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I. Introduction

Convection refers to fluid motion that is induced by buoyancy. In ther-
mal convection buoyancy is due to temperature differences and one of the
interesting questions is how much of the total heat transfer is due to convec-
tion. The natural measure of this quantity is the Nusselt number, N , and
many experiments and numerical simulations have been performed to discern
the relationship between N and the various parameters which describe the
system. Much of this research has focused on the forcing parameter [1] - [6],
although it has been observed that rotation plays a nontrivial role as well [7].

The standard mathematical description of a convective system in a ro-
tating frame of reference is based on the rotating Boussinesq equations for
Rayleigh-Bénard convection (see, for example, Chandrasekhar [8]). This is a
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system of equations coupling the three dimensional Navier-Stokes equations
to a heat advection-diffusion equation. The parameters in this system are
the Rayleigh number R which captures the forcing, and the Ekman number
E which is inversly proportional to the rate of rotation. The only known
rigorous upper bound for N at large values of the Rayleigh number is of the
order R

1
2 . This bound was first derived by Howard using variational methods

[9]. More recently, a background method [10] has been used to obtain this
bound as well [11]. This bound is also valid in the presence of rotation [12].
Experimental and numerical findings, however, indicate a bound of the form

N ∼ Rq

where the reported values for q belong approximately to the interval [2
7
, 1

3
] for

large R. The exponents 2/7 and 1/3 have been discussed by several authors
[13] -[21].

A third parameter in the system is the Prandtl number, a parameter
determined by the physical characteristics of the fluid. The Prandtl num-
ber is the ratio of the kinematic viscocity to the heat conduction coeffi-
cient. A simplified set of equations can be derived by taking the limit as the
Prandtl number goes to infinity. These equations are easier to analyze than
the Boussinesq equations; in particular one can prove global existence and
uniqueness of smooth solutions ([12]). The known rigorous bounds for the
rotating infinite Prandtl number system are the uniform bound

N ≤ 1 + C1R
2
5

and the rotation dependent bound

N ≤ 1 + C2ER
2

(with constants independent of E and R). The latter bound is most useful
for strong rotation. These upper bounds were both obtained using the back-
ground field method [12, 22, 23, 24]. In the absence of rotation (E = ∞) a
bound of the form

N ≤ 1 + cR
1
3 (1 + log+ R)

2
3

has been obtained [25]. The 1
3

exponent is physical and close to the experi-
mentally observed exponents. The goal of this paper is to provide a similar
bound in the rotating case, allowing for finite values of E. As we shall see the
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correction due to rotation vanishes as E →∞, and we recover the above loga-
rithmic bound even for rather strong rotation (E ≥ R−

1
6 (logR)−

5
6 ). However

as rotation is increased even further the logarithmic bound deteriorates, al-
lowing for the observed increase of Nusselt number at intermediate rotation
rates [7]. The R

2
5 bound may take over for a range of E. As E → 0 the ER2

bound takes over and accounts for the decrease of the Nusselt number due
to very strong stratification.

The paper is organized as follows. In the next section we recall the
equations, basic facts about the Nusselt number and some uniform estimates
that hold for all Ekman numbers. In the third section we describe the method
for bounding the heat flux and the results. The fourth section is devoted to
proofs of the estimates of the non-rotation terms and the fifth section to the
proofs of the estimates due to rotation.

II. Infinite Prandtl Number Equations

We begin with the equations of motion for infinite Prandtl number Rayleigh-
Bénard convection in a rotating reference frame, where the Boussinesq ap-
proximation is used for the buoyancy force. These form a system of five
equations for velocities (u, v, w), pressure p and temperature T in three spa-
tial dimensions. The components of the velocity vector u = (u, v, w) satisfy
the equations

−∆u− E−1v + px = 0 (1)

−∆v + E−1u+ py = 0 (2)

−∆w + pz = RT (3)

and the divergence-free condition

ux + vy + wz = 0. (4)

The temperature, T , is advected according to the active scalar equation

(∂t + u · ∇)T = ∆T. (5)

The two nondimensional parameters are the Rayleigh number, R, which de-
scribes the forcing due to the heat difference, and the Ekman number E
which is inversely proportional to the rate of rotation.
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We will consider a rectangular domain, with the vertical height scaled
to 1 and the horizontal lengths scaled to the aspect ratio L. The horizontal
independent variables (x, y) belong to a square Q ⊂ R2 of side length L. The
vertical variable z belongs to the interval [0, 1]. The non-negative variable t
represents time. For boundary conditions we will consider all the functions
u, v, w, p, T periodic in x and y with period L. The velocity components
u, v, and w vanish for z = 0 and 1 while the temperature T obeys T = 0 at
z = 1 and T = 1 at z = 0. By taking a function τ(z) that satisfies τ(0) = 1
and τ(1) = 0, we will express the temperature as

T (x, y, z, t) = τ(z) + θ(x, y, z, t). (6)

The role of τ is that of a convenient background which carries the inhomo-
geneous boundary conditions; thus θ obeys the same homogeneous boundary
conditions as the velocity. The equation obeyed by θ is

(∂t + u · ∇ −∆) θ = τ ′′ − wτ ′ (7)

where we have used τ ′ = dτ
dz

. We will use a normalized L2 norm

‖f‖2 =
1

L2

∫ 1

0

∫ L

0

∫ L

0

|f(x, y, z)|2 dxdydz.

We denote by ∆−1
D the inverse of the Laplacian with periodic-Dirichlet bound-

ary conditions and the Laplacian in the horizontal directions x and y is de-
noted by ∆h. We will use < · > for the long time average,

〈f〉 = lim sup
t→∞

1

t

∫ t

0

f(s)ds.

The total heat transport is quantified by the Nusselt number which is defined
in terms of a long time average of the vertical heat flux:

N = 1 +

〈∫ 1

0

b(z) dz

〉
(8)

where

b(z) =
1

L2

∫ L

0

∫ L

0

w(x, y, z)T (x, y, z) dx dy. (9)
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we note that by using (6) the quantity b(z) can be written

b(z) =
1

L2

∫ L

0

∫ L

0

w(x, y, z)θ(x, y, z) dx dy. (10)

One can verify that the Nusselt number is also expressed as

N =
〈
‖∇T‖2

〉
. (11)

From the velocity equations it follows that

‖∇u‖2 =
R

L2

∫ L

0

∫ L

0

∫ 1

0

w(x, y, z, t)T (x, y, z, t) dxdydz (12)

holds at each instant of time and thus〈
‖∇u‖2

〉
= R(N − 1). (13)

The temperature equation obeys a maximum principle so that

0 ≤ T ≤ 1

holds pointwise in space and time and consequently from (12) it follows that

‖∇u‖2 ≤ R2 (14)

at each instance of time. One can easily derive from the rotating infinite
Prandtl number system (see, for example [23]) two coupled equations for the
vertical velocity w and the vertical component of vorticity ζ = vx − uy:

∆2w − E−1ζz = −R∆hT (15)

−∆ζ − E−1wz = 0. (16)

Multiplying the first equation by w, the second one by ζ, adding and inte-
grating we deduce that

‖∆w‖2 + 2‖∇ζ‖2 ≤ R2 (17)

holds pointwise in time. We used the fact, due to incompressibility, that w
together with wz and ζ vanish at the vertical boundaries.
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III. Bounding the Heat Flux

From the definition of the Nusselt number (11), given in terms of the tem-
perature, we can derive an equivalent expression in terms of the background
profile and fluctuations using (6) to replace T with its decomposition into τ
and θ in the quantity |∇T |2. This gives us the expression

N =
〈
‖∇θ|2

〉
+

∫ 1

0

(τ ′)2 dz + 2

〈∫ L

0

∫ L

0

∫ 1

0

θzτ
′ dzdydx

〉
.

The last term may be replaced by multiplying the evolution equation for θ
(7) by θ and integrating. Upon taking a long time average, we have〈∫ L

0

∫ L

0

∫ 1

0

τ ′θz dzdydx

〉
=
〈
‖∇θ‖2

〉
−
〈∫ L

0

∫ L

0

∫ 1

0

wτ ′ dzdydx

〉
where we have made use of the boundary conditions and the incompressibility
condition. Combining these, we have the following form for the Nusselt
number:

N +
〈
‖∇θ‖2

〉
= 2

〈
−
∫ 1

0

τ ′(z)b(z)dz

〉
+

∫ 1

0

(τ ′(z))
2
dz. (18)

Let us now write

b(z, t) =
1

L2

∫ L

0

∫ L

0

∫ z

0

∫ z1

0

wzz(x, y, z2, t)θ(x, z) dx dy dz dz2 dz1.

It follows that

|b(z, t)| ≤ 1

2
z2 (1 + ‖τ‖L∞) ‖wzz‖L∞(dz;L1(dx)). (19)

Restricting ourselves to bounded profiles, ‖τ‖L∞ ≤ 1, and relaxing the sup-
norm we have simply

|b(z, t)| ≤ z2‖wzz(·, t)‖L∞ . (20)

Consequently we obtain the inequality

N ≤
∫ 1

0

(τ ′(z))
2
dz + 2

∫ 1

0

z2|τ ′(z)| 〈‖wzz(·, t)‖L∞〉 dz (21)
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Up to this point, the background profile τ has not been specified. We will
choose for simplicity a smooth approximation of a profile concentrated in a
boundary layer of width δ, for example τ(z) = 1 − z/δ for 0 ≤ z ≤ δ and 0
for z > δ. We will assume thus that the function τ(z) obeys

|τ ′(z)| ≤ C
1

δ

|τ ′′(z)| ≤ C
1

δ2

|τ(z)| ≤ 1 and τ ′(z) = 0 for z > δ. We will adjust δ to optimize the bounds
but we will require at least

δ ≥ C

Rp
.

We will not attempt to optimize prefactors in this paper; we will simply
denote Rayleigh and Ekman number independent constants by C. The power
p is not specified (this assumption will only be used inside a logarithmic
bound). Before optimizing in δ we deduce from (21) the inequality

N ≤ C

δ
+ Cδ2 〈‖wzz(·, t)‖L∞〉 (22)

We will use now the two equations (15) and (16) to derive a single expres-
sion for wzz, the quantity relevant to calculations of the heat flux. Noting
that ζ vanishes on the vertical boundaries, solving for ζ in the second equa-
tion and substituting into the first equation, we obtain

∆2w + E−2(∂z∆
−1
D ∂z)w = −R∆hT. (23)

Moving the rotation term to the right hand side and applying the inverse
bilaplacian, we deduce

w = −R(∆2
DN)−1∆hT − E−2(∆2

DN)−1(∂z∆
−1
D ∂z)w. (24)

Here (∆2
DN)−1 is the inverse bilaplacian with homogeneous Dirichlet and Neu-

mann boundary conditions. Notice that ∆hT = ∆hθ since the background
temperature profile τ depends on z only. Taking two z derivatives then gives

wzz = −RB1θ − E−2B2w (25)
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where

B1 = ∂zz(∆
2
DN)−1∆h (26)

and

B2 = ∂zz(∆
2
DN)−1(∂z∆

−1
D ∂z). (27)

We will estimate the quantity of interest to us ‖wzz‖L∞ using the decompo-
sition above. Obviously

〈‖wzz(·, t)‖L∞〉 ≤ R 〈‖B1θ(·, t)‖L∞〉+ E−2 〈‖B2w(·, t)‖L∞〉 (28)

holds.
In the following sections, we prove the two key estimates

〈‖B1θ(·, t)‖L∞〉 ≤ C
{

1 + C log+ R
}2

(29)

and

〈‖B2w(·, t)‖L∞〉 ≤ C
√
R(N − 1) (30)

Using these two inequalities, and the combination of (28) and (22), we can
optimize with respect to δ we obtain our main result:

Theorem 1. There exists a constant C such that the Nusselt number for the
infinite Prandtl number equation with rotation is bounded by

N ≤ 1 + CR
1
3

{
1 + log+ R

} 2
3

when
E ≥ R−

1
6{1 + log+ R}−

5
6 .

When E ≤ R−
1
6{1 + log+ R}−

5
6 then the Nusselt number obeys

N ≤ CE−
4
5R

1
5

Indeed, using the bounds (29) and (30) together with (28) in (22) and
optimizing with respect to δ we obtain

N ≤ 1 + C
{
R(1 + log+ R)2

}1/3
+ CE−

2
3R

1
6 (N − 1)

1
6 (31)
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which implies the statement of the theorem. From inequality (31) and the
previously obtained bounds

N ≤ 1 + CR
2
5

N ≤ 1 + CER2

the following picture emerges. For rotations ranging from very weak to

rather strong,
(
E ≥ R−

1
6{1 + log+ R}−

5
6

)
, the bound R

1
3

{
1 + log+ R

} 2
3 ap-

plies. For stronger rotation, R−
1
4 ≤ E ≤ R−

1
6{1 + log+ R}−

5
6 , the bound

N ≤ 1 + CE−
4
5R

1
5 is optimal. For stronger rotation yet, R−2 ≤ E ≤ R−

1
4 ,

the bound N ≤ 1 + CR
2
5 operates, and finally at exceedingly large rotation

E ≤ R−2 the Nusselt number becomes bounded and then identically one. If
instead of varying rotation at fixed Rayleigh numbers one varies the Rayleigh
numbers and fixes the Ekman number, then the logarithmic one third power
law bound emerges for any fixed rotation, no matter how strong, provided
the Rayleigh number is high enough.

IV. Singular integrals and the B1 term

In this section, we outline the estimates and results for the nonrotating
case. Consider the operator

B1 =
∂2

∂z2
(∆2

DN)−1∆h

where w = (∆2
DN)−1f is the solution of

∆2w = f

with horizontally periodic and vertically Dirichlet and Neumann boundary
conditions w = w′ = 0. Logarithmic L∞ estimates for B1 were obtained in
[25]. They are recalled in the following

Theorem 2. For any α ∈ (0, 1) there exists a positive constant Cα such that
every Hölder continuous function θ that is horizontally periodic and vanishes
at the vertical boundaries satisfies

‖B1θ‖L∞ ≤ Cα‖θ‖L∞ {1 + log(1 + ‖θ‖C0,α)}2 . (32)
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The spatial C0,α norm is defined as

‖θ‖C0,α = sup
X=(x,y,z)∈Q×[0,1]

|θ(X, t)|+ sup
X 6=Y

|θ(X, t)− θ(Y, t)|
|X − Y |α

.

The proof decomposes B1θ into the sum

B1θ = (I −B3 +B4 +B5)B3θ

where
B3(θ) = (∆D)−1 ∆hθ.

B3 is an integral operator with kernel K given by

B3(θ)(x, y, z) =

L−2

∫ L

0

∫ L

0

∫ 1

0

K(x− ξ, y − η, z, ζ) (θ(ξ, η, ζ)− θ(x, y, z)) dξ dη dζ. (33)

B4 and B5 are singular layer integral operators with kernels that are singular
at the boundary. The operator B4 can be written as

B4(θ)(x, y, z) =

L−2

∫ L

0

∫ L

0

∫ 1

0

J(x− ξ, y − η, z, ζ) (θ(ξ, η, ζ)− θ(ξ, η, 1)) dξ dη dζ (34)

and

B5(θ)(x, y, z) =

L−2

∫ L

0

∫ L

0

∫ 1

0

S(x− ξ, y − η, z, ζ) (θ(ξ, η, ζ)− θ(ξ, η, 0)) dξ dη dζ (35)

for any continuous function θ that obeys the homogeneous boundary condi-
tions (so that θ(ξ, η, 0) = θ(ξ, η, 1) = 0). It was shown in [25] that there exist
constants such that

|K(x− ξ, y − η, z, ζ)| ≤ C
(
|x− ξ|2 + |y − η|2 + |z − ζ|2

)− 3
2 (36)

|J(x− ξ, y − η, z, ζ)| ≤ C
(
|x− ξ|2 + |y − η|2 + |1− ζ|2

)− 3
2 , (37)
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|S(x− ξ, y − η, z, ζ)| ≤ C
(
|x− ξ|2 + |y − η|2 + |ζ|2

)− 3
2 . (38)

Once these inequalities are established it is not difficult to derive for all Bj,
j = 3, 4, 5 the estimates

‖Bjθ‖L∞ ≤ Cα‖θ‖L∞ [1 + log(1 + ‖θ‖C0,α)] (39)

for which the bound in (32) follows by composition. We will make now
contact with the dynamical evolution of θ given by (7) by establishing two
inequalities. The first,

‖∇θ‖2
L4 ≤ C‖θ‖L∞‖∆θ‖L2 ,

is obtained by integration by parts and hold for all functions that are smooth
enough and obey the homogeneous boundary conditions. The second inequal-
ity,

1

L2

∫ L

0

∫ L

0

|w(x, y, z, t)|2 ≤ z‖∇u(·, t)‖2,

follows from the boundary conditions, the fundamental theorem of calculus
and the Schwartz inequality. Multiplying (7) by −∆θ and integrating one
obtains, after using these last two inequalities,

1

2

d

dt
‖∇θ‖2 + ‖∆θ‖2 ≤ C‖∇u‖2

{
1 +

∫ 1

0

[
(τ ′′(z))

2
+ z(τ ′(z))2

]
dz

}
. (40)

Now using the bound on ‖∇u‖, (14), and taking a long time average we see
that there exists a positive constant C such that〈

‖∆θ‖2
〉
≤ CR2

{
1 +

∫ 1

0

[
(τ ′′(z))

2
+ z(τ ′(z))2

]
dz

}
. (41)

By Sobolev embedding it follows that averages of squares of spatial C0,α

norms of θ are bounded by the same right hand side:〈
‖θ‖2

C0,α

〉
≤ CR2

{
1 +

∫ 1

0

[
(τ ′′(z))

2
+ z(τ ′(z))2

]
dz

}
. (42)

Taking long time averages in the estimate (32) and using the concavity
of the logarithm and the bound (42) we deduce the bound

〈‖B1θ(·, t)‖L∞〉 ≤

C

{
1 + log

[
1 + CR2

{
1 +

∫ 1

0

[
(τ ′′(z))

2
+ z(τ ′(z))2

]
dz

}]}2

(43)
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Using the general conditions on τ that make the integrals of gradients of τ
not larger than powers of R we obtain (29).

V. Estimates for the Rotation Term

The goal of this section is to derive inequality (30), the estimate which
appears in the rotating term. This is done using the bound on ‖∇u‖ (13),
the lemma below, and taking long time averages.

Lemma. For the operator B2 defined by (27), there exists a constant C such
that

‖B2w‖2
L∞ ≤ C‖wz‖2. (44)

To prove the lemma we will use Sobolev embedding to obtain pointwise
bounds from bounds in H2; in other words we will use

‖B2w‖L∞ ≤ C‖(1−∆)B2w‖. (45)

By showing that

‖B2w‖ ≤
1

2
‖wz‖ (46)

and that

‖∆B2w‖ ≤
√

2 + 1√
2
‖wz‖ (47)

the lemma will follow. We derive first the inequality (46). Recalling that
B2 is defined as [∂zz(∆

2
DN)−1∂z∆

−1
D ∂z], it is clear that the inequality follows

from a corresponding bound of the norm of the operator
[
∂zz(∆

2
DN)−1∂z∆

−1
D

]
in L2. We accomplish this by showing that ∂zz(∆

2
DN)−1 and ∂z∆

−1
D are both

bounded in L2. For the first of these, let φ be the solution of the bilaplacian
equation ∆2

DNφ = f . Multiplying this equation by φ and integrating over
the whole domain gives

(∆2φ, φ) = (f, φ) (48)

where

(f, g) =
1

L2

∫ 1

0

∫ L

0

∫ L

0

f(x, y, z)g(x, y, z)dxdydz.
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Expressing the bilaplacian as

∆2 = ∂zzzz + 2∂zz∆h + ∆2
h, (49)

it follows after integrating by parts that

(∆2φ, φ) = ‖φzz‖2 + 2‖φxz‖2 + 2‖φyz‖2 + ‖∆hφ‖2. (50)

The boundary terms obtained by integrating by parts all vanish because of
the boundary conditions. Equations (48), (50) imply that

‖φzz‖2 ≤ ‖f‖‖φ‖. (51)

We now note from the the fundamental theorem of calculus applied twice
and the boundary conditions that

‖φ‖ ≤ 1√
2
‖φzz‖ (52)

and therefore from (51) we have

‖φzz‖ ≤
1√
2
‖f‖.

Since φ is by definition the solution to the bilaplacian equation, we can
rewrite this inequality as

‖∂zz(∆2
DN)−1f‖ ≤ 1√

2
‖f‖. (53)

We bound the operator ∂z∆
−1 in the same way. Let ψ represent the solu-

tion to the Poisson equation ∆ψ = f with Dirichlet boundary conditions.
Multiplying by ψ and integrating over the domain yields

‖∂z∆−1
D f‖ ≤ 1√

2
‖f‖. (54)

Now the L2 bounds given by equations (53) and (54) can be used to obtain
the estimate (46) on the operator B2.

For (47) we need to show that

‖∆∂zz(∆2
DN)−1∂z∆

−1
D ∂zw‖ ≤

√
2 + 1√

2
‖∂zw‖. (55)
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Noticing that ∂z∆
−1
D may be written

∆∆(∆2
DN)−1∂z∆

−1
D

and by expressing ∆ = ∂zz+∆h, we obtain the following form for the operator
in (55):

∆∂zz(∆
2
DN)−1∂z∆

−1
D =

[
I − ∂zz∆h(∆

2
DN)−1 −∆2

h(∆
2
DN)−1

]
∂z∆

−1
D . (56)

We have already shown that ∂z∆
−1
D is bounded in L2, so we need only concern

ourselves with the other two operators. Let ϕ be the solution to the bilapla-
cian equation ∆2ϕ = f with Dirichlet and Neumann boundary conditions.
Multiplying by ∆2

hϕ and integrating over the domain, we obtain(
∆2ϕ,∆2

hϕ
)

=
(
f,∆2

hϕ
)

(57)

Noting that we can separate the bilaplacian into vertical and horizontal
derivatives, we have(

∆2ϕ,∆2
hϕ
)

=
(
∂zzzzϕ,∆

2
hϕ
)

+ 2
(
∆h∂zzϕ,∆

2
hϕ
)

+ ‖∆2
hϕ‖2. (58)

Integrating by parts, the first term gives(
∂zzzzϕ,∆

2
hϕ
)

= ‖∂zz∆hϕ‖2.

The boundary terms disappear due to boundary conditions. Similarly, the
second term in (58) becomes, after integrating by parts,(

∆h∂zzϕ,∆
2
hϕ
)

= ‖∆h∂xzϕ‖2 + ‖∆h∂yzϕ‖2.

Again, because of the boundary conditions, the boundary terms vanish.
Equations (57) and (58) together with the Schwartz inequality, yield

‖∂zz∆hϕ‖2 + 2‖∆h∂xzϕ‖2 + 2‖∆h∂yzϕ‖2 +
1

2
‖∆2

hϕ‖2 ≤ 1

2
‖f‖2.

This inequality implies both that

‖∂zz∆h(∆
2
DN)−1w‖2 ≤ 1

2
‖f‖2

and also that

‖∆2
h(∆

2
DN)−1w‖2 ≤ ‖f‖2.
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Now by using (56) we obtain the estimate stated in (55) and proof of the
lemma is completed.

VI. Discussion

For infinite Prandtl number convection without rotation, there exists a
rigorous upper bound on the heat transfer which is of the orderR1/3(logR)2/3.
In the presence of rotation, however, a low order perturbation to the bilapla-
cian operator is introduced. This has the effect of an additional term in the
upper bound for the heat transfer, as seen in (31). As the rotation is increased
the bound deteriorates slowly but holds as long as E ≥ R−1/6(logR)−5/6. For
a region R−1/4 ≤ E ≤ R−1/6(logR)−5/6 a bound of the type N ≤ E−4/5R1/5

is the best known bound, for stronger rotation R−2 ≤ E ≤ R−1/4 the uni-
form bound N ≤ R2/5 applies and if rotation is increased further the Nusselt
number becomes bounded and then equal to one. On the other hand, sup-
pose the rotation is arbitrary but fixed and the Rayleigh number is increased;
for sufficiently large Rayleigh numbers the logarithmic R1/3(logR)2/3 bound
applies.
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