, 

the estimated speed matrix, and the measured position matrix, 
respectively. The location estimator based on the α-β tracking 
scheme to track the location information of an MT was 
described in [6]. Furthermore, α and β are tuning constants 
between number 0 and number 1 to smooth the location and 

speed estimates. If 0   , the measurement has no effect 

on the approach; if 1   , the history has no effect on the 

approach.  

 

2.4 Normalized Cross Correlation  

In order to recognize the reference nodes (RNs) as landmarks 

along the test path, this paper combines a pattern recognition 

method with identifications (IDs) of RNs for calibrating the 

location estimation. As is well known, the simplest area-based 

image-matching method is the NCC algorithm [10]. The NCC 

scheme is widely used in image-processing applications, and it 

can be against the brightness difference between the image and 

template due to lighting condition. In this paper, the useful 

equations of the NCC approach are as follows.  

 

 

1 1 ( , )n m

i j T i i

T

G x y
G

n m

  



                            (14) 

1 1 ( , )n m

i j S i i

S

G x y
G

n m

  



                           (15) 

2
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1
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T

G x y G

n m


   


 
                       (16) 
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1
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i j S i i S

S

G x y G

n m


   


 
                       (17) 
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1

n m

i j T i i T S i i S
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G x y G G x y G

n m


     


 
         (18) 

TS

T S

r


 
  ,                                        (19) 

where GT(x, y) and GS(x, y) are the image mask of the grayscale 

of target window and search window, respectively;
SG  and 

TG  

are the means of the grayscale of target window and search 

window, respectively; m and n are the numbers of rows and 

columns, respectively; 
T  and 

S  are the standard deviations 

of the image mask of the target window and search window, 

respectively. 
TS is the value of cross correlation; r is the NCC 

value, and it can indicate that the most likely video frame or 

time passes thought the landmarks.  

 

2.5 ZigBee Positioning System (ZPS) 

The ZigBee network is based on IEEE 802.15.4, which can 

exchange information during the route maintenance process 

with the features of low transfer rate, low power, and low cost. 

Generally, a simplified positioning system based on ZigBee 

network for location estimation can be illustrated in Figure 2, 

where the RSS indicator (RSSI) is a measurement of the power 

of the received radio signal. In general, this kind of ZigBee 

positioning system (ZPS) includes three type models (nodes): 

coordinator, reference node (RN), and blind node (BN). As 

demonstrated in Figure 2, the coordinator is directly connected 

to a computer; RNs placed at a known position would send 

device identifications (IDs) and coordinates to BNs. That is, an 

RN is a static node placed at a known position; a BN is a node 

collecting signals from all RNs responding to the respective 

RSSI values of RNs for location estimation. As shown in Figure 

2, when a BN receives signals from neighboring RNs, the 

distance between the BN and RNs can be calculated by 

collecting the RSSI samples and path-loss model, and then the 

location of the BN can be obtained with well known 

coordinates of RNs. Afterward, the calculated location of the 

BN (MT) is sent to the coordinator through WSN system for 

LBS applications, such as asset tracking, patient monitoring, 

inventory control, security and commissioning networks. 

 

 

Figure 2. A scenario of the ZPS scheme for estimating the BN’s 

location based on the RSSI information. 

 

 

3. THE PROPOSED ALGORITHM 

For the approaches of incorporated measurement uncertainties 

in WSN system, one of the popular commercial ZPSs is based 

on the CC2431 location engine developed by Texas Instruments 

(TI) [11]. The CC2431 is a hardware location engine targeting 

low-power ZigBee WSN applications. Furthermore, to reduce 

network traffic compared to infrastructure-based location 

systems, the location engine calculates the location of a BN 

with client-based deployment in a network. However, in terms 

of the RSSI, the TI CC2431 location engine gains X and Y 
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locations independently. Consequently, this paper focuses on 

location tracking approaches in terms of X and Y groups 

independently in two-dimensional (2-D) coordinate system. 

  

3.1 ZPS Testbed  

As illustrated in Figure 2, for LSB applications, the 

experimental investigation is implemented with CC2430/ 

CC2431 ZigBee wireless sensor nodes based on three main 

models, including coordinator, RN, and BN [11]. Furthermore, 

to develop an algorithm with low computational complexity in 

the proposed experimental testbed, the decision mode of the 

KF-based approach is replaced with an α-β-based approach to 

avoid repeatedly calculating the Kalman gain in the ZPS testbed 

[6]. In terms of the inherent fixed-coefficient feature of α-β 

filtering, the location information between the prediction phase 

and correction phase is efficiently cycled, thus simplifying 

implementation of a KF-based approach. According to the 

simulation results in [6], under a stationary environment, the 

result showed that an α-β tracking scheme not only can achieve 

the location accuracy close to the KF tracking scheme but has 

much lower computational complexity. 

 

3.2 Experiment Setup  

The experimental platform was located on the roof floor of a 

building (CSRSR, NCU, Taiwan); the floor layout is shown in 

Figure 3(a). In Figure 3(b), the sampled locations are denoted 

by circle ● with 1 meter distance between each point; the 

coordinator located close to lower trajectory is denoted by ; 

RNs (RN:1–26) denoted by circle ● are widely distributed over 

the roof floor. Fifteen RNs are placed in the closed-loop test 

trajectory. Furthermore, to measure the RSSI information more 

accurately, the simple antenna pattern-measurement method 

described in [12] was adopted. Using this technique, the BN 

was placed on a turntable, which could be rotated in order that 

the radiation antenna of the RN was directed to the north, west, 

south, and east directions, consecutively. The RSSI information 

in terms of different distances (the distance between a RN and a 

BN, from 1 meter to 10 meter) in the four directions was 

measured, the four measurements were averaged, and then the 

information was entered into the CC2431 for location 

estimation. 

 

A B

CD

A B

CD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Length (meter)

W
id

th
 (

m
e
te

r)

 

 

Measurement Trajectory

Stairwell

Reference Node (26)

Sample Location

1 2 3 4 5 6

7 8

9

10 11
12

13

14

15

16

17

18

19

20

21
22 23 2426

25

A B

C
D

Coordinator

(a)

(b)

 
Figure 3. The floor layout of the experimental environment. 

3.3 Problem Formulation 

For location-estimation techniques using tracking algorithms, 

KF-based approaches have been introduced to enhance the 

accurate estimation of the location-estimation system. As a 

result, to improve the location accuracy with a tracking 

technique for location estimation, a location tracking approach 

can be formulated as a filtering problem. In addition, in terms of 

filtering approach, although the state and measurement models 

are based on a 2-D model for a linear Gaussian system, the 

extension of the scheme to a three-dimensional (3-D) model is 

straightforward. For a 2-D model in this paper, the vector 

1, 2, 1, 2,[    ]T

k k k k kx x x xx  denotes the state of the MT at time k, 

where 
1,kx  and 

2,kx  are the locations in the X and Y directions; 

1, 1,k kx s  and 
2, 2,k kx s  are the speeds in the X and Y 

directions. For the motion model of the MT based on speed 

noise, by adding a random component to the MT, the 2-D 

model describing the motion and observing the location of the 

MT is taken as 





1, 1 1, 1 1, 1,

2, 1 2, 1 2, 2,

1, 1 1, 1 1, 3,

2, 1 2, 1 2, 4,

1 0 0

0 1 0

0 0 1 0

0 0 0 1

k k k kk

k k k kk

k k k k

k k k k

x x x u

x x x u

x s x u

x s x u
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 

 

        
        

          
        
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               

  (20) 

1,

1, 2, 1,
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2,

1 0 0 0

0 1 0 0

k
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k k k

k

x

z x

z x

x




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 
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,    (21) 

 

 

where 
k  is the measurement interval between k and k+1. As 

compared the equations (5) and (6) with the equations (20) and 

(21), 1, 2, 3, 4,

T

k k k k ku u u u   u , 1, 2,

T

k k kz z   z , and 

1, 2,

T

k k k    ε  are the process noise, observed information, 

and measurement noise corresponding to the MT at time k, 

respectively. Furthermore, for the location tracking approach 

based on an α-β filtering, [   ]T

k k kx yx , [   y ]T

k k k kx v x , 

ˆ ˆ ˆ[   ]T

k k kx yx , ˆ ˆ ˆˆ [   ]T

k k k kx y v x ,  and T are the predicted 

position matrix, the predicted speed matrix, the estimated 

position matrix, the estimated speed matrix, and the transpose 

operator, respectively. Therefore, the equation relationship can 

be reduced from those of the KF algorithm as follows [6]. 

 

 

0

01 0 0 0
 ,  and   =  

00 1 0 0

0

k

k









 
 

        
 

 

H K  .       (22) 

 

 

3.4 Location Estimation Using Vision Assisting  

In a WSN system, the characteristics of signal propagation 

suffer from reflection, diffraction, scattering, and heavy shadow 

fading of the propagation effects, and then unstable RSSIs will 

affect the accuracy of location estimation. That is, as a CC2431 
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location engine is fed with large fluctuation of RSSI 

information, the location accuracy will be reduced. To improve 

location accuracy, a simple technique employing landmark-

assisted scheme is used to overcome the corner effect caused by 

the filtering and tracking method for dramatic time varying 

systems in different environmental conditions. That is, an MT 

(BN) can calibrate and modify its location based on sensing 

landmark location. In this paper, the RNs as landmarks can be 

extracted from video characteristics by the NCC approach for 

location estimation. In addition, to reduce the energy 

consumption and prolong the lifetime of a smartphone using the 

NCC approach for location estimation, the proposed scheme 

allows the vision-assisted concept to operate two modes based 

on a threshold. Two modes are the sleep mode and the active 

mode; the threshold is in terms of RSSIs of the ZPS testbed. As 

illustrated in Figure 3, if an RSSI (path loss) is smaller than the 

threshold, the vision-assisted algorithm will enter the active 

mode. That is, only the BN is close to RNs, the video camera of 

the smartphone starts recording the path, and then the NCC 

approach is carried out for landmark detection. On the contrast, 

when an RSSI is larger than the threshold, the vision-assisted 

algorithm will enter the sleep mode, and the video camera stops 

recording the path. Figure 4 indicates a simple example about 

the vision-assisted scheme based on NCC approach. The 

experimental result demonstrates that an RN can be extracted 

and detected from video characteristics by the NCC approach as 

a landmark correctly. 
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Figure 4. An example of an RN treated as a landmark extracted 

from an image with the NCC approach. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 ZigBee Positioning System  

In this paper, the experimental investigation combines CC2430/ 

CC2431 ZPS platform with vision-assisted approach for 

location estimation and tracking. As an MT moved along the 

test path in Figure 3, the experimental results of location 

estimation using the TI ZPS testbed are illustrated in Figure 5, 

where the location estimations are denoted by red hollow circles. 

In addition, as an MT locates at sample locations in Figure 3, 

the mean of the location estimation is denoted by black solid 

circles in Figure 5. To verify the performances of estimation 

results introduced by the proposed schemes, the location 

parameters are based on the estimation result from TI ZPS 

testbed in Figure 5. Without loss of generality, it is assumed 

that the MT has a steady speed in (20); 
k , the measurement 

interval (sampling time) between k and k+1, are set to one 

second.  In addition, the model describing the observation 

location of the MT taken in (21) is based on Figure 5. 

 

4.2 Location Estimation Using Kalman Filtering 

The location results in terms of the cumulative distribution 

function (CDF) of the error distance of the KF tracking method 

are given in Figure 6(a). The results demonstrate that more than 

60 percent of the estimated locations with the ZPS scheme has 

error distances less than 2.20 meters; more than 60 percent of 

the estimated locations with the KF-based scheme has error 

distances less than 1.80 meters. According to the experimental 

results in Figure 6, the location accuracy of the KF tracking 

algorithm is better than the ZPS method. In other words, the 

KF-based approach can diminish the estimated errors compared 

with ZPS method. In fact, the property of the KF-based method 

is a recursive minimum mean-squares state algorithm, so the 

location error of KF tracing algorithm can be considered as a 

good upper CDF bound for other location estimators.  
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Figure 5. Results for the location estimation using TI ZPS 

platform as an MT(BN) move along the test path. 

 

 

4.3 Location Estimation Using Alpha-Beta Filtering 

As described previously, according to KF tracking approach 

and (22), the coefficients of the α-β tracking approach can be 

obtained. In terms of the experimental result in Figure 6(a), it 

indicates the comparison between the KF and the α-β tracking 

methods, too. From the experimental results, the location 

accuracy of the α-β tracking approach based on the coefficients 

of the Kalman gain is almost the same location accuracy as the 

KF tracking approach. In fact, the results demonstrate that more 

than 60 percent of the estimated locations using the α-β tracking 

approach has error distances less than 1.85 meters. However, if 

0.5   , this means that the measurement and the history 

have effects. According to the result in Figure 6(a), while α and 

β are set to 0.5, the α-β tracking approach has error distances 

less than 1.95 meters; the location accuracy still shows a slight 

improvement for ZPS method. In short, as compared with the 

KF tracking scheme, the α-β tracking scheme can achieve 

acceptable location performance and can gain a lower 

computational burden. 

 

4.4 Location Estimation Using Vision Assisting 

According to the experimental results, the threshold of RSSIs 

(path loss) of the ZPS testbed is set to  60 dBmW in this paper. 

As illustrated in Figure 3, if an RSSI is smal1er than 60 dBmW, 

the vision-assisted algorithm will enter the active mode. On the 

contrast, when an RSSI is larger than 60 dBmW, the vision-

assisted algorithm will enter the sleep mode. Figure 7 indicates 

the experimental results using vision-assisted scheme based on 

NCC approach. The results illustrate that the RNs can be 

detected as landmarks correctly. In terms of the CDF of the 

error distances, Figure 6(b) shown the comparison between the 

KF and the α-β tracking schemes using the vision-assisted 

approaches based on NCC approach. The results demonstrate 

that more than 60 percent of the estimated locations using the 

KF-based and α-β-based approaches have error distances less 
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than 1.40 meters. In addition, as α and β are set to 0.5, the result 

demonstrates that more than 60 percent of the estimated 

locations using the α-β tracking approach have error distances 

less than 1.55 meters. In brief, Figure 6 indicates the 

comparison among the ZPS, KF-based, and the α-β-based 

approaches without and with the vision-assisted methods as an 

MT moves along a test path. In Figure 6(b), after using vision 

assistance, the experimental results illustrate that the location 

accuracies of the proposed positioning methods are better than 

the non-vision assisted positioning methods. The results also 

show that the proposed vision-assisted scheme can provide a 

high degree of accuracy for location estimation and tracking. 

After combining the vision technique based NCC method with 

the KF-based and α-β-based algorithm, Figure 6(b) shows that 

the proposed tracking schemes can closely track locations of 

MTs. That is, with the vision-assisted method based on the 

NCC approach, the results show that the proposed algorithm 

could mitigate and overcome the dramatic time variance 

environments of the path more efficiently.  
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Figure 6. Comparison among (a) the ZPS (observed), the KF-

based, and the α-β-based tracking approaches in terms of the 

CDF of the error distances; (b) the ZPS (observed), the KF-

based, and the α-β-based tracking with the vision-assisted 

approaches in terms of the CDF of the error distances. 
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Figure 7. The image-matching results of RNs based on the NCC 

approach as an MT (BN) move along the test path. 

 

 

5. CONCLUSION 

In this paper, we have presented a reduced-complexity location-

estimation testbed based on an α-β filtering algorithm for 

location tracking. For the purpose of increasing the execution 

speed, the conventional KF algorithm may not be suitable for 

practical implementation due to its high computational 

complexity, especially in location-estimation systems with large 

computational problem. According to the proposed testbed, the 

coefficients of the α-β filter are extracted from the KF algorithm, 

which is a degenerate form of the KF algorithm. As compared 

with the conventional KF-based approach, the α-β-based 

approach is much lower computational complexity. In addition, 

the landmark extracted from video vision characteristics is 

based on NCC procedures. In terms of vision-assisted approach 

to extract the locations of RNs as landmarks, the α-β tracking 

scheme with the RN information can calibrate the location 

estimation and alleviate the corner effect. Under a stationary 

environment, according to the experimental results about 

investigating and comparing the performance of the KF and α-β 

tracking algorithms, we conclude that the proposed scheme 

demonstrates much better accuracy as compared with the non-

tracking algorithm and without vision-assisted approach; it also 

demonstrates much lower computational complexity with 

comparable accuracy as compared with the conventional 

optimal KF algorithm. With the good features of location 

accuracy and computational complexity, the proposed location-

tracking platform combining vision-assisted scheme with α-β 

tracking approach in ZPS of WSNs is attractive for use in 

various LBS systems. 
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