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ABSTRACT: 

 

Crop productivity is influenced by a number of management and environmental conditions, and variations in crop growth can occur 

in-season due to, for example, unfavourable meteorological conditions. Consequently information on crop growth must be 

temporally frequent in order to adequately characterize crop productivity. Leaf Area Index (LAI) is a key indicator of crop 

productivity and a number of methods have been developed to derive LAI from optical satellite data. Integration of LAI estimates 

from synthetic aperture radar (SAR) sensors would assist in efforts to monitor crop production through the growing season, 

particularly during periods of persistent cloud cover. Consequently, Agriculture and Agri-Food Canada has assessed the capability of 

RADARSAT-2 data to estimate LAI. The results of a sensitivity analysis revealed that several SAR polarimetric variables were 

strongly correlated with LAI derived from optical sensors for small grain crops. As the growing season progressed, contributions 

from volume scattering from the crop canopies increased. This led to the sensitivity of the intensity of linear cross-polarization 

backscatter, entropy and the Freeman-Durden volume scattering component, to LAI. For wheat and oats, correlations above 0.8 were 

reported. Following this sensitivity analysis, the Water Cloud Model (WCM) was parameterized using LAI, soil moisture and SAR 

data. A look up table inversion approach to estimate LAI from SAR parameters, using the WCM, was subsequently developed. This 

inversion approach can be used to derive LAI from sensors like RADARSAT-2 to support the monitoring of crop condition 

throughout the cropping season.  

  

 

 

1. INTRODUCTION 

Monitoring crop productivity is critical in determining risks to 

regional and global food security. Gathering the necessary data 

to monitor productivity is challenging given the acreages 

involved and the variable nature of crop growth. Crop 

management applications during active crop growth, as well as 

ever changing meteorological conditions, mean that crop 

condition must be monitored continuously through the growing 

season.  

 

Crop descriptors such as leaf area index (LAI) are good 

indicators of crop condition and productivity. LAI is the total 

one-sided green leaf area per unit ground surface area and is a 

strong indicator of crop production. LAI can be linked with 

crop yield through process models. Derivation of these crop 

descriptors from remote sensing data can be used to drive these 

crop yield models, to validate model estimates and to update or 

adjust model predictions.  Although LAI can be derived from 

optical sensors (Liu et al., 2010) the reliability of access to data 

to monitor continuously through the season is questionable due 

to cloud cover.  Synthetic aperture radars (SARs) are thus an 

appropriate data source to build reliability into monitoring 

activities. However, the methods to estimate LAI from radar 

response are not as developed as those that use optical data and 

thus significant research is required.  

 

To address this knowledge gap, Agriculture and Agri-Food 

Canada (AAFC) has been investigating the sensitivity of 

polarimetric SAR data to LAI. This research has included the 

acquisition of numerous RADARSAT-2 and optical satellite 

data sets over different cropping regions. In eastern Canada, 

where corn and soybean production dominates, results have 

proven the sensitivity of SAR response to LAI for these two 

broadleaf crops (Jiao et al., 2011). In 2009, the European Space 

Agency led the AgriSAR campaign under which fully 

polarimetric RADARSAT-2 data were acquired over three 

international agriculture research sites. One site was located in 

western Canada in a region of extensive production of small 

grains (wheat, oats and barley). The sensitivity of RADARSAT-

2 to LAI for this class of crops, using the data acquired during 

AgriSAR, is presented here. The Water Cloud Model (WCM) is 

then used to model LAI from the radar scattering and a method 

is proposed to invert the WCM for LAI estimation. 

 

2. METHODOLOGY 

2.1 Study Sites and Data Collection 

In 2009, an extensive collection of both optical (RapidEye and 

Landsat TM) and polarimetric SAR (RADARSAT-2) data were 

acquired over a site in western Canada. The selected site was 

AAFC’s precision farm located at Indian Head in southern 

Saskatchewan.  

 

These data were collected under a European Space Agency 

initiative called AgriSAR. One objective of this campaign was 

to develop a methodology to estimate crop condition from SAR 

data. In total, 57 quad-polarimetric ascending and descending 

RADARSAT-2 images were acquired as part of this AgriSAR 

initiative. Ground measurements of crop condition, including 

LAI, were acquired over several small grain (barley, oats, 
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wheat) fields. Total LAI was measured at 52 sample sites using 

an LAI-2000 (Li-Cor, Inc., Lincoln, NE) plant canopy analyser 

under diffuse light conditions. A subset of the satellite data 

were used in the analysis presented here (Table 1). 

RADARSAT-2 acquisitions which occurred within one week of 

optical and ground data collection were selected for further 

study. One in situ soil moisture station was present in the study 

site, measuring volumetric soil moisture at a depth of 20 cm. 

 

 

Optical 

Data 

Optical 

Sensor 

Field 

LAI 

RSAT-2 

Data 

Beam 

Mode 

2 Jun RapidEye 1 Jun 3 Jun FQ19 

25 Jun TM 24 Jun 24 Jun FQ14 

17 Jul RapidEye 15 Jul   

19 Jul TM  21 Jul FQ19 

25 Jul RapidEye 24 Jul 25 Jul FQ2 

10 Aug RapidEye  14 Aug FQ19 

25 Aug RapidEye 25 Aug   

 

Table 1.  Data acquired during AgriSAR 2009  

 

2.2 SAR Data Processing 

The RADARSAT-2 data were processed using PCI Geomatica 

and the SAR Polarimetry Workstation. Prior to extracting the 

polarimetric information, a boxcar filter with a 5 by 5 kernel 

size was applied to the scattering matrix data to suppress SAR 

speckle. After filtering the covariance matrix was converted to a 

symmetrized covariance matrix from which intensity backscatter 

(HH/HV/VV) and intensity ratios (HH/VV, HH/HV, HV/VV) 

were extracted. Polarimetric variables including total power, 

pedestal height and complex correlation coefficient (HH-VV) 

were also extracted from the covariance matrix. Both Cloude–

Pottier and Freeman–Durden decompositions were performed 

on the complex RADARSAT-2 data. Three parameters are 

derived from the Cloude-Pottier decomposition, namely entropy 

(H), anisotropy (A), and alpha angle (α). Freeman–Durden 

decomposition partitions the total power for each image pixel 

into contributions from three scattering mechanisms: single-

bounce, double-bounce, and volume scattering.  

 

Information on the range and azimuth spacing, nadir angle, and 

satellite altitude for SLC format SAR data were obtained from 

the SAR production file. Using this information, all the SAR 

parameters derived above were converted from slant to ground 

range, followed by an ortho-rectification and geo-referencing 

procedure using a set of ground control points and national road 

network vector data.   

 

2.3 Optical Data Processing 

Atmospheric correction and surface reflectance retrieval of the 

optical data were accomplished using ATCOR2 implemented in 

PCI Geomatica. Images were ortho-rectified using platform 

ephemeris information and models of the internal sensor 

distortion, ground control points (GCPs) and Digital Elevation 

Models.  

 

LAI was estimated from the Landsat and RapidEye data using 

the Modified Triangular Vegetation Index (MTVI2) and a 

nonlinear curve fitting procedure, as described in Jiao et al. 

(2011). Strong correlations were found between MTVI2 

calculated for near coincident Landsat and RapidEye 

acquisitions (R2 of 0.96), as well as between satellite derived 

LAI and ground measured LAI (R2 of 0.78). 

 

An object-based approach was used to compare homogeneous 

zones of LAI derived from optical data, to SAR response within 

these homogeneous objects (Jiao et al., 2011). This spatial 

averaging assists in the reduction of noise inherent in the SAR 

data. Optical LAI maps were segmented using Definiens 

software.  

 

2.4 The Water Cloud Model 

According to Attema and Ulaby (1978), the power 

backscattered by the whole canopy ( 0 ) can be represented as 

the incoherent sum of contributions of the vegetation, ( 0

veg ), 

and the underlying soil, ( 0

soi ). The modification of the model 

by Prevot (1993) was selected here as it incorporates LAI as a 

descriptor of vegetation development. In this model, SAR 

backscatter from a canopy at a given incidence angle (Ө) can be 

written as: 

 

For the whole canopy: 

(1) 

where the vegetation contribution is: 

 

(2) 

 

and the soil contribution can be related to the volumetric soil 

moisture content Ms,  expressed in (%), as: 

 
 (3) 

 

with 

  

(4) 

 

where τ2  is the two-way attenuation through the canopy layer, 

L is the LAI, expressed in (m2m-2) , the backscatter coefficients 
0 , 0

soi  and 0

veg  are expressed in power units. A,B,C,D and E 

are model coefficients to be defined by experimental data. A, B 

and E are parameters which depend on canopy type. E is a 

positive value. Parameters C and D are dependent on soil 

moisture. 

 

Grouping these terms, the model can be expressed as follows: 

  (5) 

 

With only one soil moisture station, too few data were available 

to parameterize the soil moisture coefficients in the WCM. 

Consequently the parameterization of C and D, as determined 

by Jiao et al. (2011), were used here. Jiao et al. (2011) found 

that for broadleaf crops, when LAI exceeds 1.0 the SAR 

response is dominated by the vegetation contributions, with 
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only minimally contributions from soil moisture. For example, 

at a derived LAI of 3.0, 90% of the total canopy backscatter 

originates from vegetation contributions at C-band. For the 

AgriSAR data, the remaining parameters in the model (A, B, 

and E) were simultaneously determined using a nonlinear least 

squares method in the Matlab Curve Fitting Toolbox 

environment, based on the Levenberg-marquardt algorithm.  

A look up table (LUT) was produced based on the fitted WCM. 

LAI values for the look up table ranged from 0 to 8.0, in 

increments of 0.01. Soil moisture ranged from 0 to 50% in 0.5% 

intervals. The LUT was subsequently used to invert the SAR 

response. The K-nearest neighbour (KNN) search technique 

was used to find the K closed points in the LUT to a set of 

query points (in this case the SAR response). A KD tree was 

build to facilitate more efficient searching of the LUT. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Sensitivity Analysis  

Correlations between RADARSAT-2 responses and optically 

derived LAI are presented in Table 2 and Figure 1. As observed 

for broadleaf crops, SAR parameters which characterize volume 

scattering from the canopy are most sensitive to grain LAI. 

These parameters include the linear cross-polarization intensity 

(HV), entropy and the volume scattering component derived 

from the Freeman-Durden decomposition. Entropy is calculated 

by the Cloude-Pottier decomposition and is a measure of the 

randomness of scattering occurring within a target. As crops 

emerge and biomass accumulates, the degree of randomness in 

scattering would be expected to increase. 

 

 

SAR parameter Wheat Oats Barley 

HH 0.58 0.41 0.26 

HV 0.91 0.89 0.52 

VV 0.26 -0.28 -0.46 

HV/HH ratio -0.78 -0.73 -0.75 

HV/VV ratio 0.84 0.71 0.80 

HH/VV ratio 0.69 0.75 0.80 

entropy 0.94 0.90 0.81 

pedestal height 0.87 0.70 0.63 

total power 0.62 0.28 0.08 

volume scattering 0.86 0.89 0.39 

 

Table 2.  Correlation coefficients (R) between RADARSAT-2 

response and optically derived LAI  

 

 

The correlation between LAI for barley and SAR response was 

noticeably weaker than that reported for wheat and oats. 

Significant variation in optical reflectance from these barley 

fields was observed and may be indicative of greater variability 

in the growth of this crop.  
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Barley
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Figure 1.  Relationship between entropy and optically derived 

LAI  

 

 

There are advantages and disadvantages in selecting either 

linear intensities or polarimetric variables for LAI estimation. 

The modelling of LAI from the intensity of backscatter, 

especially the intensity associated with the cross-polarization, 

will require a well calibrated sensor. However, many satellite 

sensors have imaging modes which provide HV backscatter data 

over wide swaths, necessary for large area monitoring. 

Provision of parameters from polarimetric decompositions 

(such as entropy and volume scattering) is restricted to imaging 

modes of limited swath. RADARSAT-2, for example, provides 

a wide fine quad-polarimetric mode which acquires data over a 

swath of only 50 km.  

 

3.2 Water Cloud Model  

The entropy parameter produced the strongest sensitivity to 

optically derived LAI. Consequently this parameter was 

selected for modelling the radar response, and for model 

inversion. Barley, oats, and wheat were pooled together for the 

purpose of fitting the WCM, and for model inversion. The 

degree of model fit is indicated by the coefficient of 

determination (R2). The fit of LAI and soil moisture to entropy, 

produced a coefficient of determination of 0.7. The fitted model 

is displayed in Figure 2. 
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Figure 2.  Model fit of LAI and soil moisture to entropy  

 
 

3.3 Model Inversion 

The results of the LUT inversion are provided in Figure 3. Here 

LAI estimates from RADARSAT-2 entropy are compared to 

LAI derived from the optical data. Some scatter is present but a 

strong relationship between estimated and derived LAI is 

present. An underestimation is observed for lower LAI values 

while the reverse is true at high leaf area. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.  Comparison of LAI inverted from RADARSAT-2 

entropy and LAI derived from optical imagery 

 

 

An LAI map derived from entropy using the Water Cloude 

Model with the LUT inversion approach is displayed in Figure 

4. 

 

 
 

 

Figure 4.  Map of LAI from RADARSAT-2  

 

 

4. CONCLUSIONS 

Leaf area index (LAI) is an important parameter for use in 

monitoring of crop condition and productivity. Although this 

crop parameter can be derived from optical sensors, reliability 

in crop monitoring is challenging with these sensors due to 

cloud cover interference. Thus monitoring activities will require 

the integration of data from radar sensors. 

 

During the 2009 AgriSAR campaign, RADARSAT-2 

polarimetric data were acquired over a site in Canada with 

extensive small grain production. Results from a sensitivity 

analysis were consistent with previously published results on 

corn and soybean LAI. Parameters indicative of characteristics 

of volume scattering were strongly correlated with LAI for 

wheat and oats. These included HV intensity backscatter and 

decomposition parameters derived from the Cloude-Pottier 

(entropy) and Freeman-Durden (volume scattering) 

decompositions. Variability in growth conditions for barley led 

to weaker, although still statistically significant, correlations. 

 

RADARSAT-2 entropy provided the greatest sensitivity to LAI. 

A modified Water Cloud Model (WCM) was subsequently used 

to model entropy, LAI and soil moisture. A look up table 

approach was taken to invert the WCM using the entropy 

response, producing a pixel level map of LAI for the entire 

RADARSAT-2 image. 

 

These results are consistent with those found with corn and 

soybean crops (Jiao et al., 2011) and demonstrate the 

contribution that SAR can provide for monitoring crop 

condition. Agriculture and Agri-Food Canada has gathered 

additional data sets and these will be added to the analysis 

presented here to ensure robustness of this approach to crop 

monitoring. 
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