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ABSTRACT 
 

A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive 
optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In 
the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels 
of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total 
precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, 
illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.  

 
 

                                                                 
* Corresponding author, Ph. D, majors in classification with active microwave and passive optical remote sensing data. 

1. INTRODUCTION 

A range of remotely sensed data from sensors differing in terms 
of their spectral, spatial, and temporal resolution is now widely 
available. Given the large size of such multisource data sets, the 
immediate problem is how to choose and apply a suitable 
classification algorithm in order to achieve a level of accuracy 
that is acceptable for the given application. 

Optic and microwave remote sensing are two common 
methods to obtain the land surface information. The optic 
remote sensing data, with rich spectral information, represents 
the surface reflective spectral or the emission spectral; 
Microwave remote sensing has the characteristics of strong 
penetration, and it is the general information of vegetation 
coverage, surface roughness, dielectric constant, structure and 
so on. When the optic images are helpless with the problems of 
‘foreign objects with the same spectrum’ and ‘identical objects 
with the different spectrum’ in the earth observation, the 
microwave images can distinguish the objects by its surface 
roughness, structure, shape, water content and so on. Therefore, 
the integration of optic and microwave remote sensing data can 
gain the features of objects in different aspects, and do well in 
the classification or feature extraction.  

Currently, integration of optical and microwave remote 
sensing in classification is attracting increasing attention, 
Reference (jia et al, 1995) used modified Bayesian Network to 
classify the Landsat TM and Aircraft SAR images, and found 
the precision of the classification by fusion TM and ASR are 
20% higher than the single TM. The decision level fusion of 
TM and SAR images was applied to classification (Solberg, 
1994), and further improved by adding the Markov random 
field; Storvik (Storvik, 2005) proposed Bayesian network to 
classify the multisource remote sensing with different spatial 

resolution and get an accuracy of 88.7%. However, the above 
reference can not handle the SAR image speckle noise, and 
discuss less of the extraction of the multi-feature of SAR, so 
they didn’t set up the appropriate conditional probability 
density model.  

Consequently, we have developed a new classification model 
for multisource data based on the Markov Random Field (MRF) 
and Bayesian theory. In the model, a Bayesian classifier based 
on MRF is developed, the VV, VH polarization of ASAR and 
all the TM bands are taken as the input of the Bayesian 
classifier to get the class label of each pixels of the mutilsource 
images. At last, the model is validated by the field 
measurements. 

 
 
2. CLASSIFIER BASED ON BAYESIAN THEORY AND 

MRF 

Bayesian statistical theory has been widely used as a 
theoretically robust foundation for the classification of remotely 
sensed data. The matter of multi-source remote sensing imagery 
is : suppose multivariate image X is composed of N-
dimensional pixels where Xk(s) denotes the eigenvector of X,  k = 
1, 2, …, N, presents the N dimensions, and s = (i , j) denotes the 
coordinate on image X. w denotes the field which contains the 
classification of each pixel in X; points in w can take values in 
the set {1, 2, . . . , L}, where L is the number of classes. The 
multivariate image X is then classified by finding a field of 
class labels ˆ Mapw  such that:  
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ˆ arg max{ ( | )} arg max{ ( | ) ( )}Map
w w

w p w X p X w p w= =     (1) 

 
 
where    ˆ Mapw =  MAP (Maximum a Posteriori) estimation of 
the field of class labels which maximizes the posterior cost 
function (1).  

 

 

            p(w)= prior probability distribution 

           p(X|w)= class-conditional distribution 

 

 

Therefore, the modeling of both the p(w) and p(X|w) becomes 
an essential task. 

 
2.1. Prior Distribution Model-MRF  

The introduction of MRF can be found in many texts 
(Chellappa, 1983; 1985). The image function w(s) can be taken 
a two-dimensional random, and expressed by Markov random 
field as: 

 
 

{ ( ) | ( )} {( ( ) | ( )}p w s w S s p w s w s− = ∂             (2) 

 
 
where    S = image lattice 

s∂ =  neighborhood system 

So for a given point in a two-dimensional random, its class 
label is only dependent on its neighbors and unrelated with 
other pixels of image. 

For a given neighborhood system, a Gibbs distribution is 
defined as any distribution p(w) that can be expressed in (Julian, 
1986) as: 

 
 

1 1( ) exp[ ( )]c

C

p w V w
z T

= − ∑                           (3) 

 
 
where    Vc(w)= arbitrary function of w on the clique c,  

C = the set of all cliques 

z = normalizing constant called a partition coefficient  T 
= analogous to temperature.  

The prior distribution based on the first order neighborhood 
system as： 

 
 

1 1 1( ) exp[ ( )] exp[ ( )]c c

c C c C
p w V w t w

z T z
β

∈ ∈

= ⋅ − = ⋅ −∑ ∑        (4) 

where   β = weight emphasizing the significance of interactions 
among adjacent pixels inside the clique,  

tc(w) = Vc(w) mathematically.  

So (1) can be further written as:   

 
 

ˆ arg min ( ln ( | ( )) ( )]c
Map

w s S c C
w p X w s t wβ

∈ ∈

= − +∑ ∑        (5) 

 
 
where     w(s) = class label at s Є S. 

 
2.2. Modeling the Conditional Probability Density 
Function 

As the impact of speckle noise of SAR image in synthesizing 
classification of the optical and microwave images, it is difficult 
to obtain the conditional probability density function of the 
multisource remote sensing data, maximum likelihood classifier 
with modified M-estimates of mean and covariance (MMLM) 
can be used to classify the multisource images and get the 
initial class labels and the conditional probability density 
function of each class. From the Reference (Yonhong, 1996), 
we see that MLMM can obtain a good precision of 
classification and proper conditional probability density 
function, also restrain the speckle noise of SAR images. 

 
2.3. Classification by Iterated Conditional Modes (ICM) 

The ICM is computationally feasible since it updates the class 
assignments iteratively (Julian, 1986), the objective is to 
estimate the class label of a pixel given the estimates of class 
labels for all other pixels inside the rectangular lattice. Then the 
optimization problem of (5) becomes： 

 
 

( )
ˆ ˆ( ) arg max[ ( ( ) | , ( ))]

w s
w s p w s X w S s= −                 (6) 

 
 

Applying the Bayes' rule and considering the Markov 
property (Julian, 1986), the argument of (6) becomes: 

 
 

( )
ˆ ˆ ˆ( ) arg max[ { ( ) | ( )} { ( ) | ( )}]

w s
w s p X s w s p w s w s= ∂          (7) 

 
 

From the Hammersley-Clifford theory (Geman, 1984) we 
know: 

 
 

1ˆ ˆ{ ( ) | ( )} exp{ [ ( ), ( )]}cp w s w s t w s w s
z

β∂ = − ∂           (8) 

ˆ( ) ( )ˆ[ ( ), ( )] [1 ]c
w s w s

c C
t w s w s δ −

∈

∂ = −∑                  (9) 
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where    δk = Dirac-delta function, if k=0, δk=1; k≠0, δk=0.  

cs = {c | c Є C, s Є c}.  

Therefore, from (5) and (7) we know: 

 
 

ˆ( ) ( )
( )

ˆ ( ) arg min ( ln ( | ( )) (1 )]w s w s
w s s S c C

w s p X w s β δ − ∂
∈ ∈

= − + −∑ ∑   

(10) 

 

 

3. EXPERIMENTS 

3.1. Study Area and Database  

The measures reports in this study are conducted during the 
Watershed Airborne Telemetry Experiment. The study area 
locates in Grass Station of Lanzhou University in Zhang Ye 
district, Gansu province. Its geographical coordinates are 
39.25043°N, 100.005871°E, the altitude is 1385 meters. Land 
use mainly consists of country, bare salinization land and 
irrigative agricultural fields. The field experiment was 
conducted from June to July in 2008, at which time the crops 
were corn, clove, barley and other crops.  

Satellites over the study area provided TM and ASAR data 
on 7 July 2008 and 11 July 2008, respectively. ASAR 
(Advanced Synthetic Aperture Radar) is a synthetic aperture 
radar carried by the ENVISAT-1 satellite and operates in the C-
band (central wavelength 5.63 cm), with multi-polarization, 
seven observation angles and five operating modes. In this 
study, we chose to use the ASAR data, and the operating mode 
was Alternation Polarization corresponding to two kinds of 
polarization (VV and VH) and high space resolution (12.5×12.5 
m per pixel). Figure 1(a) and 1(b) illustrate the false color 
composite image composed by TM3, 4, 5 and ASAR image in 
VV polarization. 

  
(a) The false color composite image   (b) ASAR image in VV 

polarization 
Figure 1.  The images used in the paper 

 
When the initial class labels and conditional probability 

density function of the multi-source remote sensing data are 
determined by MLMM, formulation (10) is used to perform the 
local minimization at each pixel in a specified order and get the 
updated category. If changes occur then repeat estimating. The 
iteration continues until no more updates occur for all the pixels 
inside the lattice, then, the classification completes.  

Comparing with the conventional Markov model for iterative 
classification, our method needn’t to assume the conditional 
probability density function in advance; With joining the spatial 

correlation of the class labels, our method also can get a better 
classification accuracy than the ordinary maximum likelihood 
classification model. Moreover, the classification is achieved 
through the iterative process, which takes into account the 
characteristics of pixel attributes.   

3.2. Classification experiment  

VV, VH polarization of ASAR and all the TM bands are taken 
as the input of the classifier, and the multisource images are 
resampled to 30m*30m and geometrically corrected. The study 
area is separated to 12 classes, which are corn, other corps, 
garden, woodland, meadow, fallow land, sand, mountain, saline, 
desert, building, and water. The training samples and validation 
samples are shown in Table 1. When the training samples and 
validation samples are selected, we use the method in Section 2 
to classify the TM and ASAR images, the results are shown in 
Figure 2, In which, the basic form of oasis is similar with the 
Figure 1(a), which is consistent with the dual ecological 
environment of western semiarid regions, “oasis accompanies 
with water, and desert accompanies with no water”. 

 
Figure  2.  The Classification map of study area 

 
3.3. Validation 

To verify the necessity of coupling optical radar data for 
classification, the output of the classification of ASAR and TM 
in Section 3 were compared with the classification only by TM, 
all using Bayesian and MRF classifier. Table 2 presents the 
statistical errors among the three algorithms.  

In Table 2, the accuracy of each type of classification with 
single TM is lower, and reaches a total precision of 77.9%. 
When the ASAR dual polarization is jointed, the total precision 
increases to 89.4%. The reason may be that the ASAR 
information can increase the surface characteristics and make 
them easy to distinguish, for example, corn, other corps, garden 
and woodland are similar in spectrum, and we can identify them 
by their various structural features revealed by their ASAR 
backscattering coefficients and finally obtain a better accuracy. 
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classes corn 
other 
corps 

garden woodland meadow
fallow 
land 

sand mountain saline desert 
buildin
g 

water

Training samples 
538
5 

1615 495 679 1642 1483 
321
7 

4810 4690 3612 587 805 

validation 
samples 

280
4 

1056 229 335 1180 1176 
224
6 

3202 2146 2484 327 479 

sum 
882
5 

2671 724 1014 2822 2659 
546
3 

8012 6836 6096 914 1284

Table. 1   Training and Validation Samples 

 

classes corn 
other 
corps 

garden woodland meadow
fallow 
land 

sand mountain saline desert 
buildin
g 

water 

Classification with 
Single TM 

86.2% 58.9% 62.1% 60.3% 83.1% 79.2% 85.4% 73.1% 77.7% 83.6% 87.2% 91.2%

Classification by 
presented method 

95.2% 73.2% 78.2% 68.8% 91.2% 91.7% 93.2% 88.9% 92.7% 88.5% 96.8% 98.6%

Table. 2  Statistical Errors for the Two Algorithms 
 
 

4. CONCLUSION 

A new classification model for active and passive remote 
sensing data is developed in this paper. In the model, a 
classifier based on the Bayesian theory and MRF is set up, 
ASAR in VV, VH polarization and 7 bands of TM are taken as 
the input of the classifier. The validation by field measurements 
shows that: 

1) The classification model based on Bayesian and MRF in this 
paper not only need not to assume the conditional probability 
density function in advance, but also joining the spatial 
correlation of the class labels, the model can get a better 
classification accuracy of 89.4%. 

2) Comparing with the Classification with single TM, the total 
precision of classification by active and passive remote sensing 
increase 11.5%, it shows the integration  of TM and ASAR data 
can increase the information of the surface objects, make them 
easier to distinguish, and finally reach a better classification 
precision. 

The study area is a typical ‘oasis-desert’ dual ecological 
environment in the paper, and terrain of the oasis is relatively 
flat. These are conductive to identify and classify the objects in 
ASAR image. But when the study area is selected a densely 
populated plains or urban areas, the accuracy of classification 
by active and passive remote sensing data needs to be further 
verified.   
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