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Abstract. We prove a black hole rigidity result for slowly rotating stationary solutions
of the Einstein vacuum equations. More precisely, we prove that the domain of outer
communications of a regular stationary vacuum is isometric to the domain of outer
communications of a Kerr solution, provided that the stationary Killing vector-field T

is small on the bifurcation sphere, i.e. the corresponding Black Hole has small angular
momentum. No other global assumptions are necessary. The proof combines our previous
work [1] with ideas from the classical work of Sudarsky and Wald [17] on the staticity of
stationary black hole solutions with zero angular momentum on the horizon. It is thus
the first uniqueness result, in the framework of smooth, asymptotically flat, stationary
solutions, which combines local considerations near the horizon, via Carleman estimates,
with global information.
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1. Introduction

In this paper we prove a new black hole rigidity result for slowly rotating stationary
solutions of the Einstein vacuum equations. More precisely, we show that the domain
of outer communications of any smooth stationary regular vacuum black hole with the
stationary Killing vector-field T being small on the bifurcation sphere of the horizon
must be isometric to the domain of outer communications of a Kerr solution K(a,M)
with small angular momentum a/M . This should be compared with our previous result
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in [2] in which rigidity was proved, for the entire range 0 ≤ a < M , under a global
smallness assumption on the Mars-Simon tensor associated to the stationary space-time.
That result rested on three important ingredients:

(1) An unconditional local rigidity result, established in [1] (see also [12] ) according
to which a second, rotational Killing vectorfield Z can be constructed in a small
neighborhood of the bifurcate sphere of the horizon.

(2) An extension argument for the Killing vectorfield Z based on a global foliation of
the space-time with T- conditional pseudo-convex hypersurfaces. The crucial T-
conditional pseudo-convexity condition is ensured by the assumed smallness of the
Mars-Simon tensor.

(3) Once Z is globally extended, and thus the space-time is shown to be both station-
ary and axisymmetric, one can appeal to the classical Carter-Robinson theorem
to conclude the desired rigidity.

The result we present here is still based on the first and third ingredients above but
replaces the second one with a new ingredient inspired from the classical work of Sudarsky
and Wald [17] (see also [4]) on the staticity of stationary, axially symmetric1, black hole
solutions with zero angular momentum. Their result was based on a simple integral for-
mula linking the total extrinsic curvature of a regular maximal hypersurface Σ imbedded
in the space-time and passing through the bifurcate sphere, with the angular momentum
of the horizon. It can be easily shown2 that zero ADM angular momentum implies vanish-
ing angular momentum of the horizon and thus, in view of the above mentioned formula,
the maximal hyper-surface has to be totally geodesic. This then implies the desired con-
clusion of [17], i.e the space-time is static. The main observation of our result here is
that a simple smallness assumption of T on the bifurcate sphere3 implies the smallness
of the total curvature of the maximal hypersurface. This can then be combined with a
simple application of the classical Hopf Lemma to conclude that the entire ergo-region
of the black hole can be covered by the local neighborhood of the horizon in which the
second, rotational, Killing vector-field Z has been extended, according to step (1) above.
Away from the ergo-region T is time-like and thus T-conditional pseudo-convexity is au-
tomatically satisfied. Thus, the second Killing vector-field Z can be easily extended to
the entire space-time by the results of [10], [11], [2]. Alternatively , since T is time-like
in the complement of the ergo-region, the metric must be real analytic in appropriate
coordinates, see [14]. The extension of Z can then be simply done using the classical
results of [15].

1.1. Main Theorem. The regularity assumptions on our space-time, the stationary
Killing field, and the bifurcate event horizon are precisely as in [2]. We assume that (M,g)

1The result assumes in fact analyticity of the space-time which, according to the well known result of
Hawking, implies axisymmetry.

2This step is based on the assumption of axial symmetry.
3This is equivalent with a small angular momentum assumption on the horizon. It remains open

whether this condition can be replaced with a smallness assumption of the ADM angular momentum.



STATIONARY BLACK HOLES IN VACUUM 3

is a smooth4 vacuum Einstein space-time of dimension 3 + 1 and T ∈ T (M) is a smooth
Killing vector-field on M. We also assume that we are given an embedded partial Cauchy
surface Σ0 ⊆ M and a diffeomorphism Φ0 : E1/2 → Σ0, where Er = {x ∈ R

3 : |x| > r}.
Moreover, we assume that

Σ1 := Φ0(E1) is a maximal hypersurface. (1.1)

The existence of asymptoticaly flat maximal surfaces with ∂Σ1 = S0 in stationary space-
times has been derived in [6] (see theorem 4.2.). The required smoothness and decay
at spatial infinity that we assume below can be proved by elliptic estimates; these are
however not the purpose of this paper, so we include them as assumptions below.

We group our main assumptions in two categories. The first assumption is a stan-
dard asymptotic flatness assumption which, in particular, defines the asymptotic region
M(end) and the domain of outer communications (exterior region) E = I−(M(end)) ∩
I+(M(end)). Our second assumption concerns the smoothness of the two achronal bound-
aries δ(I−(M(end))) in a small neighborhood of their intersection S0 = δ(I−(M(end))) ∩
δ(I+(M(end))). Though this second assumption is not directly used here it was very im-
portant in the local construction of a rotational Killing vector-field in [1], see Theorem
1.2 below.

GR. (Global regularity assumption) We assume that the restriction of the diffeo-
morphism Φ0 to ER0

, for R0 sufficiently large, extends to a diffeomorphism Φ0 : R ×
ER0

→ M(end), where M(end) (asymptotic region) is an open subset of M. In local co-
ordinates {x0, xi} defined by this diffeomorphism, we assume that T = ∂0 and, with

r =
√

(x1)2 + (x2)2 + (x3)2, that the components of the space-time metric verify5,

g00 = −1 +
2M

r
+ O6(r

−2), gij = δij + O6(r
−1), g0i = −ǫijk

2Sjxk

r3
+ O6(r

−3), (1.2)

for some M > 0, S1, S2, S3 ∈ R such that,

J = [(S1)2 + (S2)2 + (S3)2]1/2 ∈ [0,M2). (1.3)

Let

E = I−(M(end)) ∩ I+(M(end)),

where I−(M(end)), I+(M(end)) denote the past and respectively future sets of M(end). We
assume that E is globally hyperbolic and

Σ0 ∩ I−(M(end)) = Σ0 ∩ I+(M(end)) = Φ0(E1). (1.4)

We assume that T does not vanish at any point of E and that every orbit of T in E is
complete and intersects transversally the hypersurface Σ0 ∩ E.

4
M is a connected, oriented, time oriented, paracompact C∞ manifold without boundary.

5We denote by Ok(ra) any smooth function in M
(end) which verifies |∂if | = O(ra−i) for any 0 ≤ i ≤ k

with |∂if | =
∑

i0+i1+i2+i3=i
|∂i0

0 ∂i1
1 ∂i2

2 ∂i3
3 f |.
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SBS. (Smooth bifurcation sphere assumption) It follows from (1.4) that

δ(I−(M(end))) ∩ Σ0 = δ(I+(M(end))) ∩ Σ0 = S0,

where S0 = Φ0({x ∈ R
3 : |x| = 1}) is an imbedded 2-sphere (called the bifurcation

sphere). We assume that there is a neighborhood O of S0 in M such that the sets

H+ = O ∩ δ(I−(M(end))) and H− = O ∩ δ(I+(M(end)))

are smooth imbedded hypersurfaces. We assume that these hypersurfaces are null, non-
expanding6, and intersect transversally in S0. Finally, we assume that the vector-field T

is tangent to both hypersurfaces H+ and H−, and does not vanish identically on S0.

Theorem 1.1. Assume (M,g) is a regular black hole exterior satisfying the assumptions

GR and SBS above, with a stationary Killing field T. Assume that the hypersurface

Σ1 = Φ0(E1) is maximal, and that

‖g(T,T)‖L∞(S0) < ǫ2, (1.5)

where ǫ is a sufficiently small constant7. Then the solution (M,g) is stationary and axially

symmetric, thus, in view of the Carter-Robinson theorem [3, 16, 7], it is isometric to a

Kerr solution with small angular momentum.

The proof of the theorem consists of two main steps: the first was done in our previous
work [1] where we proved that there exists, locally in a small neighborhood of the event
horizon, a second, rotational Killing vector field Z commuting with T. More precisely our
result in [1] can be stated as follows:

Theorem 1.2. Under the assumptions above, there exists an open set Ω ⊂ M , S0 ⊆ Ω,

where (M,g) admits a second rotational Killing vector-field Z which commutes with T.

In step 2 we use ideas inspired from Sudarsky–Wald [17] to prove that that T becomes
strictly timelike within the set Ω ∩ E and stays timelike throughout the complement of
Ω in E, provided that the constant ǫ in (1.5) is sufficiently small. Therefore, see [14],
the space-time is analytic in a neighborhood of Σ1, outside the domain Ω. Therefore,
using [15], the rotational Killing vector-field Z can be extended throughout the exterior
region. Alternatively, we can avoid passing through real analyticity by observing that
the T- conditional pseudo-convexity is automatically satisfied if T is time-like. We can
therefore rely, as well, on the extension results proved in [10],[11], [2].

Finally, we can appeal to the Carter-Robinson theorem to conclude that (M,g) is
isometric to a Kerr solution, with a small angular momentum a = J/M .

Therefore, the main goal of this paper is to show the following:

6A null hypersurface is said to be non-expanding if the trace of its null second fundamental form
vanishes identically.

7See subsection 1.2 for a precise description of this smallness assumption.
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Proposition 1.3. Under the above assumptions there exists ǫ > 0 sufficiently small such

that if (1.5) is satisfied then the ergoregion {p ∈ Σ1 : g(T,T) ≥ 0} of T is contained in

the domain Ω of extension of the rotational Killing field Z guaranteed by Theorem 1.2.

1.2. The precise smallness assumption. Let ∂1, ∂2, ∂3 denote the vectors tangent to
Σ0, induced by the diffeomorphism Φ0. Let Σr = Φ0(Er), where, as before, Er = {x ∈
R

3 : |x| > r}. In particular, for our original spacelike hypersurface, we have Σ0 = Σ1/2.
As in [2, Section 2.1], using (1.2) and the assumption that Σ0 is spacelike, it follows

that there are large constants A1 and R1 ≥ R0, such that R1 ≥ A4
1, with the following

properties: on Σ3/4, for any X = (X1, X2, X3),

A−1
1 |X|2 ≤

3∑

α,β=1

XαXβgαβ ≤ A1|X|2 and
3∑

α=1

|g(∂α,T)| + |g(T0,T)| ≤ A1. (1.6)

In Φ0(R × ER1
), which we continue to denote by M(end), T = ∂0 and (see notation in

footnote 5),

6∑

m=0

rm+1

3∑

j,k=1

|∂m(gjk − δjk)| +
6∑

m=0

rm+2|∂m(g00 + 1 − 2M/r)|

+
6∑

m=0

rm+3

3∑

i=1

|∂m(g0i + 2ǫijkS
jxkr−3)| ≤ A1.

(1.7)

We construct a system of coordinates in a small neighborhood M̃ of Σ0∩E, which extends
both the coordinate system of M(end) in (1.7) and that of Σ0. We do that with the help
of a smooth vector-field T ′ which interpolates between T and T0. More precisely we
construct T ′ in a neighborhood of Σ3/4 such that T ′ = T in Φ0(R × E2R1

) and T ′ =
η(r/R1)T0 + (1− η(r/R1))T on Σ3/4, where η : R → [0, 1] is a smooth function supported
in (−∞, 2] and equal to 1 in (−∞, 1]. Using now the flow induced by T ′ we extend the
original diffeomorphism Φ0 : E1/2 → Σ0, to cover a full neighborhood of Σ1. Thus there

exists ε0 > 0 sufficiently small and a diffeomorphism Φ1 : (−ε0, ε0) × E1−ε0
→ M̃, which

agrees with Φ0 on {0} × E1−ε0
∪ (−ε0, ε0) × E2R1

and such that ∂0 = ∂x0 = T ′.
By construction, using also (1.7) and letting ε0 sufficiently small depending on R1,

3∑

j=1

|g0j| + |g00 + 1| ≤ A1/(R1 + r) in M̃. (1.8)

Note, in particular, that the Killing field T is time-like on ΣR1
.

With gαβ = g(∂α, ∂β) and T = Tα∂α, let

A2 = sup
p∈fM

6∑

m=0

[ 3∑

α,β=0

|∂mgαβ(p)| +
3∑

α=0

|∂mTα(p)|
]
. (1.9)
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Finally, we fix

A = max(R1, A2, ε
−1
0 , (M2 − J)−1). (1.10)

The constant A is our main effective constant. Notice that this constant also controls the
components of the contra-variant metric gαβ (and their derivatives), as a consequence of
(1.6) and (1.9). The constant also controls the components of the second fundamental
form k (see (2.1)) along Σ0, and their derivatives. 8

The constant ǫ in (1.5) will be assumed sufficiently small, depending only on A.
Throughout the remaining paper we use the notation A . B to denote unequalities
A ≤ CB, with a universal constant C > 0 which depends only on A. Similarly A & B
means A ≥ CB.

To summarize, we have defined a neighborhood M̃ of Σ0 ∩ E and a diffeomorphism

Φ1 : (−ε0, ε0) × E1−ε0
→ M̃, ε0 > 0, such that the bounds (1.6), (1.7), (1.8), (1.9) hold

(in coordinates induced by the diffeomorphism Φ1).

2. Proof of the main theorem

2.1. Some useful identities. In this subsection we gather various formulas relating the
Killing vector-field T, the metric g, and the maximal hypersurface Σ1. Let h := g|Σ0

denote the induced metric on the hypersurface Σ0 and let ∇ denote the induced Levi-
Civita connection. Also let T0 denote the future unit normal vector-field to Σ0. Let kij

denote the second fundamental form of the hypersurface Σ0,

k(Y, Z) := −g(DY T0, Z), (2.1)

for all vector-fields Y, Z tangent to Σ0. Notice that

∇Y Z = DY Z + k(Y, Z)T0, (2.2)

for all vector-fields Y, Z tangent to Σ0. We also recall the Gauss equation,

∇ikjm −∇jkim = −Rijmα(T0)
α. (2.3)

In our case, since Σ1 is a maximal hypersurface we have, by definition,

hijkij = 0. (2.4)

Using also the Gauss equation and the Einstein vacuum equations it follows that

∇ikij = 0. (2.5)

We now turn to the a natural decomposition of the Killing vector T relative to our
hypersurface,

T = nT0 + X, (2.6)

8We remark that the constant A depends only on m+1/m+1/(m−a) in the case when E is isometric
to the domain of outer communications of the Kerr space-time K(m,a). It does not increase when a
approaches 0, if m is fixed.
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where n = −g(T, T0) (the lapse function) is a smooth real-valued function on Σ0, and
X ∈ TΣ0 (the shift vector) is a smooth vector-field along Σ0 that satisfies g(X,T0) = 0.
Since T is Killing, it follows easily from (2.2) and the decomposition (2.6) that

∇iXj + ∇jXi = 2nkij. (2.7)

Finally, the Killing equation together with the maximality imply that kij, n satisfy the
lapse equation

∆n = |k|2n along Σ1, (2.8)

where ∆ := ∇i∇i is the Laplace–Beltrami operator induced on the surface Σ0.

2.2. Proof of Proposition 1.3. We show first how to control the lapse function n along
the surface Σ1.

Lemma 2.1. The function n satisfies

n(p) ∈ [0, 1) for any p ∈ Σ1. (2.9)

Moreover, there is a constant C1 that depends only on the constant A in (1.10) such that

n(p) ≥ C−1
1

r(p) − 1

r(p)
for any p ∈ Σ1. (2.10)

Proof of Lemma 2.1. The identity T = nT0 +
∑3

j=1 Xj∂j together with the asymptotic

flatness assumption (1.2) show that

X1, X2, X3 = O6(r
−2) and n = 1 − M/r + O6(r

−2) in ΣR1
. (2.11)

Moreover, n ≡ 0 on S0, since T is tangent to S0. Recall also that n satisfies the elliptic
equation ∆n = |k|2n along Σ1, see (2.8).

The bound (2.9) follows as a consequence of the weak maximum principle applied to
the function n in the domain Σ1 \ ΣR1

. The bound (2.10) follows from the proof of the
strong maximum principle (Hopf lemma), see, for example,[8, Chapters 3.1, 3.2]. ¤

We use now our main assumption (1.5) to show that k is small along Σ1.

Lemma 2.2. For any i, j ∈ {1, 2, 3} we have

‖kij‖L∞(Σ1) ≤ ǫ1/8. (2.12)

Proof of Lemma 2.2. We combine the identities (2.5) and (2.7) to derive the formula

n|k|2 = kijnkij = ∇iXjkij = ∇i(Xjkij), (2.13)

along Σ1. Since X = T along S0, it follows from (1.5) that

3∑

i=1

‖Xjkij‖L∞(S0) . ǫ.

Moreover, using the asymptotic flatness assumption (1.2) and the definitions it is easy to
see that

kij = O6(r
−2), in ΣR1

for any i, j ∈ {1, 2, 3}.
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Therefore, we can integrate by parts along the surface Σ1 to conclude that
∫

Σ1

n|k|2 dµ . ǫ. (2.14)

We can now prove the pointwise bound (2.12). Assume, for contradiction, that |kij(p)| ≥
ǫ1/8 for some i, j ∈ {1, 2, 3} and p ∈ Σ1. In view of the smoothness assumption, it follows
that there is a constant C = C(A) sufficiently large such that |kij(p

′)| ≥ ǫ1/8/2 for all
points p′ ∈ B(p) := {p′ ∈ Σ1 : |p − p′| ≤ C−1ǫ1/8}. In addition, using (2.10),

∫

B(p)

n dµ & ǫ4/8.

Therefore ∫

B(p)

n|k|2 dµ & ǫ6/8,

which contradicts (2.14). This proves the desired pointwise bound (2.12). ¤

Finally, we show that X stays small along the surface Σ1.

Lemma 2.3. We have

sup
p∈Σ1\ΣR1

[ 3∑

j=1

|Xj(p)| +
3∑

i,j=1

|∇iXj(p)|
]
≤ ǫ1/30. (2.15)

Proof of Lemma 2.3. We show first that

‖∇lkij‖L∞(Σ1) ≤ ǫ1/20 (2.16)

for any l, i.j ∈ {1, 2, 3}. Indeed, assume for contradiction that |∇lkij(p)| ≥ ǫ1/20 for
some point p ∈ Σ1. Then, using the smoothness assumption and the bound (2.12), it
follows that |∂lkij(p

′)| ≥ ǫ1/20/2 for all points p′ ∈ Σ1 with the property that |p′ − p| ≤
ǫ1/18. Therefore there is a point p′ ∈ Σ1 with the property that |p′ − p| ≤ ǫ1/18 and
|kij(p

′) − kij(p)| ≥ ǫ1/9. This contradicts the bound (2.12).
The vector-field X satisfies the approximate Killing equation

∇iXj + ∇jXi = 2nkij. (2.17)

Recall also that |Xj(p)| . ǫ for p ∈ S0 and j ∈ {1, 2, 3}. The same interpolation argument
as above shows that

‖h(∇V X, ∂j)‖L∞(S0) . ǫ1/3, (2.18)

for any j ∈ {1, 2, 3} and any vector-field V = V 1∂1+V 2∂2+V 3∂3 tangent to the bifurcation
sphere S0, satisfying

∑3
i=1 ‖V

i‖L∞(S0) ≤ 1. Moreover, using (2.17),

h(∇W X,W ) = 0 on S0,

since n vanishes along S0. Combining with (2.18) it follows that

‖h(∇∂i
X, ∂j)‖L∞(S0) . ǫ1/3,
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for any i, j ∈ {1, 2, 3}. Therefore

3∑

j=1

‖Xj‖L∞(S0) +
3∑

i,j=1

‖∇iXj‖L∞(S0) ≤ ǫ1/4. (2.19)

To prove the desired estimate (2.15) we need to extend the inequality (2.19) from
the bifurcation sphere S0 to the region Σ1 \ ΣR1

. We use the equation (2.17), which
is an approximate Killing equation for X along Σ1. The argument we present below
is a quantitative version of the well-known argument showing that a Killing vector-field
vanishes identically in a connected open set if it vanishes up to order 1 at one point.

More precisely, let

πij := ∇iXj + ∇jXi = 2nkij,

and recall the general formula

∇a∇bXc = XdRdabc + (1/2)(∇aπbc + ∇bπac −∇cπab).

Therefore, in view of (2.12) and (2.16),

‖∇l∇iXj − XdRdlij‖L∞(Σ1\ΣR1
) . ǫ1/20. (2.20)

Assume now that p = Φ0(r0ω) is a point in Σ1 \ ΣR1
, r0 ∈ [1, R1], ω ∈ S

2. Let
p′ = Φ0(ω) ∈ S0 and γ : [0, 1] → Σ1 \ ΣR1

, γ(t) = Φ0[(1 + (r0 − 1)t)ω] denote a curve
connecting the points p′ and p. Let V (t) = γ̇(t) denote the vector-field tangent along the
curve γ. In view of (2.20), the functions ∇iXj and Xj satisfy the system of transport
equations

∇V Xj − V i∇iXj = 0,

‖∇V ∇iXj − XdVlR
dl

ij‖L∞ . ǫ1/20.

along the curve γ. The desired bound (2.15) follows using also (2.19). ¤

We can now complete the proof of Proposition 1.3

Proof of Proposition 1.3. The formula T = nT0 + X shows that

g(T,T) = −n2 + h(X,X) along Σ1.

Using (2.10) and (2.15) it follows that

g(T,T) ≤ −ǫ in Σ1+ǫ1/100 .

On the other hand, the main theorem in [1] guarantees the existence of a rotational
Killing vector-field Z in a region Ω, which contains the set Σ1 \ Σ1+ρ for some constant
ρ = ρ(A) > 0. The conclusion of the proposition follows. ¤
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