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FOURTH ORDER EQUATIONS IN CONFORMALGEOMETRYbySun-Yung A. Chang & Paul C. Yang
Abstra
t. | In this arti
le we review some re
ent work on fourth order equationsin 
onformal geometry of three and four dimensions. We dis
uss some an existen
eresult for a Yamabe-type equation in dimension three. We examine a generalizationof the Cohn-Vossen inequality to dimension four. Finally, we review an appli
ation ofthe fourth order equation to a fully nonlinear equation in dimension four that involvesthe Ri

i tensor.R�esum�e (�Equations d'ordre quatre en G�eom�etrie Conforme). |

1. Introdu
tionIn this arti
le we dis
uss some new developments in the fourth order equations in
onformal geometry of three and four dimensions. We refer the reader to [CY2℄ fora survey of some earlier work in this area.On a Riemannian manifold (Mn; g) of dimension n, the Lapla
e Beltrami operatoris the natural geometri
 operator. Under 
onformal 
hange of metri
 gw = e2wg,when the dimension is two, �gw is related to �g by the simple formula:�gw (') = e�2!�g(') for all ' 2 C1(M2)(1)In dimension greater than two, similar transformation property 
ontinues to holdfor a modi�
ation of the Lapla
ian operator 
alled the 
onformal Lapla
ian operatorL � � 4(n�1)n�2 �+R where R is the s
alar 
urvature of the metri
. We haveLgw(') = e�n+22 !Lg �en�22 !'�(2)for all ' 2 C1(M).Resear
h of Chang supported by NSF grant DMS-9706864 and a Guggenheim Foundation Fellowship.Resear
h of Yang supported by NSF grant DMS-9706507.
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all a metri
ally de�ned operatorA 
onformally 
ovariant of bidegree(a; b), if under the 
onformal 
hange of metri
 g! = e2!g, the pair of 
orrespondingoperators A! and A are related byA!(') = e�b!A(ea!') for all ' 2 C1(Mn)(3)A parti
ularly interesting su
h operator is a fourth order operator on 4-manifoldsdis
overed by Paneitz [Pa℄ in 1983:P' � �2'+ Æ�23RI � 2Ri
� d'(4)where Æ denotes the divergen
e, d the deRham di�erential and Ri
 the Ri

i tensorof the metri
. The Paneitz operator P is 
onformal 
ovariant of bidegree (0; 4) on4-manifolds, i.e. Pgw (') = e�4wPg(') for all ' 2 C1(M4)(5)A fourth order 
urvature invariant Q = 112f��R + R2 � 3jR
j2g is asso
iated tothe Paneitz operator: Pw + 2Q = 2Qwe4wIn dimension four, the Paneitz equation has 
lose 
onne
tion with the Chern-Gauss-Bonnet formula. For a 
ompa
t oriented 4-manifold,�(M) = 14�2 ZM ( jW j28 +Q)dV(6)where �(M) denotes the Euler 
hara
teristi
 of the manifold M , and jW j2= normsquared of the Weyl tensor. Sin
e jW j2dV is a pointwise invariant under 
onformal
hange of metri
, QdV is the term whi
h measures the 
onformal 
hange in formula(6).For a 4-manifold with boundary, [CQ℄ de�nes a third order boundary operator P3whi
h is 
onformally 
ovariant of bidegree (1,3):P3 = �12 ��n�� ~� ��n � 23H ~�+ L�� ~r� ~r� + (13R�R�N�N ) ��n + 13 ~rH � ~r(7)where �n is the unit interior normal, ~� is the boundary Lapla
ian, H is the mean
urvature, L�� the se
ond fundamental form, and ~r the boundary gradient. Theboundary P3 operator de�nes the third order 
urvature invariant T through the equa-tion: �P3w + Twe3w = T on �M(8)where T = 112 ��nR+ 16RH �R�N�NL�� + 19H3 � 13TrL3 � 13 ~�H(9)For 4-manifolds with boundary, the Chern-Gauss-Bonnet formula is supplementedby �(M) = 14�2 ZM ( jW j28 +Q)dV + 14�2 Z�M (L+ T )d�(10)
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onformal invariant of the boundary.In order to �nd geometri
 interpretation for the fourth order invariant Q, we for-mulated an analogue ([CQY1℄) of the Cohn-Vossen inequality for 
omplete surfa
eswith �nite total 
urvature and derived ([CQY2℄) a 
ompa
ti�
ation 
riteria for 
on-formally 
at 4-manifold using the 
urvature invariant Q and the assumption of geo-metri
 �niteness.In general dimensions di�erent from four there is also a natural fourth order op-erator P , whi
h enjoys the 
onformal 
ovarian
e property with respe
t to 
onformal
hanges in metri
s. The relation of this operator to the Paneitz operator in dimen-sion four is 
ompletely analogous to the relation of the 
onformal Lapla
ian to theLapla
ian in dimension two. On (Mn; g) when n 6= 4, de�neP = (��)2 + Æ(anR+ bnRi
)d+ n� 42 Qwhere Q = 
njRi
j2 + dnR2 � 12(n� 1)�Rand an = (n�2)2+42(n�1)(n�2) , bn = � 4n�2 , 
n = � 2(n�2)2 ; dn = n3�4n2+16n�168(n�1)2(n�2)2 are dimen-sional 
onstants. Then (Branson [Br℄), writing gu = u 4n�4 g, n 6= 4 we have(P )u(') = u�n+4n�4P (u')(11)for all ' 2 C1(Mn). We also have the analogue for the Yamabe equation:Pu = n� 42 Qun+4n�4 on Mn; n 6= 4(12)Su
h semilinear biharmoni
 equations with 
riti
al exponents were �rst investigatedby Pu

i-Serrin in [PuS℄, they obtained the analogue of the Brezis-Nirenberg result([BN℄) in dimensions n = 5; 6; 7 for domains in Rn. There are no global existen
eresults in these dimensions to our knowledge.It is interesting to note that in dimension three, the equation takes a spe
ial formPu = �12Qu�7(13)for the 
onformal fa
tor g = u�4g0. It is natural to ask whether one 
an solvethe analogue of the Yamabe equation for this operator. In [XY℄ we were able toformulate a 
riteria for positivity of the operator P in dimension three and obtainedsome existen
e result for the equation of pres
ribing 
onstant Q. The study of thisequation is still in a primitive stage, there is mu
h that remains to be developed.In dimension four, the theory of the fourth order equation 
an be applied to thestudy of fully nonlinear equations involving the symmetri
 fun
tions of the modi�edRi

i tensor. This set of equations is studied by Via
lovsky [V℄ in his thesis. Indimension four, we 
an use the fourth order equation as a regularization of the se
ondorder equation of pres
ribing the se
ond elementary symmetri
 fun
tions �2(A) whereA is the 
onformal Ri

i tensor A = R
 � 16Rg. As a 
onsequen
e, we were able togive a simple 
riteria for existen
e, in a given four dimensional 
onformal 
lass, of a
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 with strongly positive Ri

i tensor. The 
onformal 
lasses in four dimensionthat satisfy the 
onformally invariant 
onditions R �2(A)dV > 0 and having positiveYamabe invariant, in
lude the 4-sphere, 
onne
ted sums of up to three 
opies of C P2 ,
onne
ted sums of C P2 with up to eight 
opies of C P2 with reversed orientation, and
onne
ted sums of up to two 
opies of S2 � S2.We give an outline of the rest of the paper. In se
tion two we study the fourth orderequation on 3-manifolds. We dis
uss the uniqueness question for the equation (12) inEu
lidean 3-spa
e. We formulate a 
riteria for existen
e result for pres
ribing 
onstantQ for a 
lass of 3-manifolds. In se
tion three, we 
onsider the fourth order equation on
onformally 
at 4-manifolds and report on the 
ompa
ti�
ation 
riteria of [CQY2℄.Finally in se
tion four we dis
uss the fully nonlinear equations for pres
ribing theelementary symmetri
 fun
tions of the 
onformal Ri

i tensor on a 4-manifold.It is a pleasant duty to a
knowledge the help and support of our 
oworkers and 
ol-leagues, parti
ularly Matt Gursky, Jie Qing, Peter Sarnak and Xingwang Xu. The lastnamed author would also like to thank the Department of Mathemati
s of Prin
etonUniversity for support and hospitality.2. The fourth order operator in dimension threeFor the P operator in dimension three we haveP = (��)2 + Æ(54Rg � 4R
)d� 12Q(14)where Q = �2jR
j2 + 2332R2 � 14�R(15)The Q 
urvature equation is given byPu = �12Qu�7(16)The analogue of the Yamabe problem in this setting would be to solve equation (16)with Q given by a 
onstant. This is naturally the Euler equation of the variationalfun
tional F [u℄ = (ZM u�6dV )1=3 ZM Pu � udV(17)The dire
t method would be to minimize the fun
tional over the 
lass of positivefun
tions in the Sobolev spa
e W 2;2. The negative exponent in the integral meansthat the analyti
 diÆ
ulty is asso
iated with the 
onformal fa
tor tou
hing zero. Thenegative sign of the 
oeÆ
ient for the Q 
urvature term in equation (16) makes asharp 
ontrast with the Yamabe equation. For example, among the eight standardgeometries, only in the 
ase of the sphere and hyperboli
 3-manifolds the Q 
urvatureis positive. There is some preliminary result in this dire
tion.In studying a nonlinear equation involving a 
riti
al exponent, it will be importantto have an understanding of the blowup solutions. Thus one is interested in global



FOURTH ORDER EQUATIONS IN CONFORMAL GEOMETRY 7positive solutions in Eu
lidean 3-spa
e of the equation�2u = �1516u�7(18)Assuming the solution a
tually 
ame from a positive solution of the 
orrespondingequation on S3 via the stereographi
 proje
tion, it would have the natural asymptoti
behavior: u(x)jxj tends to a positive 
onstant as jxj tends to in�nity. Adapting themethod of moving planes, Choi and Xu ([CX℄) has 
lassi�ed su
h entire solutions:after translations and dilations u is of the form u(x) = 2� 12 (1 + jxj2) 12 . In the samearti
le, they also showed that the same assertion holds if, instead of the asymptoti

ondition at in�nity, the s
alar 
urvature of the metri
 is assumed to be non-negativeat in�nity.The question of existen
e turns out to be simplest when the operator P is positiveand the manifold (M3; g0) is in the positive Yamabe 
lass. We haveTheorem 2.1. | [XY℄ If (M3; g0) has positive s
alar 
urvature and the operator Pis positive, then the fun
tional F a
hieves a positive minimum at a positive smoothfun
tion u.Remark 2.1. | 1. The positivity of the operator P does not follow from the pos-itivity of the s
alar 
urvature. In fa
t on the standard 3-sphere the operator P hasa negative eigenvalue due to the fa
t Q0 = 158 . A simple 
riteria for positivity of theoperator P on (M3; g) is that there is a 
onformal metri
 in whi
h Q < 0 and R > 0.The 
lass of 
onformal stru
tures satisfying the these 
onditions in
ludes the standardprodu
t stru
tures on S1�S2 and their 
onne
ted sums. In view of Yau's 
onje
ture[SY℄, it is quite likely that the only possible topology supporting 
onformal stru
tureswith these positivity 
onditions are those listed.2. In a re
ent arti
le, Djadli-Hebey-Ledoux [DHL℄ studied the best 
onstants in aSobolev inequality related to the Paneitz equation in dimensions n � 5.3. An extension of the Cohn-Vossen inequalityWe re
all the Cohn-Vossen ([CV℄) inequality for 
omplete surfa
es. Suppose (M; g)is a 
omplete surfa
e with Gauss 
urvature K in L1, thenZM KdA � 2��(19)In fa
t, Huber ([Hu℄) has shown that su
h a surfa
e has a 
onformal 
ompa
ti�
ationM = ~MnfP1; : : : ; Png where ~M is a 
ompa
t Riemann surfa
e. At ea
h pun
ture Piby inverting a 
onformal dis
 DinfPig, Finn ([Fn℄) has 
onsidered the isoperimetri
ratio �i = limr!1 (Length(�Dr))24�Area(Dr) ,and a

ounted for the de�
it in the inequality above:�(M)� 1� ZM KdA = nXi=1 �i(20)A 
ompletely analogous situation holds in dimension four provided we restri
t our-selves to 
onformally 
at 4-manifolds of positive s
alar 
urvature. Let us �rst re
all
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hoen-Yau ([SY℄) has demonstrated that for su
h manifolds, the holonomy
over of su
h manifolds embed 
onformally as domain ~M in S4 with a boundarywhi
h has Hausdor� dimension less than one. Thus by going to a 
overing of su
hmanifolds we may assume that we are dealing with domains in R4 .Theorem 3.1. | [CQY1℄ Let e2wjdxj2 be a 
omplete metri
 on 
 = R4nfP1; : : : ; Pngwith nonnegative s
alar 
urvature near the pun
tures. Suppose in addition that Q isintegrable. Then we have �(
)� 14�2 Z
QdV = nXi=1 �i(21)where at ea
h pun
ture Pi a 
onformal disk DinfPig is inverted and�i = limr!1 (vol(�Br))4=34(2�2)1=3vol(Br)(22)To give some idea of the proof of Theorem 3.1, we explain the situation on R4 .The proof is based on an idea of Finn, to 
ompare the 
onformal fa
tor with thebiharmoni
 potential derived from the measure QdV . The positivity of the s
alar
urvature at in�nity implies that the 
onformal fa
tor agrees with the potential upto a 
onstant. Working then with the expression of the potential as a logarithmi
integral, a deli
ate analysis shows that the isoperimetri
 ratio � 
an be 
omparedwith that of the symmetrized potential. In the latter 
ase the required identity followsfrom an analysis of the resultant ODE.The �niteness of the Q integral together with the embedding result of S
hoen-Yauhas strong impli
ation for the underlying topology:Theorem 3.2. | [CQY2℄ Let (M4; g) be a simply 
onne
ted 
omplete 
onformally
at manifold satisfying s
alar 
urvature R � 
 > 0, Ri
 � �
, and R jQjdv < 1;then M is 
onformally equivalent to R4nfP1; : : : ; Pkg. In 
ase M4 is not assumedsimply 
onne
ted, under the additional assumption that M4 is geometri
ally �nite asa Kleinian manifold, then M is 
onformally equivalent to ~MnfP1; : : : ; Pkg, where ~Mis a 
ompa
t 
onformally 
at manifold. In addition, we have�(M) = 14�2 ZM QdV + kRemark 3.1. | 1. As a 
onsequen
e of this �niteness 
riteria, we 
an 
lassify the
omplete 
onformal metri
s de�ned on domains in S4, whi
h satisfy the 
urvature
onditions in the statement of Theorem 3.2, and in addition has 
onstant Q 
urvaturewhi
h are integrable. There are only three su
h metri
s: the standard metri
 on S4,the 
at metri
 on R4 and the 
ylindri
al metri
 on R4nf0g.2. The notion of geometri
 �niteness is a natural one that allows good 
ontrol ofthe ends of the asso
iated hyperboli
 manifold. The question whi
h Kleinian groupsare geometri
ally �nite has been intensively studied in dimension two. For example,Bishop-Jones [BJ℄ has shown that in dimension two, a �nitely generated Kleiniangroup is geometri
ally �nite if and only if the limit set has Hausdor� dimensionstri
tly less than two. In a preliminary study of the situation in higher dimensions,



FOURTH ORDER EQUATIONS IN CONFORMAL GEOMETRY 9we ([CQY3℄) were able to show that if the Kleinian manifold is 
ompa
t, has positiveYamabe invariant, then the group is geometri
ally �nite.We will now indi
ate some ideas used in the proof of Theorem 3.2 in the 
asewhen M4 is simply 
onne
ted. Suppose 
 is a domain in R4 on whi
h there is a
onformal metri
 g = u2jdxj2 = e2wjdxj2 satisfying the assumptions of Theorem 3.2.One of the key ingredients in the proof of Theorem 3.2 is to establish the followingsize estimate of the 
onformal fa
tor u(x) for x 2 
 in terms of the Eu
lidean distan
ed(x) = distan
e(x; �
).Lemma 3.3. | Suppose M = (
; u2jdxj2) is a 
omplete manifold whi
h satis�esthe 
urvature assumptions as in Theorem 3.2. Then there exists some 
onstant C sothat 1C d(x)�1 � u(x) � Cd(x)�1 for all x 2 
(23)We remark that the left hand side of 23 follows from some estimate of S
hoen-Yau([SY℄, Theorem 2.12, Chapter VI). The estimate of the right hand side of (23) isderived via a blow up argument for the Paneitz equation, together with the followinguniqueness result.Lemma 3.4. | On (R4 ; u2jdxj2), the only metri
 with Q � 0 and R � 0 at in�nityis isometri
 to (R4 ; jdxj2).We now 
onsider the setsU� = fx : u(x) � �g and S� = fx : u(x) = �g;for large values of �. Apply the Chern-Gauss-Bonnet formula (10) for the domain U�,we obtain C � � dd�V (�)(24)where V (�) = ZS�(�nw)3d� + ZS� J(�nw)e2wd� + 2 ZU� J jruj2dxThe positivity of the s
alar 
urvature then implies thatV (�) � C ZU� u4dxu(25)Then the estimate (23) in Lemma 3.3 together with (24) and (25) allow us to usea 
overing argument to show that � 
onsists of a �nite number of points.
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tion of Strongly Positive Ri

i Curvature Metri
sIn the thesis of J. Via
lovsky ([V℄), a family of fully nonlinear di�erential equa-tions are introdu
ed as generalizations of the Yamabe equation that pertain to the
onformal stru
ture of a Riemannian manifold. Consider the 
onformal Ri

i tensor:A = R
� 12(n�1)Rg. The k-th elementary symmetri
 fun
tion of the eigenvalues of thematrix A is denoted by �k(A). They 
onstitute natural invariants of the Ri

i tensor.In parti
ular �1 is a multiple of the s
alar 
urvature. In even dimensions n = 2kthe integral R �kdV is in fa
t a 
onformal invariant of the manifold. In parti
ular, indimension four, �2 = �12 jEj2 + 124R2(26)is part of the Gauss-Bonnet integrand that is related to the fourth order 
urvatureinvariant Q = � 112�R+ 12�2(27)In low dimensions the sign of the quantity �2(A) implies very strong restri
tionson the 
urvature tensor. In dimension three, this is dis
ussed in the arti
le of Gurskyin this volume. In dimension four, the positivity of �2(A) implies �rst of all that thes
alar 
urvature R 
annot 
hange sign, and more importantly, the Ri

i 
urvaturehas the same sign as R. In 
ase R > 0, an elementary algebrai
 argument shows that( 12R � 3R�2)g > R
 � 3R�2g. Thus the Ri

i tensor is strongly positive in this sense.It would be interesting to �nd 
ondition on the 
onformal 
lass in whi
h we 
an �nd ametri
 with positive �2(A). A natural set of 
ondition would be that R �2(A)dV > 0and that the 
onformal stru
ture is in the positive Yamabe 
lass.Theorem 4.1. | [CGY2℄ On a 
ompa
t 4-manifold (M; g0) with positive Yamabeinvariant, if the 
onformal invariant R �2(A)dV is positive, there is a metri
 
onfor-mal to g0 for whi
h �2(A) is pointwise positive.To give a brief idea of the proof, we �rst remark that the variational approa
hto the equation �2(A) = 
onstant is diÆ
ult due to the 
onformal invarian
e of theintegral. However, it is possible to regularize the equation as the limiting equation ofa family of fourth order equations that we had studied earlier ([CY1℄):
1j�j2 +Q� 124(3Æ � 2)�R = 0(28)where � is any �xed non-vanishing se
tion of S2(T �(M)) i.e. a symmetri
 bilinearform on the tangent ve
tors, and 
1 is 
hosen by the normalization
1 = � R QdVR j�j2 dV:This equation is then equivalent to�2(A) = Æ4�R� 2
1j�j2:
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hosen so that when Æ = 1, the existen
e of solution is proved inour earlier paper ([CY1℄). The regularity of the solution is provided in the arti
le([CGY1℄). We then used a 
ontinuity argument in ([CGY2℄) to run the parameterÆ in the range 0 < Æ � 1. The a priori estimates that are available shows there is aweak limit in C1;� as Æ tends to zero.Unfortunately, that is not strong enough to 
on
lude it is a strong solution of theequation (�)0. By using the Yamabe 
ow applied to the solutions gÆ we were able toprove the limiting metri
 for a �xed small time t is smooth and satis�ed the positivity
ondition �2(A) > 0.Remark 4.1. | 1. There are topologi
al 
onstraints on a 4-manifold implied by the
onditions of Theorem 4.1. The Gauss Bonnet formula� = 18�2 Z jW+j2 + jW�j2 + �2;and the index formula � = 112�2 Z jW+j2 � jW�j2
ombine to give the 
onstraint 2�+3� > 0 as well as 2��3� > 0. Sin
e the positivityof Ri

i 
urvature implies the �niteness of fundamental group, the universal 
over ofthe manifolds in question still satisfy the same 
onditions. A

ording to the resultsof Freedman and Donaldson, the 
lass of simply 
onne
ted 4-manifolds 
arrying a
onformal stru
ture satisfying the 
onditions of Theorem 4.1 must be of the formk(C P2)#l(�C P2) where l < k and 4 + 5l > k or of the form k(S2 � S2). Here �C P2is the 
omplex proje
tive plane taken with the opposite orientation. Among theseit is easy to 
he
k that the 4-sphere, 
onne
ted sums of up to three 
opies of C P2 ,
onne
ted sums of C P2 with up to eight 
opies of �C P2 , and 
onne
ted sums of upto 2 
opies of S2 � S2 do 
arry su
h 
onformal stru
tures.2. In the study of fully nonlinear se
ond order ellipti
 equations, many authors lookfor solutions of the equations pres
ribing the elementary symmetri
 fun
tions of thehessian. It is usual to assume some boundary 
onditions that assure the existen
e offun
tions whose Hessian lie in the positive 
one de�ned to be the 
onne
ted 
omponentof square matri
es that satisfy the 
onstraint �k(A) > 0 and 
ontain the identitymatrix. Our result may be viewed as supplying a 
riteria for the existen
e of fun
tionsfor the �2(A) equation.3. The regularization pro
edure used in dimension four 
an be used formally toregularize the �2(A) equation in other dimensions as well. Namely by adding, tothe fun
tional whi
h 
omputes the Sobolev quotient in dimensions three and beyondfour, a term whi
h 
al
ulates the integral R R2dV of the 
onformal metri
 with anappropriately 
hosen 
oeÆ
ient, it is possible to simultaneously 
an
el the fourthorder term �R as well as to rearrange the remaining quadrati
 term in the Ri

itensor to be a multiple of �2(A). This possibility makes the study of fourth orderequations (12) all the more interesting. SuÆ
e it to say, there is mu
h that remainsto be developed.
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