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ABSTRACT: 

 

Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and 

terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more 

details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach 

for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data 

fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM) of a 

scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of 

accurate control information for the direct computation of absolute camera orientations with redundant information by means of 

accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an 

extended Helmert (seven-parameter) transformation is introduced and its parameters are estimated. Precedent to that, in the second 

method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion 

(SaM) reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in 

relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction 

algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a 

complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the 

effectiveness of the presented procedures. 

 

1. INTRODUCTION 

Close range photogrammetry and terrestrial laser scanning 

(TLS) are two typical techniques to reconstruct 3D objects. 

Both techniques enable the collection of precise and dense 3D 

point clouds. Unfortunately, there is still no optimal approach 

or procedure which is adequate for all applications and their 

demands. These demands principally relate to the geometric 

accuracy, photorealism, completeness, automation, portability, 

time and cost. TLS directly hands over 3D object points through 

an array of coordinates. These point clouds have no information 

about the object texture which leads to the need of 

photogrammetry. Photos contain the required texture but do not 

contain any explicit metric information without further 

processing steps such as the introduction of a scale bar or the 

introduction of ground control points. 

 

In addition, in case of spatially complex objects and difficult 

topography such as heritage sites, a complete coverage of data 

collection from different viewpoints is required. This can face 

obstacles requiring setting up and dismounting the laser 

scanner. Furthermore, the acquisition distance is limited. 

Accordingly, TLS data acquisition can be relatively time and 

effort consuming. Unlike, a negligible effort and time are 

needed to capture additional images with a standard digital 

camera.  

 

To achieve an improved quality of procedures and results than 

could be achieved by the use of a single sensor alone, a fusion 

of photogrammetric images and laser scanner data must be 

performed. Consequently, and due to the complementary 

characteristics of both digital images and laser scanner data, this 

combination will promote issues that need to be investigated 

such as filling gaps in laser scanner data to avoid modeling 

errors, reconstructing more details in higher resolution and 

recovering simple structures with less geometric details.  

 

Thus, we propose a processing chain for combining 

photogrammetric images and laser scanner point clouds based 

on a scene database stored in a point-based environment model 

(PEM). The PEM allows the extraction of accurate control 

information for direct absolute camera orientation. Based on 

well-known strategies and algorithms, several tasks (data pre-

processing, image matching, registration and dense image 

matching) have been solved efficiently in order to ensure 

accuracy and reliability. So the related work is briefly 

introduced in the following section. Section 3 describes the data 

acquisition and pre-processing in detail. A description of the 

PEM is presented in section 4. Section 5 describes the marker-

free registration of images. Section 6 demonstrates the 

experimental results. 

 

2. RELATED WORK 

Over the past few years, different fusion approaches were 

presented to integrate digital photos with laser scanner data. 

These approaches were useful in texture mapping of point 

clouds to generate 3D photorealistic models, extraction of 

reference targets for registration and calibration tasks, 

registration of multiple scans by using photos, employing 

photos to reconstruct the main shape of the object and then 

using laser scanning to reconstruct the detailed parts (El-Hakim 
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et. al., 2003), and last but not least filling gaps in laser scanner 

point clouds caused by occlusions (Alshawabkeh, 2006). 

Constructive on that we propose a fully automatic method for 

the integration of digital imagery and laser scanning point 

clouds. 

 

The prerequisite for the combination of digital images and laser 

scanner data is finding a registration approach that comprises   

advantageous characteristics in terms of precision, reliability 

and simplicity. In general, the registration process can either 

proceed automatically or manually by placing artificial targets 

into the scene. The latter can be time and effort consuming, so it 

is worthwhile to use the former one. Typical automatic 

registration approaches use distinctive features for the 

registration of digital images and point clouds. These features 

have to be matched in both sensors.  

 

Basically two images can be generated from TLS data, the 

reflectance and the RGB images. The former is generated from 

the intensity values while the latter is generated from the RGB 

values. Employing the generated images will simplify the 

extraction of distinctive features from 3D point clouds to a 2D 

problem. Accordingly, registering both sensors will be based on 

a matching between both the generated and the camera images, 

see (Alba et al., 2011). 

 

Consequently, each sample in the PEM is not only associated 

with a reflectance value, but also with a RGB value. Therefore 

we employed the generated images in order to build a PEM 

database which includes a list of distinctive features with their 

descriptors extracted from both generated images. As a result, 

our proposed fusion procedure is firstly based on the potential 

to develop an efficient pipeline able to fuse data sources and 

sensors for different applications. Secondly it yields at an 

increase in automation and redundancy. Finally, it represents a 

direct solution for data registration. 

 

3.  DATA ACQUISITION AND PRE-PROCESSING 

A Leica ScanStation HDS 3000 and a Faro Laser Scanner 

Focus3D, figure 1 (left and center) respectively, were used to 

perform the laser scanner measurements. The former is a time-

of-flight-based laser scanner operating at a wavelength of 532 

nm, for more details see (Böhm, 2007). The latter is a phase 

shift-based laser scanner operating at a wavelength of 905 nm. 

It sends the infrared laser beam into the center of a rotating 

mirror. The mirror deflects the laser on a vertical rotation 

around the scene being scanned; scattered light from 

surroundings is then reflected back into the scanner. The range 

measurements are accurately determined by measuring the 

phase shifts in the waves of the infrared light. The Cartesian 

coordinates of each point are then calculated by using angle 

encoders to measure the mirror rotation and the horizontal 

rotation of the scanner. The scanner has a maximum field of 

view of 360o × 305o in horizontal and in vertical respectively, 

with a high measurement speed: up to 976 kpts/sec can be 

obtained. The possible standoff range is 0.6 to 120 meters. The 

manufacturer specifies the maximum ranging error with ±2mm 

at 10 to 25 meters. Experiments for this study were 

demonstrated using different datasets. The old farm building 

and the Lady Chapel of the Hirsau Abbey ruins, see (Moussa & 

Fritsch, 2010), datasets were acquired by the Leica HDS 3000 

at an approximate sampling distance of 2cm and 5cm 

respectively on the object’s surface. Furthermore, the Stuttgart 

University building dataset was acquired using the Faro Focus3D  

 

 

Figure 1. The employed sensors. From the left, Leica Scan 

Station HDS 3000, Faro Laser Scanner Focus3D  and NIKON 

D2X digital camera 

 

at an approximate sampling distance of 2cm on the object’s 

surface. 

                                 

Digital photographs have been captured by a standard calibrated 

digital camera NIKON D2X (12 Mpx) with 20mm lens (figure 

1-right). The collected imagery require the following process: 

correction of image distortions; considering only the green 

channel in order to get similar intensity values in the generated 

and the camera images and to reduce illumination differences; 

resizing digital images to fit as good as possible to the ground 

sampling of the generated images in order to ensure optimal 

matching performance. 

 

4. POINT-BASED ENVIROMENT MODEL  

The point-based environment model is introduced in (Böhm, 

2007) as a dense point-wise sampling of the scene surface that 

can easily be acquired by long-range 3D sensors, such as TLS 

systems and machine vision cameras.  Where each sample is 

located in an approximately regular polar grid and comprised of 

the 3D coordinates of the point associated with an intensity 

value. The PEM features are extracted from the corresponding 

reflectance image by direct mapping of the laser scanner polar 

coordinates. This requires, according to the scanning 

mechanism of the laser scanner, one scan section that comprises 

one image matrix. Consequently, this method is limited and 

inflexible especially in case of having multiple sections in one 

scan. 

 

Moreover, in this representation, straight object lines are 

mapped as curved lines in the generated images. Contrarily, 

camera images are provided with central perspective lenses. 

This causes changes in the grey values along the object lines not 

only due to the different illuminations but also to the different 

geometries. Additionally, the resulting reflectance image 

requires visual enhancement (histogram equalization) because 

of the poor contrast. Accordingly, imaging laser scanner polar 

coordinates as a 2D representation may intricate the feature 

matching process between the reflectance and the camera 

images. 

 

Therefore, we expand the point-based environment model as 

follows. Since terrestrial laser scanners provide for each 

measurement intensity and RGB values, we stored these values 

in the PEM. This extension has an important advantage, 

because instead of using only intensity values, a similar 

approach can be also applied on RGB. This results in extracting 

redundant information from both generated images. Moreover, 

the intensity values are recorded as the energy of the reflected 

laser beam, which locally illuminates the surface at a very 

narrow bandwidth of the laser beam. This may outcome in 

missing some good features which are not visible at the narrow 

bandwidth of the light source (Böhm, 2007).  
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Figure 2. Dataset of Stuttgart University building, (from the 

left) 3D laser point cloud, RGB image of Faro Focus3D and our 

generated RGB image 

 

To avoid difficulties in the feature matching process and the 

disagreements between both the generated and the camera 

images, it would be worthwhile to project the laser point cloud 

into a central perspective representation (Meierhold et. al., 

2010).  

 

Furthermore, despite of the high advance in LiDAR systems, 

e.g. the Faro Focus3D, they still deliver reflectance and RGB 

images with mapped curved lines based on the scanning 

mechanism (see figure 2-center). Therefore, we propose a 

flexible method to generate the reflectance and the RGB images 

based on the collinearity equation (1) in order to project each 

point cloud into a virtual image plane, as shown in figure 2 

right. 
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where ( x , y ) are the unknown image coordinates, ( X , Y , Z ) 

constitute the corresponding known object coordinates in the 

laser point cloud, ( 0X , 0Y , 0Z , i jr ) denote the known exterior 

orientation parameters since we assume that the camera is 

placed in the same position as the laser scanner. The parameter 

( c ) represents the defined focal length to accomplish the 

projection into the generated image which is set to the same 

value of the camera image in order to achieve good results. 

 

Figure 3. Lady Chapel dataset. From the left, 3D laser point 

cloud and generated RGB images with different pixel footprints; 

interval distance in object space (3, 8 and 13 cm) 

 

Up to now, all 3D point clouds have been projected into the 

image plane. Practically, to generate the reflectance and RGB 

images, it is sufficient to have one projected point per pixel. 

However, using an interpolation process, more projected points 

 per pixel will improve the accuracy of the 3D coordinates of 

the extracted features in the generated images. On the other 

hand, the interpolation process will also fill any image pixel, 

which does not contain information. As a result, the pixel size is 

calculated from projecting the required interval distance onto  

 
 

Figure 4. Old farm dataset, 3D laser point cloud (left) and the 

matched features on the RGB image (right). In close, the nearest 

neighbors (green) used to interpolate the corresponding object 

coordinates for each feature (yellow) 

 

the image plane. Accordingly, the pixel size has a direct effect 

on the required image resolution and the desired number of 

projected points in image pixel (figure 3). 

 

 As the extracted features from the generated images are located 

with subpixel accuracy, the corresponding 3D locations have to 

be calculated using an interpolation process based on weighted 

distances of nearest neighbors measurements (see figure 4). In 

case that the range measurements are not available for all 

neighboring points (e.g. 4 neighbors) in the PEM, this point 

will be excluded. For that we employed the Fast Library for 

Approximate Nearest Neighbors (Muja & Lowe, 2009) and the 

kd-tree implementation in the VLFeat library 0.9.14 (Vedaldi & 

Fulkerson, 2010). The generated PEM plays a key role to 

provide accurate control information for direct absolute 

orientation of Hand-held cameras. 

 

4.1 Feature Extraction 

The generated images from laser point clouds and camera 

images indicate differences related to image resolution, 

radiometry, direction of illumination and viewing direction. As 

a consequence, the identification of corresponding points 

between generated and camera images requires a robust feature 

matching algorithm, which is insensitive to illumination and 

scale differences and employs region descriptors instead of edge 

detectors (Böhm & Becker, 2007). A wide variety of feature 

operators have been proposed and investigated in the literature, 

see e.g. (Tuytelaars & Mikolajczyk, 2007). Generally, 

repeatability is the most important attribute for a feature 

operator, which indicates  the capability of finding the same 

exact feature under different viewing and illumination 

conditions (Barazzetti et al., 2010). (Valgren & Lilienthal, 

2007) addressed the high repeatability of SIFT (Lowe, 2004) 

and SURF (BAY et al., 2008) operators in the case of terrestrial 

images. 

 

(Morel & Yu, 2009) propose the affine SIFT (ASIFT) feature 

detection algorithm which extends the SIFT method to fully 

affine invariant local image features. The ASIFT method 

simulates a set of sample views of the initial images, obtainable 

by varying the two camera axis orientation parameters, namely 

the latitude and the longitude angles, which are not treated by 

the SIFT method. Then it applies the SIFT method itself to all 

images thus generated. Therefore, ASIFT covers effectively all 

six parameters of the affine transform. (Morel & Yu, 2009) 

illustrate that most scenes with negligible or moderate camera 

view angle change that match with ASIFT also match with SIFT 

(usually fewer matching points). Nevertheless, when the view 

angle change becomes important, SIFT and other methods fail 

while ASIFT continues to work. Thus, ASIFT has been chosen 

for our experiments.  
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5. IMAGE REGISTRATION  

Finding the mathematical mapping by calculating the relative 

orientation between the digital images and the extended PEM 

database is referred as sensor registration. Most registration 

approaches are classified according to their nature (area-based 

and feature-based) and according to four basic steps of image 

registration procedure: feature detection, feature matching, 

transform model estimation and image transformation and 

resampling (Zitoza & Flusser, 2003). So, in the next paragraphs, 

a marker-free registration pipeline of camera images based on a 

feature matching process with the PEM database’s features is 

introduced. This process involves determination of 

correspondences and calculation of camera orientation. 

 

5.1 Determination of Correspondences 

Feature Extraction: As mentioned in section 4.1, ASIFT 

operator has been used for feature detection and description in 

camera images.  

 

Feature Matching and Filtering: ASIFT associates a 

descriptor to each detected image feature following the standard 

SIFT operator. Interest feature matching is performed by 

employing a pair-wise comparison of descriptor space distances 

for interest features in each camera image and the PEM 

database, without any preliminary information about the image 

network or epipolar geometry. Since the PEM features are 

linked to their 3D coordinates, a standard RANSAC filtering 

scheme (Fischler & Bolles, 1981) is adapted to a closed-form 

space resection algorithm proposed by (Zeng & Wang, 1992) as 

a mathematical model in order to exclude mismatches. 

5.2 Camera Orientation Based on Accurate Space 

Resection 

Once the 3D-to-2D correspondences are known, the exterior 

camera orientation relative to the laser scanner data (PEM) is 

resulting from solving the Perspective-n-Point (PnP) problem, 

also known as space resection in photogrammetry. The latter 

aims at estimating the camera orientation from a set of 3D-to-

2D point correspondences. So, accurate space resection 

methods are employed in order to compute the absolute 

orientation of the camera using redundant information. To 

improve efficiency and accuracy, an outlier rejection procedure 

based on the noise statistics of correct and incorrect 

correspondences is applied. 

 

Accurate Camera Space Resection: Accurate space resection 

methods determine the orientation of a camera given its intrinsic 

parameters and a set of correspondences between 3D points and 

their 2D projections. These methods have received much 

attention in both Photogrammetry and Computer Vision. 

Particularly, in applications which are computationally 

expensive such as feature point-based camera tracking (Lepetit 

& Fua, 2006) which handle hundreds of noisy feature points in 

real-time. However, for redundant data handling, the most 

accurate methods for solving space resection problem rely on 

iterative optimization methods (Lu et al., 2000). An essential 

prerequisite for iterative methods is having a reasonable initial 

estimate. With poor initial values it will be prone to failure. In 

this application, we use the Efficient Perspective-n-Point 

(EPnP) algorithm (Moreno-Noguer et al., 2007). EPnP 

proposed as a non-iterative solution to the PnP problem, which 

is able to consider nonlinear constraints but requires only O(n) 

operation. It is used to calculate a good initial guess for the 

orthogonal iteration (OI) algorithm (Lu et al., 2000), which 

minimizes the error metric based on collinearity in object space, 

in order to estimate efficiently the camera pose.  

It is worthwhile to mention that, in case of using an amateur 

digital camera for photograph’s collection, we can consider the 

results of EPnP method as initial values in the extended 

collinearity equations by adding additional camera parameters 

in order to estimate the camera calibration.  

  

Outlier Rejection Procedure: To improve the estimated 

camera pose in terms of accuracy, a statistical outlier removal 

process is applied to the image reprojection errors in order to 

discard the remaining false correspondences and discriminate 

the good ones. This has been considered under the assumption 

that a normal (Gaussian) distribution of the residual for the 

good correspondences is present. We employed a simple but 

effective rejection rule, called X84 (Hampel et al., 1986) which 

utilizes robust estimates for location and scale, i.e., the spread 

of the distribution, to set a rejection threshold. 

 

5.3 Structure and Motion Reconstruction 

Reconstruction of camera orientations and structure from 

images is one of the most important tasks in Photogrammetry. 

The Structure and Motion (SaM) reconstruction method was 

originally developed by the Computer Vision community to 

simultaneously estimate the scene structure and the camera 

motion from multiple images of a scene.  

 

For the derivation of accurate exterior orientations, we 

implemented an efficient SaM reconstruction method. It derives 

the exterior orientations without initial values by sequentially 

adding images to a bundle. Therefore, features are extracted 

from the imagery and matched to each other. By using an initial 

network analysis step large sets of images can be processed 

efficiently without performing this step for each available image 

pair. The number of unknowns within the SaM process can be 

reduced by using the interior orientation determined in the test 

field calibration. Therefore, the images are rectified by 

removing the distortion. For more details and accuracy analyses 

of our implementation see (Abdel-Wahab et al., 2011). 

 

6. RESULTS AND DISCUSSIONS 

6.1 Data set 

In order to evaluate our results, the developed pipeline was 

applied to the dataset of the old farm building which is 

considered as a typical application for TLS. The aim was to 

reconstruct the missing upper right part of the façade which was 

not measured in this scan during the data acquisition due to 

standoff distance and angle limitations. 19 photographs have 

been employed for SaM reconstruction and marker-free 

registration. 

 

6.2 Evaluation of Correspondences 

Using the ASIFT operator, in the generated images (1193x597 

pixels) and resized camera images (1201x797 pixels), the image 

features were extracted. This is followed by a feature matching 

process based on a quadratic matching procedure. Then, a 

filtering step using RANSAC based on a closed form space 

resection was accomplished (see Figure 5).  
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Figure 5. Feature point correspondences for 19 images of the 

farm building dataset, correspondences after ASIFT matching 

(red), the results after RANSAC filtering (blue) and after 

statistical outlier removal X84 (green) 

 

6.3 Camera Orientation 

EPnP was employed to estimate the camera orientation. The 

X84 rule was applied during the estimation in order to remove 

outliers (see figure 5). Accordingly, the overall precision of the 

camera orientation is in sub-pixel range, which can be improved 

by the iterative method (OI). In order to assess the accuracy of 

the camera orientation, we have performed manual 

measurements to compute the camera orientation using the 

“Australis” software package. These results were also compared 

to the camera orientation resulting from the SaM method, which 

have been transformed by the calculated Helmert parameters. 

Figure 6 shows that the camera orientations computed with the 

automatic methods (OI & SaM) give the same results as the 

manual method (Australis). 

Figure 6. Comparison of the SaM and OI method’s results. 

Residuals of camera orientations, using Australis results as a 

reference, for three images with different viewing directions. X, 

Y, Z are the camera position and qi is the quaternion rotation 

value. 

 

6.4 Dense image matching 

Using the absolute camera orientations, we have reconstructed a 

georeferenced, accurate and dense point cloud from the 

corresponding camera images. For that, we applied dense image 

matching algorithms - in particular, patch-based multi-view 

stereo (PMVS) method (Furukawa & Ponse, 2010) and a 

hierarchical multi-view stereo based on the Semi-Global 

Matching (SGM) method (Hirschmüller, 2008). The latter was 

developed in our institute (ifp), see (Wenzel et al., 2011). These 

methods have been employed in order to reconstruct oriented 

dense image point clouds which are automatically combined 

together with the laser scanner data to form a complete detailed 

representation of the scene (Figure 7). We can see that the dense 

image point cloud fits correctly to the laser point cloud. The 

generated dense image point cloud using SaM results contains 

almost no noise. On the contrary, one can see few noises in the 

generated dense point cloud by using the image registration 

outputs. However, the results are still sufficient for our 

application and others which require small image datasets like 

filling of gaps in laser point cloud. Further complementary 

improvement using ICP as a fine registration technique is 

possible. 

 

7. CONCLUSIONS AND FUTURE WORK 

Within the paper, a procedure for automatic combination and 

co-registration of digital images and terrestrial laser data was 

presented. The method uses images generated from a PEM 

acquired by TLS and stores the laser point cloud’s 3D 

coordinates associated with intensity and RGB values. A 

marker-free registration of images based on matching the PEM 

and camera features was presented. Direct absolute camera 

orientations were computed by means of accurate space 

resection methods. These results were used to calculate the 

Helmert (seven-parameter) transformation in order to transform 

the local relative orientation parameters of the camera images 

calculated by an optimized SaM method. With the resulting 

absolute orientations dense image reconstruction algorithms 

were used to create oriented dense image point clouds 

automatically aligned with the laser scanner data, with a chance 

to reduce the final co-registration error with the help of global 

point cloud algorithms like ICP. 

 

Possible improvements could be considered such as using linear 

features instead of point features for matching in order to reduce 

outliers and to improve registration accuracy. Furthermore, 

employing planar patches could lead to better accuracies in the 

final co-registration. Future work will explore this pipeline to 

support applications such as the filling of gaps in laser point 

clouds, the colorization of laser point clouds and the generation 

of orthophotos. 

 

Figure 7. Dense image point cloud generated by PMVS 

combined together with the old farm‘s laser point cloud 

(bottom), dense image point cloud generated by the SGM 

using SaM outputs, about 5 million pts (upper left) and 

dense image point cloud generated by the PMVS using OI 

outputs, about 0.5 million pts (upper right) 

 

SaM results 

OI results 

       X         Y         Z        q1         q2        q3       q4 
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