
WORKING WITH SPATIO-TEMPORAL DATA TYPE

Ale Raza

Esri, 380 New York Street, Redlands, California 92373-8100 USA - araza@esri.com

Commission II, WG II/1

KEY WORDS: Databases, Standards, GIS, Object, Spatial, Temporal

ABSTRACT:

Several aspects of spatiotemporal databases have been explored in past decades, ranging from basic data structure to query

processing and indexing. But today, operational temporal GIS does not exist. The key impediments have been the complexity of

integrating space and time and the lack of standards. OpenGIS standards for simple feature access (spatial type) do exist, but unlike

the spatial type, standards for spatiotemporal data type do not exist. This paper explores a new approach to modeling space and time

to provide the basis for implementing a temporal GIS. This approach is based on the concept of data types in databases. A data type

provides constructors, accessors, and operators. Most commercial and open source databases provide data types to deal with the

spatial component of a GIS, called spatial type. Oracle Spatial, DB2 Spatial Extender and Informix Spatial DataBlade, ST_Geometry

for PostgreSQL and Oracle from Esri, PostGIS for PostgreSQL, etc., are some examples. This new spatiotemporal data type is called

spatiotemporal type (STT). This STT is implemented in PostgreSQL, an open source relational database management system. The

STT is an extension of Esri's ST_Geometry type for PostgreSQL, in which each spatial object has a life span. Constructors,

accessors, and relational functions are provided to create STT and support spatial, spatiotemporal, and temporal queries. Some

functions are extended based on OpenGIS standards for the spatial type. Examples are provided to demonstrate the application of

these functions. The paper concludes with limitations and challenges of implementing STT.

1. INTRODUCTION

Discussion on spatiotemporal databases is not new. Several

aspects of spatiotemporal databases have been explored in the

last two decades. There is a bewildering array of research

ranging from simple/complex data structure to query language

and spatiotemporal indexes. The space-time cube by Langran

(1992), object-oriented approach to handle spatiotemporal

objects by Worboys (1992), and cell tuple-based spatiotemporal

data model by Raza and Kainz (1999) are major examples of

data models or structures. Spatiotemporal query language by

Snodgrass (1993) and spatiotemporal indexing techniques by

Jensen et al. (2006) and Hadjieleftheriou et al., (2006) are other

research examples. Detailed discussion on these researches is

beyond the scope of this paper.

In spite of these developments, we do not see any operational

temporal GIS. The key impediments have been attributed to the

complexity of integrating space and time and the lack of

standards for spatiotemporal data. Software standards ensure

desirable characteristics of software. It ensures that it is

implemented uniformly across the platforms and software

inputs/outputs are known. OpenGIS standards for simple

feature access (spatial type) do exist (OpenGIS, 2010) but

unlike spatial type, standards for spatiotemporal data type do

not exist. Many commercial and open source software conform

to these standards.

This paper presents a new approach to modeling space and time

to provide the basis for implementing a temporal GIS. This new

approach is presented in section 2. Section 3 discusses various

constructors, accessors, and operators for this new data type.

Examples are provided in section 4. Limitations and further

work are discussed in Section 5.

2. SPATIOTEMPORAL DATA TYPE

GIS is becoming an integral part of any enterprise database and

no longer considered a separate branch from mainstream

information technology (IT). As part of a standard database

management system, a GIS is supposed to have a data type like

any other data type in any database management system. For

example, integer, double, or char are simple or basic data types.

Database management systems also extend these basic data

types to provide abstract data types (ADT) to handle more

complex cases such as videos, CAD data, or spatial data. An

ADT is a mathematical model to define data type. A data type

is a collection of values and a set of operations on those values

(Aaron et al., 1990). Recently, we have seen increasing support

for spatial data types from commercial and open source

database providers. Oracle Spatial from Oracle (Oracle11g,

2011), DB2 Spatial Extender (DB2, 2002) and Informix Spatial

DataBlade from IBM (Informix, 2002), ST_Geometry for

PostgreSQL and Oracle from Esri (ArcGIS 10, 2010), PostGIS

for PostgreSQL from Refractions Research (PostGIS, 2010),

SQL Server Geometry from Microsoft (SQL Server, 2008), and

so forth, are some examples. Most of these implementations are

OpenGIS simple feature access and SQL/MM specification

compliant. While there are standards and implementations for

spatial data types, we do not see the same for spatiotemporal

data types.

This paper introduces a new data type for space-time modeling.

A spatiotemporal data type is a data type where space and time

is integrated and time is not considered an attribute of space. A

similar approach was presented by Erwig et al. (1999) for

moving objects. Basic objects in that approach were evolving

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

5

points and regions. Line objects are considered as projections of

movement. This approach is good for moving objects such as

cars or airplanes but may not be best for urban applications

such as land-use change or tracking parcel history where the

object does not move rapidly. Moreover, it is not clear how to

model line features such as roads in that approach.

The data model for STT is defined by an object model. In an

object model, everything is an object. A class is a set of objects

with common properties. A class consists of data members and

member functions (operations). The structure of the data model

is defined by data members (data), while operators and

consistency rules are defined through operations.

Data structure and consistency rules for the model are discussed

in this paper. The basic element of this model is a

spatiotemporal object. This spatiotemporal class is the

aggregation of spatial and temporal classes. The spatial and

temporal object and associated operations are well understood

in the respective domains and are not discussed here. This

paper focuses on integration of spatial and temporal class.

Figure 1 depicts two classes: spatial and temporal. The object

of a spatial class is a spatial object in Euclidean space while a

temporal class represents the linear time.

Figure 1. Spatialtemporal class

Only valid time called WorldTime (WT) is considered in this

implementation. Figure 1 is the simplified ST data model. Each

spatiotemporal object, STPolygon, STMultiPolygon, STLines,

STMultiLines, STPoint, and STMultiPoint, has start (TStart) and

end (TEnd) times.

The attributes and operations of a spatiotemporal class (ST-

object) are described in figure 2. The operations can further be

classified into three main categories: constructors, accessors,

and operators. These are discussed in the next section.

In figure 2, srid is spatial reference system ID; st_entity_type is

an entity type such as STPoint or STPolygon; minx, miny,

maxx, and maxy are minimum and maximum coordinates of the

spatiotemporal object; ts and te are start and end times,

respectively; and tshape is the binary internal representation of

the spatial part of a spatiotemporal object.

The schema for ST-type is presented in figure 3. The Feature

schema has feature column type_column and other properties.

The ST_Type schema contains information about the Feature

schema and srid. The Spatial_References and

Coordinate_Systems schemata store the information about srid.

Figure 2. Spatiotemporal class attributes and operations

Figure 3. ST-type schema

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

6

3. CONSTRUCTORS, ACCESSORS, AND

OPERATORS

As mentioned earlier, a type consists of constructor, accessor,

and operator functions. A constructor is used to create a type.

Two types of constructors are provided:

- STT_Type(WKTwT, SRID)

- STT_Type(WKB, SRID, T)

Where WKTwT (Well Known Text with Time) is the extension

of OpenGIS WKT (Well Known Text) format. WKTwT

consists of two parts: WKT and Time text.

where

WKTwT = WKT: T and

T time can be interval (T1) or instance (T0)

T1 = {TStart,TEnd | (TStart ≤ TEnd) ∧ (TStartTEnd ∈ WT)}

T0 = {TStart,TEnd | (TStart = TEnd) ∧ (TStartTEnd ∈ WT)}

T is represented in ISO 8601format (YYYY-MM-DD) as

recommended by PostgreSQL (PostgreSQL, 2011).

Therefore, WKTwT for point data can be represented as

1. WKTwT = 'POINT (10 20): 1970-01-01 1970-01-01'

2. WKTwT = 'POINT (10 20): 1970-01-01 '

3. WKTwT = 'POINT (10 20): 1970-01-01 1975-12-31'

4. WKTwT = 'POINT (10 20): 1970-01-01 NOW'

The first two formats (#1 and #2) represent time instance (T0),

while the rest of the format shows the time interval (T1).

'NOW' represents the open time, which means the object is still

alive. At this time, only the date format is supported, time is not

included. The binary format can take WKB (Well Known

Binary). Other formats for constructors are

- STT_TypeFromShape(Esri_shape_format, SRID, T)

- STT_TypeFromWKB(WKB, SRID, T)

Shape data can be returned in various formats by using different

type output accessor's functions. Some of these functions are

- STT_AsText(st_type)

- STT_AsBinary(st_type)

- STT_AsShape(st_type)

Only the first STT_AsText function returns spatial data with

time in WKTwT format. Whereas STT_AsBinary and

STT_AsShape return results in WKB and Esri shape format,

respectively. Similarly, accessor's functions can be used to

extract type information. Here are some examples:

- STT_Envelope

- STT_AsDate_Start

- STT_AsDate_End

For spatiotemporal type, operators can be divided into three

categories: pure temporal (table 1), pure spatial, and

spatiotemporal operators (table 2).

Spatial and temporal are regular operators employed in spatial

and temporal databases. Temporal relations are analogs to

spatial topological relations but a bit different than spatial

topological relations. The former has the sense of direction, or

in other words, these relations are ordered topological relations.

Table 1 illustrates temporal relations. STTF_time_overlaps is a

special case where oredering is ignored. Pure spatial and

temporal relations start with the prefix STTF_, while

spatiotemporal relations start with the prefix STT_.

 Temporal

Relations

Illustration

t1 = t2 =

1 STTF_time_before

2 STTF_time_after

3 STTF_time_equal

4 STTF_time_meets

5 STTF_time_met

6 STTF_time_left_overlaps

7 STTF_time_right_overlaps

8 STTF_time_covers

9 STTF_time_covered

10 STTF_time_right_covers

11 STTF_time_left_covers

12 STTF_time_right_covered

13 STTF_time_left_covered

14 STTF_time_overlaps

Table 1. Adapted temporal relations for bounded interval (Raza,

2008)

Let t1 and t2 are two time intervals and {∅} is an empty set.

Mathematically, relations in table 1 can be formulized as

1. t1.STTF_time_before(t2) �

{(t1 ∩ t2 = ∅) | (t1e < t2s) ∧ (t1, t2 ∈ WT)}

2. t1.STTF_time_after(t2) �

{(t1 ∩ t2 = ∅) | (t1s > t2e) ∧ (t1, t2 ∈ WT)}

3. t1.STTF_time_equal(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s = t2s) ∧ (t1e = t2e) ∧ (t1, t2 ∈ WT)}

4. t1.STTF_time_meets(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1e = t2s) ∧ (t1, t2 ∈ WT)}

5. t1.STTF_time_met(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s = t2e) ∧ (t1e > t2e) ∧ (t1, t2 ∈ WT)}

6. t1.STTF_time_left_overlaps(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1e > t2s) ∧ (t1e < t2e) ∧ (t1, t2 ∈ WT)}

7. t1.STTF_time_right_overlaps(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s > t2s) ∧ (t1e > t2e) ∧ (t1, t2 ∈ WT)}

8. t1.STTF_time_covers(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s < t2s) ∧ (t1e > t2e) ∧ (t1, t2 ∈ WT)}

9. t1.STTF_time_covered(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s > t2s) ∧ (t1e < t2e) ∧ (t1, t2 ∈ WT)}

10. t1.STTF_time_right_covers(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s = t2s) ∧ (t1e > t2e) ∧ (t1, t2 ∈ WT)}

11. t1.STTF_time_left_covers(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1e = t2s) ∧ (t1e < t2e) ∧ (t1, t2 ∈ WT)}

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

7

12. t1.STTF_time_right_covered(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s = t2s) ∧ (t1e < t2e) ∧ (t1, t2 ∈ WT)}

13. t1.STTF_time_left_covered(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1s > t2s) ∧ (t1e = t2e) ∧ (t1, t2 ∈ WT)}

14. t1.STTF_time_overlaps(t2) �

{(t1 ∩ t2 ≠ ∅) | (t1, t2 ∈ WT)}

In case of instance time T0, these relations collapse to

only three, in other words, STTF_time_before,

STTF_time_after, and STTF_time_overlap. In this paper,

spatiotemporal operators are introduced to discern spatial

relation over time. Table 2 lists some of these operators.

Spatiotemporal Operators

STT_contains STT_time_left_covers

STT_within STT_time_covers

STT_intersects STT_time_right_covered

STT_overlaps STT_time_equal

STT_touches STT_time_right_covers

STT_crosses STT_time_covered

STT_equals STT_time_left_covered

STT_disjoint STT_time_right_overlaps

STT_time_before STT_time_met

STT_time_meets STT_time_after

STT_time_left_overlaps STT_time_overlaps

Table 2. Spatiotemporal operators

Operators in table 2 can formally be defined as follows: let A

and B are two st_type objects, g is geometry, t is time, α is

boundaries, β is interior, and γ is exterior of st_type object.

Then, the operation on st_type can be defined as

- A.STT_intersects(B) �

((A.g ∩ B.g ≠ ∅) ∧ (A.t ∩ B.t ≠ ∅))

- A.STT_ overlaps (B) �

((β(A) ∩ β (B) ≠ ∅) ∧ (β (A) ∩ γ (B) ≠ ∅) ∧

(γ (A) ∩ β (B) ≠ ∅) ∧ (A.t ∩ B.t ≠ ∅))

Where pure spatial relation as

- A.STTF_intersects(B) �

((A.g ∩ B.g ≠ ∅))

- A.STTF_ overlaps (B) �

((β(A) ∩ β (B) ≠ ∅) ∧ (β (A) ∩ γ (B) ≠ ∅) ∧

(γ (A) ∩ β (B) ≠ ∅))

The spatiotemporal STT_time_overlaps can be defined as

- t1.STT_time_overlaps(t2) �

{(t1 ∩ t2 ≠ ∅) ∧ ((β(A) ∩ β (B) ≠ ∅) ∧ (β (A) ∩ γ (B) ≠ ∅) ∧

(γ (A) ∩ β (B) ≠ ∅) ∧ (A.t ∩ B.t ≠ ∅)) | (t1, t2 ∈ WT)}

Describing all functions is beyond the scope of this paper.

These above functions are shown to demonstrate the difference

between spatial and spatiotemporal operators.

The spatiotemporal data type is implemented in PostgreSQL

9.1.2 (PostgreSQL, 2011). The STT is an extension of Esri's

ST_Geometry type for PostgreSQL. Section 4 describes some

implementation examples.

4. SOME EXAMPLES

The parcel data of San Diego, California, is used to show how

queries can be performed to fetch time series data. The actual

data was not time series data. There are about 800,000 records

in this database. These parcels are distributed as shown in

table 3.

TStart TEnd Number of parcels

1970-01-01

1973-01-01

1975-01-01

1978-01-01

1981-01-01

1984-01-01

1987-01-01

1990-01-01

1992-01-01

1994-01-01

1996-01-01

1998-01-01

2000-01-01

2002-01-01

1972-12-31

1974-12-31

1977-12-31

1980-12-31

1983-12-31

1986-12-31

1989-12-31

1991-12-31

1993-12-31

1995-12-31

1997-12-31

1999-12-31

2001-12-31

NOW

500

500

500

500

500

500

97000

100000

100000

100000

100000

100000

100000

83159

Total 783159

Table 3. Number of parcels by date

To demonstrate the concept, let’s create a simple parcel table to

insert and query data.

- Create table parcel (objectid serial, shape st_type);

Constructors can be used to insert st_type into the database. For

example, the ST_Type constructors can be used to insert parcel

data with time into the parcel table.

Insert Into Parcel (shape) Values

(ST_Type('POLYGON

 ((6150763 1775304, 6150763 2129759, geometry

 6613437 2129759, 6613437 1775304,

 6150763 1775304)):

 1970-01-01 1971-12-31', � time

 4326); � srid

Similarly, queries can be performed using accessors and

operators using various filters.

• Time filters

o Simple filter

o Range filter

• Spatial filters

• Spatiotemporal filters

o Simple filter

o Range filter

Range queries are window-based queries. This window can

define the spatial or temporal extent. Here spatiotemporal

queries are discussed.

1. Simple spatiotemporal filters

Query-1: Find all parcels in the year 1980.

Query: Select Count(*) From Parcel

 Where STT_Time_Covers(shape,

 ST_Type('POLYGON

 ((6150763 1775304, 6150763 2129759,

 6613437 2129759, 6613437 1775304,

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

8

 6150763 1775304)):

 1980-01-01 ',

 4326)) = 'true';

Result: 500

In this case, the polygon is the maximum extent of all

geometries.

Query 2: Show all parcels in the year 1970 that intersect with

the given window. In this case, the window is represented by a

polygon.

Query: Select STT_AsText(Shape) from Parcel

 Where STT_Intersects(shape,

 ST_Type('POLYGON

 ((6300666 2076508, 6301123 2076508,

 6301123 2077952, 6300666 2077952,

 6300666 2076508)):

 1970-01-01 ',4326)) = 'true';

Result: POLYGON ((6300666 2077931, ..., 6301123 2077952,

6300666 2077931)): 1970-01-01 1972-12-31

2. Range Spatiotemporal filters

Query 3: Find all parcels during '1990-01-01 1991-12-31' date.

Query: Select Count(*) From Parcel

 Where STT_Time_Overlaps(shape,

 ST_Type('POLYGON

 ((6150763 1775304, 6150763 2129759,

 6613437 2129759, 6613437 1775304,

 6150763 1775304)):

 1990-01-01 1991-12-31',

 4326)) = 'true';

Result: 100000

Query 4: Show all parcels during '2000-01-01 2001-12-31' date

that intersect with given envelope.

Query: Select ST_AsText(Shape) From Parcel

 Where STT_Intersects(shape,

 ST_Type('POLYGON

 ((6288821 1856272, 6288962 1856272,

 6288962 1856326, 6288821 1856326,

 6288821 1856272)):

 2000-01-01 2001-12-31',

 4326)) = 'true';

Result: POLYGON ((6288821 1856325, 6288821 1856273,

6288961 1856272, 6288962 1856325, 6288821 1856325)):

2000-01-01 2001-12-31

Queries 1 and 3 are temporal range queries where the spatial

range is set to the maximum spatial extent of all geometries.

Similarly, temporal range can be set to the maximum temporal

extent to work with spatial range queries. For example,

Query 5: Find all parcels within given spatial extent.

Query: Select Count(*) From Parcel

 Where STT_Intersects(shape,

 ST_Type('POLYGON

 ((6314002 1859345, 6354405 1859345,

 6354405 1882153, 6314002 1882153,

 6314002 1859345)):

 1969-01-01 NOW',

 4326)) = 'true';

Result: 40648

Query 7: How many parcels were created before 1975?

Query: Select Count(*) From Parcel

 Where STT_Time_Before(shape,

 ST_Type('POLYGON

 ((6314002 1859345, 6354405 1859345,

 6354405 1882153, 6314002 1882153,

 6314002 1859345)):

 1975-01-01 ',

 4326)) = 'true' ;

Result: 1000

Query 6: How many parcels are not closed yet?

Query: Select Count(*) From Parcel

 Where STT_Time_left_Covers(shape,

 ST_Type('POLYGON

 ((6314002 1859345, 6354405 1859345,

 6354405 1882153, 6314002 1882153,

 6314002 1859345)):

 1969 NOW',

 4326)) = 'true';

Result: 83159

These are some of the simple examples of operator and

accessor functions. Of course, more complex queries can be

formed to answer more complex questions.

5. CONCLUSION

The paper presents some initial results of ongoing research in

spatiotemporal data type. This research is still in its early stage.

A new data type is presented in this paper to deal with complex

issues of space-time modeling. The list of operator, constructor,

and accessor functions is not complete and more work is

needed to document remaining functions. Currently, binary data

is returned in WKB or Esri shape format (data without time).

There is a need to return binary data in a format where time is

also stored. Future work involves indexing this data type.

Without indexing, performance cannot be achieved. Full

implementation of this data type would help us implement

temporal GIS.

References

Tenenbaum, Aaron M., Yedidyah Langsam, and Moshe J.

Augenstein, 1990. Data structures using C. Prentice-Hall, New

Jersey, pp. 13–14.

ArcGIS 10, 2010, ArcGIS Help Library,

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//

006z00000050000000, (December 27, 2011).

DB2, 2002. IBM DB2 Spatial Extender, User’s Guide and

Reference, Version 8, ftp://public.dhe.ibm.com/ps/products/db2

/info/vr8/pdf/letter/db2sbe80.pdf (December 27, 2011).

Erwig, M., R. Güting, M. Schneider, and M. Vazirgiannis,

1999. Spatio-Temporal Data Types: An Approach to Modeling

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

9

and Querying Moving Objects in Databases, GeoInformatica,

Vol. 3, No. 3, pp. 269–296.

Hadjieleftheriou, M., G. Kollios, V. Tsotras, and D. Gunopulos,

2006. Indexing Spatio-temporal Archives, The International

Journal on Very Large Data Bases, Volume 15, Issue 2, pp.

143 - 164.

Informix, 2002. IBM Informix Spatial DataBlade Module

User's Guide, Version 8.20, http://publib.boulder.ibm.com

/epubs/pdf/9119.pdf (December 27, 2011).

Jensen, C., D. Tiesyte, and N. Tradisauskas, 2006. The COST

Benchmark-Comparison and Evaluation of Spatio-temporal

Indexes, In Database Systems for Advanced Applications.

Springer Berlin, pp. 125–140.

Langran, G., 1992, Time in geographic information systems,

Taylor and Francis Ltd.

Oracle11g, 2011. Oracle Database Concepts,

http://docs.oracle.com/cd/B28359_01/server.111/b28318/conte

nt.htm#BAJJIFJJ (January 11, 2012).

OpenGIS, 2010. OpenGIS Implementation Standard for

Geographic information—Simple feature access—Part 2: SQL

option, http://www.opengeospatial.org/standards/sfs

(December 27, 2011).

PostGIS, 2010. PostGIS Manual, Version 1.5.2,

http://postgis.refractions.net/download/postgis-1.5.3.pdf

(December 27, 2011).

PostgreSQL, 2011. PostgreSQL 9.1.2 Documentation.

http://www.postgresql.org/docs/9.1/static/datatype-

datetime.html (December 27, 2011).

Raza, A., 2008. Driving spatiotemporal relations from simple

data structure, The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences. Vol. XXXVII. Part B2. Beijing 2008, pp. 13-18

Raza, A., and W. Kainz, 1999. Cell tuple based spatio-temporal

data model: An object oriented approach. In: The Proceedings

of the Eighth ACM Conference on Information and Knowledge

Management (CIKM'99) and Symposium on Geographic

Information Systems (GIS'99), Kansas City, Missouri, USA,

pp. 20–25.

Snodgrass, R., 1993, An overview of TQuel, In Temporal

databases: theory, design and implementation, Edited by A.

Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R.

Snodgrass, Benjamin/Cummings Publishing Company,

pp. 141–182.

SQL Server, 2008. SQL Server 2008 R2, MSDN Library,

http://msdn.microsoft.com/en-us/library/bb964711.aspx

(December 27, 2011).

Worboys, M., 1992. Object-oriented models of spatiotemporal

information. In: The Proceedings of the GIS/LIS, San Jose, CA,

USA, pp. 825–834.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

10

