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ABSTRACT: 

 

The prediction of species distribution has become a focus in ecology.  For predicting a result more effectively and accurately, some 

novel methods have been proposed recently, like support vector machine (SVM) and maximum entropy (MAXENT).  However, high 

complexity in the forest, like that in Taiwan, will make the modeling become even harder.  In this study, we aim to explore which 

method is more applicable to species distribution modeling in the complex forest.  Castanopsis carlesii (long-leaf chinkapin, LLC), 

growing widely in Taiwan, was chosen as the target species because its seeds are an important food source for animals.  We overlaid 

the tree samples on the layers of altitude, slope, aspect, terrain position, and vegetation index derived from SOPT-5 images, and 

developed three models, MAXENT, SVM, and decision tree (DT), to predict the potential habitat of LLCs.  We evaluated these 

models by two sets of independent samples in different site and the effect on the complexity of forest by changing the background 

sample size (BSZ).  In the forest with low complex (small BSZ), the accuracies of SVM (kappa = 0.87) and DT (0.86) models were 

slightly higher than that of MAXENT (0.84).  In the more complex situation (large BSZ), MAXENT kept high kappa value (0.85), 

whereas SVM (0.61) and DT (0.57) models dropped significantly due to limiting the habitat close to samples.  Therefore, MAXENT 

model was more applicable to predict species’ potential habitat in the complex forest; whereas SVM and DT models would tend to 

underestimate the potential habitat of LLCs. 

 

 

 

*  Corresponding author. 

1.  INTRODUCTION 

 

Recently, the prediction of species’ distribution and potential 

habitat has been implemented widely and become a focus in 

ecology (Miller et al., 2004).  With the innovations of remote 

sensing (RS) and geographic information system (GIS) tools 

and statistical techniques, the predictive capability of models is 

substantially increasing and the models can be used to classify 

the dataset in more detail, like the classification of similar tree 

species (Dalponte et al., 2008). 

 

Most of the previous studies were located in large areas of pure 

or planted forest or agricultural area to predict plant’s 

present/absence or health and growth conditions.  Few of them 

were devoted to classify the species in a complex forest, like the 

forests in Taiwan.  Many species in a complex forest have the 

biophysiological characteristics so similar that they are difficult 

to discriminate.  The complexity in forest with high biodiversity 

will cause more interaction among species.  Furthermore, the 

competition among species will result in that a species might be 

absence in its suitable habitat so that hard to predict precisely.  

To classify the species accurately, we must consider about the 

elements in modeling, including predictive variables, quality of 

data, statistical methods, and so on (Guisan and Zimmermann, 

2000).  In terms of statistical methods, each method was 

developed from different principles on each scientific field, like 

entropy, regression, or envelope, and they will generate 

different results that can be used in different applications, like 

economic, demography, or ecology, or different level, like 

different scale. 

 

Support vector machine (SVM) is a novel method that has been 

used widely for classification and identification studies 

(Dalponte et al., 2008; Drake et al., 2006; Guo et al, 2005; 

Melgani and Bruzzone, 2004).  Maximum entropy (MAXENT) 

is also a novel method, and it has been demonstrated for 

predictive research in ecology (Elith et al., 2006; Hernandez et 

al., 2006; Kumar and Stohlgren, 2009; Peterson et al., 2007).  

These two methods were chosen to build the predictive models 

in this study, and comparing with a classification techniques, 

decision tree (DT) that are commonly used in most 

investigations (Bourg et al., 2005; De’ath and Fabricius, 2000; 

Felicísimo and Gómez-Muñoz, 2004; Landenburger et al., 2008; 

and O’Brien et al., 2005) to evaluate the capability for 

predicting the potential habitat. 

 

Castanopsis carlesii (Long-leaf chinkapin, LLC) trees grow 

widespread in the mountains in central Taiwan and are an 

important heliophilous species.  According to the field survey in 

the past, this species may only grow above the elevation of 

1700 m.  Seeds of LLCs have long been recognized as an 

important food source for animals, showing that their value of 

ecological system has been significant. 

 

In this study, we aim to evaluate which method will be the most 

applicable for the prediction of species’ potential habitat in the 

complex forest.  We used a GIS to overlay field tree samples on 

environmental layers of altitude, slope, aspect, terrain position, 

and vegetation indices derived from SPOT-5 images to analyze 

the distribution of LLCs.  The complexity in forest (biodiversity) 

where single species will live in smaller area with the increasing 

of biodiversity was represented by large background sample 
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size.  Three methods, SVM, MAXENT, and DT, were chosen to 

establish the predictive models.   

 

2.  STUDY AREA 

 

The study area encompasses the Huisun Experimental Forest 

Station, the property of National Chung-Hsing University, 

situated within 242 –́245  ́ N latitude and 121 –́1217  ́ E 

longitude, in central Taiwan.  The station has a total area of 7, 

477 ha.  Its elevation ranges from 454 m to 2, 419 m, and its 

climate is temperate and humid.  Hence, the study area has 

nourished many different plant species (more than 1100 species) 

and is a representative forest in central Taiwan.  It comprises 

five watersheds, including two larger watersheds, Kuan-Dau at 

west and Tong-Feng at east (Figure 1). 

 

 
 

Figure 1.  Location map of the study area 

 

3.  METHODS AND MATERIAL  

 

3.1 Data Collection and Processing 

 

3.1.1 Field Data:  LLC samples were acquired from the 

study area by using a GPS linked with a laser range.  The error 

of the system would be below one meter after post differential 

positioning, and the sample data were rectified to the TWD67 

(GRS67) Transverse Mercator map projection of two-degree 

zone.  Total number of LLC samples we acquired was 123.  

There were 105 LLC samples acquired from Tong-Feng 

watershed, where two-third of them (72) were used to establish 

predictive models (Training Set), and one-third of them (33) 

were used in model validation (Test Set 1).   Remaining 18 tree 

samples were from the sites with 0.5 km gap from the west side 

of Tong-Feng watershed, and were used to examine the ability 

of extrapolating of models (Test Set 2). 

 

Because background sites (non-target) correspond to the vast 

majority of the study area, larger variation is expected in 

environmental characteristics for this group.  The number of 

background pixels (sites) should be three times more than that 

of target pixels to acquire a more representative sample of the 

habitat characteristics at background sites (Pereira and Itami, 

1991; Sperduto and Congalton, 1996), and the background 

sample data were taken from data layers by random sampling 

technique (pseudo-absence) to minimize spatial autocorrelation 

in the independent variables (Pereira and Itami, 1991).   

 

The proportion of relative occurrence area of single species will 

decrease with increasing of the biodiversity in the forest due to 

the competition among species, and thus we raised the 

background sample size to stand for the higher biodiversity in 

the forest.  In Training Set, we took the background sample size 

about five times and 100 times more than target sample size to 

represent low biodiversity (LB) and high (HB) biodiversity, 

respectively.  In Test Sets 1 and 2, we only used five times 

background sample size to test both two types of models. 

 

3.1.2 Digital Elevation Model:  Digital elevation model 

(DEM) was acquired from the Aerial Survey Office, Forestry 

Bureau of the Council of Agriculture, Taiwan.  To meet the 

requirements of the study, the DEM was interpolated into 5  5 

m grid size, geo-referenced to the coordinate system, TWD67 

(Taiwan Datum spheroid: GRS67) and Transverse Mercator 

map projection over two-degree zone with the central meridian 

121E. 

 

The altitude data layer was derived directly from the DEM.  

Slope and aspect data layers were generated from the DEM by 

using ERDAS Imagine software. 

 

3.1.3 Orthophoto Base Maps:  We used orthophoto base 

maps (1:10,000) together with DEM to generate terrain position 

layer.  We calculated the Euclidean distance from each pixel to 

the nearest ridge and the nearest valley that were digitalized 

artificially from orthophoto maps, and determined the terrain 

position by estimating the relative proportions of the distance 

from each pixel to the ridge and valley (Skidmore, 1990).  The 

orthophoto base map was also used to assist in field survey from 

which we took long-leaf chinkapin tree samples. 

 

3.1.4 SPOT-5 Satellite Images:  There were two-date 

SPOT-5 images we acquired from Center for Space and Remote 

Sensing Research, National Central University (CSRSR, NCU), 

Taiwan (©  SPOT Image Copyright 2004 and 2005, CSRSR, 

NCU).  System calibration and geometric correction with level 

2B were performed on the images, and then they were rectified 

to the TWD67 Transverse Mercator map projection and 

resampled to 5 m resolution to be consistent with the layers 

from DEM.  The basic information of the SPOT-5 images is 

shown in Table 2. 

 

Image 

No. 
Season 

Receiving 

date 

View 

angle 

() 

Mean 

cloud 

amount 

(%) 

Azimuth 

angle 

() 

Vertical 

angle 

() 

I0009406 Summer 2004/07/10 -7.8 11     90.7    70.8    

I0009409 autumn 2005/11/11 -13.2  3     155.9    45.4    

Table 2.  The basic information of two-date SPOT-5 satellite 

images of the Huisun study area. 

 

We used the SPOT-5 images to generate a vegetation index 

layer by using the difference ratio of NIR and MIR of two 

SPOT-5 images based on the principle elucidated in Hoffer 

(1978) to discriminate tree species.  The formula of the 

vegetation index (VI) is expressed as follows:  

 

 

 
summersummer MIRNIR

MIRNIR autumnautumn




      (1) 

 

 

3.2 Database Building and Sampling 

 

We overlaid four topographic variables, including altitude, 

slope, aspect, and terrain position, as well as a vegetation index 

from SPOT-5 images to a GIS database, and then those pixels 

of the five data layers lying at the same position with LLC tree 

sample pixels and randomly selected background pixels were 

clipped out. 
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To evaluate the effect of complexity in forest, we built the low-

biodiversity models with five-times background samples (LB 

models) and high-biodiversity models with 100-times 

background samples (HB models), and were consistent in other 

inputs and any parameter and setting in statistical methods. 

 

3.3 Model Development 

 

The models for predicting potential habitat of LLCs were 

created using three statistical methods: (1) support vector 

machine (SVM), (2) maximum entropy (MAXENT), and (3) 

decision trees (DT). 

 

3.3.1 Support Vector Machine:  SVM was a machine-

learning method and developed by Vapnik (1998).  In the 

linearly separable condition, it classifies the dataset by finding 

at least one hyperplane defined by support vector that can 

discriminate two classes (Figure 3: H0 - H2).   The optimal 

hyperplane is that the distance between the closest training 

sample and the hyperplane was maximized (Figure 3: H0).  If it 

cannot be discriminated linearly, it will input into high-

dimensional feature space by kernel transformation to find the 

linearly separable condition (Melgani and Bruzzone, 2004), as 

shown in Figure 4.  The kernel function available in the 

software included linear, polynomial, radial basis function 

(RBF), and sigmoid, they will be chosen based on the 

distribution of data.  The kernel function we used was RBF that 

had been demonstrated suitable for most conditions.  In this 

model, all input variable had been standardized to Z-score: 

 

 

  





x
z    (2) 

 

 

where x = original value 

 μ = mean of the population 

 σ = standard deviation of the population 

 

 
 

Figure 3.  The diagram of optimal hyperplane in linearly 

separable condition 

 

 

 
 

Figure 4.  The diagram of kernel transformation from original 

space to feature space 

 

The SVM was implemented by ModEco version 1.0, freely 

available on the website (http://gis.ucmerced.edu/ModEco/). 

 

3.3.2 Maximum Entropy:  MAXENT can make predictions 

from incomplete information (Phillips et al., 2006), and may 

remain effective from small sample sizes (Kumar and Stohlgren, 

2009).  The principle of MAXENT is based on the concepts of 

entropy in thermodynamic, referred to as the measure of 

disorder, and then is used to described the probability 

distribution in several domains, and Bayesian statistics is for 

exploring the probability distribution of each pixel when the 

entropy reach the maximum that the state would extremely 

close to uniform distribution.  That is, MAXENT would find 

out the type of probability distribution that is most likely 

occurring in the general state.  The formula for MAXENT is 

shown as follows: 

 

 

ZL
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where 
 

nn

nn

minmax

minxf




 = hinge feature 

 λn = weight coefficient 

L = linear Predictor Normalizer 

Z = a scaling constant that ensures that P sums to 1 

over all grid cells 

 

MAXENT software is freely available on the worldwide web 

(http://www.cs.princeton.edu/~schapire /MAXENT). 

 

3.3.3 Decision Tree:  DT (also called Classification and 

Regression Trees, CART) is a non-parametric classification 

algorithm for data mining with both classifying and predicting 

capability.  DT could build classified rules from observations or 

some experiences (Guisan and Zimmermann, 2000).  Decision 

tree algorithm sequentially partitions the dataset with some 

important predictors in order to maximize differences on a 

dependent variable.  As show in Figure 5, the decision pathways 

originate from a starting node (root) that contains all 

observations, then classify step by step into binary subsets 

based on the important predictors, and so on.  Finally, it will 

end at multiple nodes containing unique subsets of observations.  

Terminal nodes are assigned a final outcome based on group 

membership of the majority of observations (De’ath and 

Fabricius, 2000; Bourg et al., 2005; O’Brien et al., 2005).   DT 

was implemented by using SPSS CRT software module. 

 

 

 
 

Figure 5. The diagram of the classified process of DT 
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3.4 Model Validation 

 

Accuracy assessment contains the overall accuracy and kappa 

coefficient of agreement of the predictions for two species.  The 

kappa coefficient is a measure of agreement between predictive 

values and observations.  The kappa value of 1.0 indicates a 

perfect agreement and the value of 0.0 indicates an agreement 

equivalent to chance (Viera and Garrett, 2005), and the value 

higher than 0.8 indicate a stronger agreement and the value 

lower than 0.4 indicate a poorer agreement (Jensen, 2005). 

 

4.  RESULTS AND DISCUSSION 

 

As shown in the LB case of Table 6, the accuracies of SVM and 

DT with test set 1 were slightly higher than that of MAXENT.  

Nevertheless, the kappa values of all three models were higher 

than 0.8, it means that they had a stronger agreement.  However, 

the ability of extrapolation (Test Set 2) was poor for all three 

models, with kappa values lower than 0.6, where MAXENT 

was the worst, with a value of 0.38.  The main reason is that 

these models were built merely based on topographic factors 

that affect the growth of plant indirectly.  The effect of directly 

operating factors, like microclimate, could not be derived from 

topographic factors, thereby making the models unable to 

simulate the species’ growth in different areas. 

 

As shown in the HB case of Table 6, MAXENT kept high 

kappa values (0.85, Test Set 1), whereas those of SVM (0.61) 

and DT (0.57) models declined significantly.  The lower kappa 

value in Training Set resulted from more commission errors 

with a larger background sample size.  In terms of accuracy, 

MAXENT will take the accuracies of both target and 

background samples into account; whereas SVM and DT will 

tend to raise the accuracies of background samples, thereby 

reducing the accuracies of target samples and overall accuracies.  

In the respect of statistical characteristics, MAXENT calculates 

the probability distribution by entropy that attempts to find the 

maximum present probability in nature, which is close to the 

status of ecology, and considering the background samples with 

lower probability instead of viewing as absences for taking 

account of overall distribution of target samples, thus resulting 

in higher accuracy on extrapolation.  Since SVM and DT are 

developed based on mathematical concepts, they will divide 

each class as complete as possible.  Thus, more disperse or 

confused information in samples or more background samples 

incorporated in the models, more fragmentary or convergent 

area will been predicted either in SVM or DT models.  The 

predictions of SVM and DT in HB cases resulted in not only 

underestimating potential habitat but also unreasonable 

conditions in reality.  For example, in the prediction of DT in 

HB in this study, the range of slope of potential habitat was 

lower than 6° and from 8° to 18°, indicating the unreasonable 

condition in ecology that should distribute continuously.  For 

SVM, it will project the feature space to higher dimension to 

split the dataset in the HB case, thus it will pick out the area 

environmentally more similar to the existed samples.  In 

addition, the predictions on SVM and DT in HB cases also 

decreased the extrapolating ability of models (Table 6).  

Because they predicted the potential habitat in the HB cases 

with more constrained environmental range that closing to the 

range around the samples at hand, they were hard to extrapolate 

to the area that we do not have any samples. 

 

Figure 7 shows the area of potential habitat of three models with 

low and high biodiversity.  In MAXENT model, the area of 

potential habitat increased slightly when it was in high 

biodiversity (large background size).  It attributed to that 

MAXENT would attempt to keep the overall distribution of the 

target samples.  The predictions of SVM and DT models 

resulted in that the area of potential habitat tended to very 

concentrated and fragmentary in the HB cases, especially in DT 

models.  These two models would tend to underestimate the 

potential habitat, thereby limiting the ability of extrapolation.  

However, these results had the potential to find out the area 

with the highest probability of presence in where the 

environment was extremely close to that in the existed samples.  

It was still very useful for reducing the area of species field 

survey to save much time and labor. 

 

Model 
LB HB 

OA (%) kappa OA (%) kappa 

Training 

Set 

SVM 97 0.90 99 0.43 

MAXENT 94 0.76 97 0.33 

DT 97 0.90 99 0.60 

Test Set 

1 

SVM 97 0.87 91 0.61 

MAXENT 96 0.84 96 0.85 

DT 97 0.86 92 0.57 

Test Set 

2 

SVM 94 0.60 92 0.33 

MAXENT 94 0.38 95 0.62 

DT 95 0.59 93 0.10 

Table 6.  The accuracies of models with low biodiversity (LB)  

and high (HB) biodiversity 

 

5.  CONCLUSIONS 

 

The accuracies of all three models had excellent capability on 

predicting the potential habitat in low biodiversity (kappa > 0.8).  

However, only MAXENT could keep the excellent prediction in 

high biodiversity; whereas SVM and DT models would be too 

convergent, thereby underestimating the potential habitat. 

 

Therefore, we conclude that MAXENT is the best one for 

predicting the species’ potential suitable habitat to assist the 

decision-making of plantation, reforestation, or recovery.  In 

contrast, the prediction of SVM and DT models would 

underestimate species distribution significantly, and thus limit 

the ability of extrapolation, but they still could be used to find 

out the area with the highest probability of species’ presence to 

assist species field survey or restoration selection of rare species. 

 

In future, to predict more accurately, we will consider about 

other factors that are more directly related to the growth of 

species, like shade or solar illumination factors, to improve the 

predictions of models.  And we will also use the classification 

maps derived from LIDAR or hyperspectral imagery to identify 

different species precisely to promote the predictive capability 

of models in more detail. 
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Figure 7.  The maps of potential habitat of LLCs predicted by three models: (a) SVM, LB;(b) SVM, HB;(c) MAXENT, LB;(d) 

MAXENT, HB;(e) DT, LB;(f) DT, HB.  The insets over the up-left are a part of entire area for showing the details of the 

maps. 
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