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ABSTRACT 
 
A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination 
and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., 
WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For 
automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is 
evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper 
introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for 
automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The 
method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, 
different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the 
multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are 
available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in 
the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different ‘Haralick’ parameters can be 
calculated (e.g., energy, correlation, contrast, inverse distance moment) with ‘energy’ so far providing the most accurate results. 
These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final 
binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for 
a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are 
compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal 
component analysis, delta cue technique and post classification change detection. The new combined method shows superior results 
averaging between 45% and 15% improvement in accuracy. 
 

1. INTRODUCTION 

For change detection from remotely sensed images many 
methods have been proposed and developed. An overview and 
comparison of different change detection methods can be found 
in Singh (1989); Lu et al. (2003); or Coppin et al. (2004). In 
generally, change detection methods can be divided into three 
categories (Mas 1999): (i) Image enhancement-methods, (ii) 
multitemporal analysis, and (iii) post classification comparison. 
Other approaches combine several methods or consist of novel 
methodologies (an overview can be found in Lu et al. (2003)).  
Image enhancement methods are based on unclassified image 
data which combine the data mathematically to enhance the 
image quality. Examples of these are image difference, image 
ratio, or principal component (PC) and regression analysis. 
Multitemporal analysis methods are based on an isochronic 
analysis of multitemporal image data. This means that n bands 
of an image taken on date T1 and n bands of an image of the 
same area taken on date T2 are merged to form a multitemporal 
image with 2n bands. This merged image is then used to extract 
the changed areas (Khorram et al. 1999). Post classification 
change analysis is based on a comparison of two independently 
generated classification results for at least two dates T1 und T2. 
In addition to simple change detection, this method also 
provides a change analysis; i.e., to determine the kind of 
change. It is, however, very sensitive to the achieved 
classification accuracy. 

The large number of publications that deal with automated or 
semi-automated change detection prove that this field is an 
important research topic. Prakash & Gupta (1998), for example, 
combine an image difference approach with vegetation indices. 
Lu et al. (2003) merge image difference with a principal 
component analysis. Dai & Khorram (1999) use neural 
networks, whereas Foody (2001) and Nemmour & Chibani 
(2006) involve fuzzy-set theory for change detection. Other 
approaches are based on object-based image analysis (Im et al. 
2008). In summary, a wide range of different methods have 
been developed. These methods have a different grade of 
flexibility, robustness, practicability, and significance. Most 
authors, however, agree that there exist no single best algorithm 
for change detection. Therefore, new methods are still being 
developed and/or adapted especially for the detection of 
damaged buildings and infrastructure in conflict or crisis areas. 
This paper is no exception to this, as it described the 
development of, and the results for, a set of new change 
detection algorithms. They were tested with very high 
resolution (VHR) satellite images of the Dafur conflict area in 
Sudan. Multitemporal images of the affected regions were 
recorded by Quickbird-2 and are displayed on a web site that is 
hosted by Amnesty International clearly showing the 
destruction for a number of villages 
(http://www.eyesondarfur.org/villages.html). With the 
permission of the satellite company Digital Globe, we were able 
to use these preprocessed georeferenced Quickbird data that 
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were acquired before and after an attack for our change 
analysis.  
A fast detection and visualization of change in areas of crisis or 
catastrophes are important requirements for planning and 
coordination of help. Therefore, the objective of our research 
was to develop a reliable and accurate automated algorithm to 
detect changes on man-made objects. This algorithm should be 
used in catastrophic events or humanitarian crises to show the 
impact of this particular event.. 
 

2. STANDARD CHANGE DETECTION METHODS 

For a comprehensive assessment of the quality of any new 
method it is essential to compare it to the performance of 
standard change detection approaches. For comparison, we 
selected those algorithms that are available in most remote 
sensing image processing systems. These methods are: (i) 
image difference; (ii) image ratio; (iii) PCA; (iv) delta cue; and 
(v) post classification analysis.  
Image difference is an easy-to-understand and to-implement 
method. It is based on calculating the per-pixel gray value 
differences. If the resulting values are unchanged or do not 
exceed a pre-determined threshold no change has occurred. The 
degree of change is determined by the gray value differences. 
The image ratio method is very similar to image difference. For 
every pair of gray values at the same location at dates T1 and 
T2 the per-pixel ratio of the two values is calculated. Both 
methods vary through different spectral band combinations, the 
choice of thresholds, or different available spectral resolutions 
(Jensen 2005).  
The principal component (PC) transform is a statistical method 
to calculate a new synthetic (uncorrelated) data space. PC 
analysis (PCA) can be used in different ways for change 
detection. In this study, we employ a selective bitemporal PCA 
(Tomowski et al. 2010). Two bitemporal spectral bands of the 
same location are analyzed in a two-dimensional feature space. 
As a result, all gray values are analyzed in relation to the two 
principal components. Usually, the unchanged pixels lie in the 
direction of the first PC whereas the changed pixel along the 2nd 
PC axis. 
Post classification analysis is based on a comparison of two 
independent classification results for at least two dates T1 und 
T2. This method allows the determination of the kind of change 
from one class to another.  
The delta cue approach is a combination of different image 
processing techniques. These techniques are assembled into an 
integrated procedure. It consists of the following change 
detection algorithms: (i) tasseled cap soil brightness and 
greenness differences; (ii) magnitude difference; (iii) primary 
color difference; (iv) single band difference; and (v) band slope 
difference. 
The following formula is used by all the presented change 
detection algorithms to compute the relative difference (R) of 
the images T1 and T2: 

T1 T2 T1 T2
R

T1 T2

 
   

The features tasseled cap, primary color difference, band slope 
difference, and magnitude difference cannot be used in this 
study because the input images are panchromatic (single-band) 
images. This leaves just the single band difference algorithm 
and is therefore quite limited. In the next step, a threshold is 
determined to differentiate between real change and pseudo 
change. New geometric properties are then used to identify the 
changed buildings. These geometric properties include area, 
elongation, and compactness of connected pixels. These 

connected pixels build a blob of which major and minor axis 
can also be determined. 
 

3. COMBINED EDGE SEGMENT TEXTURE (CEST) 
ANALYSIS FOR CHANGE DETECTION 

Based on the fact that simple methods such as image 
differencing or image ratio failed to reliably detect changes of 
buildings in the study images, we had to develop a different 
procedure for automated change detection. This procedure is 
based on a number of different principles, namely frequency 
based filtering, segmentation, and texture analysis. Four of 
these methods are based on filtering in the frequency domain 
after a Fourier transform (FT), one on segmentation and the 
others on texture features. The frequency domain is used 
because it allows the direct identification of relevant features 
such as edges of buildings. If no features are directly visible 
(such as partial destruction with still standing outside walls), 
texture parameters are used for debris identification. A 
segmentation algorithm is used to extract size and shape of 
buildings. These methods can be combined in a decision tree for 
accuracy improvement. The combination of these processing 
steps is called Combined Edge Segment Texture (CEST) 
analysis. 
 
3.1 Fourier Transform Based Algorithms 

The FT is defined for a single band or panchromatic images 
(Cooley & Tukey 1965). Based on a frequency analysis in the 
spectral domain, isotropic band pass filters can be designed that 
highlight selected frequencies and - as such - structures in the 
images. The design of band pass filters in the frequency domain 
is based on size and resolution of the images, and the estimated 
size of buildings and man-made structures where changes are to 
be detected. The filtered images are then transformed back into 
the spatial domain for further analysis. Higher frequencies 
visualize the position of building, the highest frequencies, 
however, contain mostly noise and are not useful for object 
identification and extraction. Lower frequencies contain mostly 
general image background which is not used for further 
analysis. After a number of tests, an optimum band pass filter is 
created which includes the most appropriate information for 
building extraction (Klonus et al. 2011b).  
After transforming T1 and T2 via a fast FT (FFT) and the 
adaptive band pass filtering, four different methods can be 
applied to extract the changed structures: (i) subtraction in the 
frequency domain, (ii) correlation in the frequency domain, (iii) 
correlation in the spatial domain, and (iv) edge detection in the 
spatial domain. Of these methods, the best results are obtained 
using the edge detection algorithm (Klonus et al. 2011a). 
Consequently, we incorporated this method as a default 
function into the CEST analysis. 
 
3.2 Methods Based on Texture Parameters 

Frequency based filtering is particularly suited to detect 
changes in edge structures. If edges remain intact, however, 
textural features may be used for change analysis. For the 
calculation of texture parameters, we make use of the well-
known features defined by Haralick et al. (1973). The idea is 
that buildings can have higher texture values than areas without 
buildings, especially, if the surrounding neighborhood is very 
homogeneous and the buildings are very small or destroyed 
(with surrounding debris). The Haralick features are calculated 
using a window technique. Initial tests with a number of 
different features showed that ‘energy’ and ‘inverse distance 
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moment’ (IDM, also known as ‘homogeneity’ ) produced the 
best results for man-made objects (Ehlers & Tomowski 2008; 
Tomowski et al. 2010). Consequently, these features together 
with a bitemporal PCA were used for the CEST method. 
 
3.3 Change Detection Based on Segmentation 

Object or segment based image analysis has gained a lot of 
interest in the remote sensing community (see, for example, 
Otsu 1979 or Blaschke et al. 2008). Segmenting an image 
seems to be an excellent pre-analysis tool, especially for images 
of very high resolution. Consequently, we developed a 
segmentation procedure based on Euclidean distance to be used 
for change detection. For each pixel, the Euclidean distance to 
each neighboring pixel is calculated. If the distance is below a 
threshold, they belong to the same segment. After an 
independent segmentation of the images at dates T1 and T2, the 
segments of T1 are selected and used also for the T2 image. For 
each segment, the T1-T2 correlation coefficient is calculated. 
The result is assigned to each pixel in the segment. A new layer 
with the result of this segmentation is then created. Segments 
with a high correlation represent no changes. Segments with a 
low correlation represent changes. 
This step is repeated for the opposite direction (i.e., T2-T1 
correlation). The results are combined using different 
conditional statements. If, for example, the T1 image contains a 
number of buildings in a specific area which are not present in 
the T2 image, there exists a high probability that this area forms 
a large segment in T2 but is split into several small segments in 
T1. This would create incorrect change indications. As a final 
step, thresholds are used to extract the change segments. 
 
3.4 Combined Change Detection: The CEST Method 

Finally, all three methods are combined in a decision-tree 
approach (Fig. 1). The basis for the classification is the result of 
the change detection algorithm using edge detection based on 
frequency filtering. If the edge parameter indicates ‘no change’, 
the pixel in the image is classified as ‘no change’. If the edge 
parameter indicates ‘new building’, the pixel is classified as 
new, if the texture feature ‘energy’ is an agreement. If energy 
indicates ‘change’ and one of the features ‘homogeneity’ or 
‘segmentation’ indicate ‘change’, the result is ‘new’. Otherwise, 
it is classified as unchanged. If the edge parameter shows 
‘change’, it is classified as ‘change’ if the texture feature 
‘energy’ coincides. If energy indicates ‘no change’, the pixel 
will be classified as ‘no change’. If energy indicates ‘new’ but 
the segment and homogeneity parameters show ‘change’, the 
pixel is assigned to ‘change’. Otherwise it is classified as 
unchanged. The CEST procedure was tested against the 
standard change detection methods described above. 
 
3.5 Automatically Created Damage Maps 

The produced change images are to a large degree abstract and 
hard to interpret. This holds particularly true for people not 
accustomed to remote sensing such as members of official 
organizations or rescue forces. For the purpose of planning after 
a crisis or a catastrophe, the interpretation of change images 
should be as easy as possible. An algorithm was developed to 
automatically produce a map which can be easily interpreted. 
The first step is to generalize the change image. Inside a 20 x 20 
pixels window, the amount of change is determined using the 
information in the change image. The change percentage of this 
area is calculated and then ranked into a number of distinctive 
general classes. If less than 15 % of the area has changed, all 

pixels are classified as unchanged. Change above 80 % marks 
extensive change and change between 15 % and 80 % marks 
low to moderate change. Areas of new buildings with a surface 
cover of at least 15 % are indicated as ‘new areas’. 
 

 
 

Fig. 1.  CEST decision tree (description see in the text) 
 

4. STUDY AREA 
 
CEST detection and change map generation methods are now 
applied to the selected study sites in Darfur, Sudan. They 
represent areas which experienced dramatic changes during the 
Darfur conflict. It is estimated that more than 300.000 people 
have already died in this conflict and more than 2 million 
people have been displaced (http://www.eyesondarfur.org).  
 

 
 
Fig. 2  Panchromatic Quickbird-2 images recorded on March 2, 
2006 (left – before the attack) and on February 28, 2008 (right- 

after the attack) of the town Abu Suruj (2048 x 2048 pixels). 
Images courtesy of Digital Globe. 

 
The test area is located in South Darfur and shows part of the 
town Abu Suruj in West Darfur (Fig. 2). Because of destroyed 
and new settlement areas, this study site is very complex. It 
contains changes due to destruction and – at the same time – 
changes due to construction. A change detection procedure 
should be capable of depicting both types of change. For a more 
detailed look at the conditions, Fig. 3 shows subsets of Fig. 2. A 
manually digitized change image (black = no change, gray = 
destroyed, white = new) which will be used as ‘ground truth’ is 
displayed in Fig. 4. 
A visual comparison and overlay of the existing man-made 
structures shows a high correspondence for both images, so that 
a new co-registration was not necessary and the problem of 
possible pseudo change was negligible. They were preprocessed 
using a histogram matching procedure. An atmospheric 
correction is not applied, due to missing ground truth data, 
sparse vegetation and only one image band. 
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Fig. 3  Subsets of the Quickbird images of 2006 and 2008, 
respectively (280 x 350 pixels) 

 

 
 

Fig.4  Manually digitized change image 
 

5. RESULTS AND ACCURACY ASSESSMENT 
 
In the following section, we present the results of the standard 
algorithms, the new CEST method, and the achieved 
accuracies. For the accuracy assessment three classes were 
selected: 

‐ Class 0 = unchanged buildings/background (black) 
‐ Class 1 = changed or destroyed buildings (gray) 
‐ Class 2 = new buildings (white) 

The reference is the manual digitization of Fig. 4. Accuracy 
assessment for classes 1 and 2 is based on 404 randomly chosen 
digitized objects. Only for class 0 all 404 objects were used. If 
the majority of the pixels inside an object are assigned the 
correct class, the whole object is considered as correctly 
detected. Producers’ accuracy, users’ accuracy and the kappa 
coefficients are calculated for all scenarios. 
 
5.1 Image Difference and Image Ratio 

For image difference, it is possible to detect the three different 
classes (positive change, negative change and no change). It can 
be seen, however, that large areas of pseudo change are 
detected (Fig. 5 left). Due to brightness changes of the 
sediment, change is especially detected in the north of the 
image. Most of the new buildings which appear in the T2 image 
are detected. Buildings which are unchanged are often 
identified as destroyed or changed buildings. For image ratio, it 
is difficult to find a threshold between new and 
changed/destroyed buildings. Therefore most of the buildings 
are detected as new buildings (Fig. 5 right). As with image 
difference, buildings which are unchanged are often detected as 
destroyed or changed. This leads to the extremely low 

producers accuracy of 8.2 % for class 1 (changed or destroyed 
buildings). The amount of detected pseudo change is relatively 
low in comparison to image difference. 

  
 

Fig. 5  Change detection by image difference (left) and image 
ratio (right) 

 
5.2 PCA 

The image processed with the PCA change detection procedure 
shows a lot of pseudo change, especially in the south and west 
of the image. Similar to the image ratio result, most of the 
buildings are detected as new buildings (Fig. 6 left). Also, 
nearly 45 % of the unchanged buildings are classified as 
changed/destroyed. 30 % of the destroyed or changed buildings, 
on the other hand, are classified as unchanged. 
 
5.3 Delta Cue 

The delta cue method produces a change image with relatively 
high producer accuracies for class 0 and 1 (Fig. 6 right). More 
than 60 % of the unchanged buildings, however, were detected 
as changed/destroyed. Additionally, a large amount of pseudo 
change appears in the image, especially in the northeast. 
 

 
 

Fig. 6  Change detection by PCA (left) and delta cue (right) 
 
5.4 Post Classification 

For the post classification analysis we used the isodata 
algorithm, because no appropriate training areas were available. 
This method produces the lowest accuracies. Again, pseudo 
change poses a big problem (Fig. 7 left). 
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5.5 CEST 

The result of the four methods combined in the CEST approach 
is shown in Fig. 7 (right). In comparison to the other methods, 
this image contains far less noise. Also, misclassification of 
vegetation as changed buildings is significantly less. In 
addition, the walls of the buildings are more accurate than for 
the other results. In total, the combination of all three methods 
generates the most reliable and accurate results for change 
detection which is also demonstrated by the accuracy 
assessment. The -coefficients are presented in table 1. 
 

 
 
Fig. 7  Change detection by post classification (left) and CEST 

(right) 
 

 
 

Tab. 1  -coefficients for the change detection methods 
 
5.6 Damage Map 

For the damage map, the original image of T2 is used as 
background for the automatically created change maps. 
Unchanged areas are transparent, low to moderate changes are 
shown as yellow overlay, and areas of strong changes as red 
overlay. New building areas are shown in green. If this 
technique is applied to areas with catastrophic events, this 
change map makes it possible to quickly identify the most 
affected areas or the areas for which high casualties are likely. 
For the Abu Suruj area, it could be easily depicted that the town 
has increased, but also that large parts of the city have changed. 
Buildings were destroyed and new buildings were built on these 
sites or next to the destroyed buildings (Fig. 8). 

 
6. CONCLUSIONS 

 
In this paper, a new automated change detection method 
(CEST) is presented. CEST combines adaptive filtering in the 
frequency domain with edge detection in the spatial domain, 
calculation of the texture features ‘homogeneity’ and ‘energy’ 
with a PCA change detection approach and segment based 

correlation. This combined method is compared to five standard 
change detection algorithms (image difference, image ratio, 
PCA, delta cue, and post classification analysis). Results are 
visually and quantitatively analyzed. The accuracy assessment 
shows that the CEST method is far superior to the standard 
techniques for change detection. The combined method yields 
an overall accuracy of 80 % and more than 90 % of the 
unchanged buildings could be correctly identified. The method 
is also transferable to other scenes of Darfur. 
 

 

 
 

Fig. 8  Change map of Abu Suruj: new buildings (green), low to 
moderate change (yellow), extensive change (red). 
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