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Abstract: Quadtree-based Cartesian grid was automatically generated from specified geometry. Adaptive

refinements were performed according to geometric parameters and solution of flow field. An altered CCST

(curvature corrected symmetry technique) approach was proposed to apply solid wall boundary conditions.

Driven flows in a square cavity and flows around NACAO0012 airfoil were simulated and compared with the re-

sult of published structured grid and stretched Cartesian grid. The results show that solid“wall boundary, condi-

tion are accurately applied by current altered CCST approach, while incompressible/compressible subsonic,

transonic and supersonic viscous flows are adequately simulated with adaptively réfined Cartesian’ grid.,
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Grid generation is a great-challenge for com-
plicated geometric configurations in.CFD. Body-
fitted structured grid is concise\in data structure
and convenient in implementing boundary eondi-
tions while laborious artificial\labors are inevita-
ble for complex regions. Body-fitted unstruc-
tured grid can rapidly“establish the grid while
suffering with inefficient data storage and sol-
ving. Compared with body-fitted grid, Cartesian
grid has prominently less operations per cell,
lower storage space and easier in dealing with ar-
bitrary boundaries, which enormously aroused
the interest of scholars. As Cartesian grid can
extend through the geometric surface which pro-
duces irregular cut cells, accurate imposition of
the solid wall boundary condition is essential for
its success in CFD.

Zeeuw, Coirier and Colella, et al'"* used
embedded boundary method to represent solid

wall, irregular cut cells were determined by the

polygon clipping algorithm. Udaykumar, Hua,et
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al™? used merged céll approach which combined
the small cut-céll and its neighbor cell to be a
larger one. Both of them ensured the conserva-
tion of cut cell but complicated the data struc-
ture and solving. Kirshman, Luo and Liao, et
al""* employed least-squares fitting to calculate
the numerical flux of boundary cells which was
termed gridless method, other flow cells were
solved with Cartesian grid. This approach effec-
tively reduced the difficulty of the boundary
treatment, but the boundary cells were compu-
tational expensive and conservation cannot be
guaranteed. Dadone and Grossman proposed the
CCST approach on structured grid to treat the
solid wall, which was further extended to Carte-
sian grid and termed with GBCM (ghost body-
cell method)™!,

flect point to impose boundary conditions and

This approach employed re-

had minimal computational cost as the cut cells
and other flow field cells were treated in the

same way, but the conservation of boundary
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cells couldn’t be ensured either. Relative entro-
py error was dramatically reduced and second
order of accuracy was achieved with CCST
method.

Current research aims to extend the CCST
approach to adaptively refined Cartesian grid in
the simulation of viscous flows. Quadtree-based
data structure is converted to linear data struc-
ture according to the Morton space filling theo-
ry''Y for efficiency. AMR (adaptively mesh re-
finement) are automatically performed based on
geometrical information and solution of flow
field. Flows in the driven cavity and around the
NACAO0012 airfoil are simulated and compared
with published results, which validate its capa-
bility in the simulations of incompressible/com-

pressible viscous flows.

1 Adaptively refined Cartesian grid
generation

Concrete steps are as follows:

1) The computational domain is uniformly
divided to generate-coarse base grid.

2) Cut cell adaption. Cut cells are produced
by the intersection of \grid and geometric inter=
faces. These cells and their nearest\two layers of
neighbor cells are refined to increase the resolu-
tion of solid wall.

3) Curvature cell adaption. Cells near the
geometric point with big radius of curvature are
to be refined. The criterion employed here is
max(Ax,Ay) < (1/40)R, where R is the radius
of curvature, Ax and Ay are local lateral and lon-
gitudinal length scales, respectively.

4) Solution adaption. The criterion pro-

]

posed by Zeeuw'! is employed:
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Where empirical coefficient ris taken to be
1.5 here, [; is the local cell’s length scale, and U
is the velocity of flow. If either ., > ¢, or ©; >

045 the cell 1 will be refined.

2 Numerical methods

2.1 Governing equations

Two-dimensional unsteady dimensionless N-

S (Navier-Stokes) equations can be written as:

I | IS — fom)
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are free stream Mach number and
Pr is Prandtl

number, 7is specific heat ratio, p= T"is the co-
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Ma.. and Re..

free stream Reynolds number,

efficient of viscosity; for the air, n=0.76, Pr =
0.72,v = 1.4. p,p>e, T are pressure, density,
energy and temperature, u, vare velocity compo-
nent along z- and y-direction, respectively. The
dimensionless characteristic variables are density
p- s temperature T.. and acoustic speed a.. of the
free stream, the dimensionless length scale c is
side length for driven cavity and chord length for
airfoil, respectively. For perfect gas

eT

p = (4)
7
Specific energy is
, 2
p W+ (5)

S o—1D 2
2.2 Numerical schemes

MUSCL (monotone upstream-centered schemes
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for conservation laws) interpolation scheme and
Van Leer limiter are employed to achieve second or-
der of accuracy with finite volume method. Invisid
flux is calculated by Liou’s AUSM" -up (advection

[12]

upstream splitting method-up) scheme-'*. Viscous

flux is calculated by Coirier’s diamond-path re-
construction scheme"*,
Temporal terms are calculated by the three-

stage Runge-Kutta scheme:

U(O) = Un
U® = y© + akAfReS(Uuhn)
A (6)
}\’. - 1’2’3
Ul = g®

Where g = 0.18, &» = 0.5, = 1.0.
2.3 Boundary conditions

Dadone and Grossman proposed the CCST
method on structured grid to treat the solid
wall, which is further extended to Cartesian grid
and termed with GBCMP ', Wang and Sun™'
applied it to simulate invisid flows ofa_unstruc-
tured grid. Published numerical results by the
previous scholars show that the CCST method s
second order of accuracy‘\and\dramatically~re-
duced the relative entropy error.

In Dadone’s CCST \method, centroid of the
cell is used to classify its type, solidcell if it lo-
cates in solid domain and flow cell if it locates in
flow domain. Flow variables at solid cells are
calculated resort to their reflect point with re-
spect to the solid boundary which locate in flow
domain. The viscous flux of the cut flow cell is
highly inaccurate as the cut cell extends through
the solid surface, which leads to the failure of
application with viscous CCST method on adap-
tively refined Cartesian grid. Here the flow vari-
ables at cut flow cell are not solved but interpo-
lated to remedy this problem.

As in figure 1, point C is centroid of cut
flow cell. A reference point R is specified which

is in the normal direction of solid wall. The dis-

tance between point R and point Cis L = VA,
where A is area of the cut flow cell. The wall
temperature condition uses enforced wall tem-

perature T, = T., where TZ is the stagnation

temperature of the free stream. No slip condi-
tion indicates that the velocity is zero at the solid
wall. A linear distribution of velocity and tem-
perature is assumed near the solid wall, in-
tegrate the normal momentum equation (7) and

then we have relation equation (8):

Ip . ul
T pRC 7
LA [ puk]
pPc = Pr 3 [ R. JdR
Te =Ty + (T — Ty) (8)
;L(‘,: T‘ITLR
'ZN)(‘: V‘;)R

Where R. is the local radius of curvature. dg. dc¢
are the distance of point R and-point.C to the sol-
id wall, respectively. The distance ratio ris r =
de/dg. prps T, u,v are pressure, dengity, tem-
perature, tangential velocity ahd nermal veloci-
tys respectively. Flow variables at point R can
be linearly interpolated using the variables of the
nearest three-flow cells. Thenflow variables at

point C can be_decidéd through equation (8).
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Fig. 1 Sketch of point Cand point R

Flow variables of solid cells are obtained in
a similar way. If point Cdenotes centroid of solid
cell and point R denotes the reflect point of point
C with respect to the solid wall, set r =— 1 and
then equation (8) can be used to decide the flow
variables of solid cells.

Non-reflective boundary conditions based on
characteristic analysis of one-dimensional Rie-
mann invariants are employed to implement far-

field boundary.
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3 Numerical results and discussions

3.1 Square cavity

This case is a benchmark for incompressible
viscous flow and has been carefully investigated
by Ghia,et al'™ on a 129X 129(16641) uniform
structured grid. The top lid moves horizontally
right at speed Ma=0. 1, which induces primary
vortex in the central region and smaller vortices
in the corner regions.

The results obtained with current approach
for Re=3 200 case are shown from figure 2 to
figure 4, where cis the side length of the square
cavity and Uy, is speed of the top lid. Figure 2
shows the initial computational grid for the
square cavity. Figure 3 shows the grid after
three solution adaptions, where can be seen that
the cells in the strong shear regions have been
well refined. The vortices are clearly shown by
streamlines contours depicted by figure 4. Fig-
ure 5 and figure 6 show the w_and ‘vv\elociﬁt‘y
profiles obtained along verfical and horizontal~
lines through the geometric cénter of the driven™
cavity (the number~of cells at\each'\refinement
level is labeled in parenthesis). As can-be seens
resolution of flow field has begn improved by a-
daptive refinement techni’que and the results ob-
tained on final grid-agree well with Ghia's data.
Finally. location of*primary vortex center with

different Reynolds number is shown in figure 7.

Fig. 2

Initial computational grid of

the square cavity

Fig. 3 Refinement level 3 adapted grid of

the square cavity
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Fig. 5 wvelocity along vertical line through

geometric center

3.2 NACAO0012 airfoil

Flows around NACAO0012 airfoil are simula-
ted to validate the capability of current approach
in transonic/supersonic compressible flows. The

computational domain is [ —127.5¢, —128¢] X



502 1y HAN Yu-qi,et al: Numerical simulation of viscous flows with adaptively refined Cartesian grid 471
06 o Ghia on the surface of the NACA0012 airfoil, only
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Fig. 6 v-velocity along horizontal line through

geometric center
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Fig. 7 Location of primary vortex center with

different Re

[128.5¢,128¢] in the current\research, where ¢
is the chord length. In case 1, the free stream
Mach number is 0, 8 ,free stfeam Reynolds num-
ber is 500 and attack-angle is 10°. In case 2, the
free stream Mach number is 2. 0, free stream
Reynolds number is 1 000 and attack angle
is 10°.

Case 1 has been simulated by Dadone
a C-type structured grid with 256 X 64 (16 384)
cells, and by LIUY on a stretched Cartesian
grid with 287X 298(85526) cells. The grid after

four solution adaptions is shown in figure 8

[10] on

which contains 32 582 cells. Mach number con-
tours are shown in figure 9 which indicate that
there is a large recirculation region on the upper
surface of the NACAO0012 airfoil. Figure 10
shows the pressure coefficient distributions on
the surface of the NACA0012 airfoil, which a-
gree well with published results. Figure 11

shows the skin friction coefficient distributions

Dadone’s results have been compared as LIU has
not given the corresponding data. Streamlines in
the separation region are shown in figure 12.

Location of separation point is compared with

1
17
I
.

Fig. 8 Refinement level4 adapted gird of the
NACA0012 airfoil for cadse 1
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Fig. 9 Mach number contours of flow around the

NACAO0012 airfoil for case 1
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Fig. 10 Pressure coefficient distributions on
the surface of the NACA0012 airfoil

for case 1
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0.6, o Dadons Case 2 has been simulated by Palma,et alt'”
Present on a stretched Cartesian grid with 500 X 500

Fig. 11  Skin friction coefficient distributions on
the surface of the NACA0012 airfoil

for case 1

Fig. 12 Streamlinie in the'separation region of

the NACAO0012 airfoil for case 1

061 and shown'in table 1.

well-assessed results
Deviation appears at _the leading edge of NA-
CA0012 airfoil while good agreement was shown

in an overall view.

Table 1 Abscissa of separation point

Author Separation point
Angrand 0.5

Bristeau,et al 0. 45
Cambier 0. 36
Haase 0. 36
Kalfon,et al 0. 39
Kordulla 0.362
Muller, et al 0.371
Satofuka, et al 0. 345
Secretan,et al 0. 37
Present 0. 389

(250000) cells, and by LIU"™ on a stretched
Cartesian grid with 287X298(85526) cells. The
grid after four solution adaptions is shown in fig-
ure 13 which contains 29860 cells and Mach number
contours are shown in figure 14 where a bow shock
can be seen in front of the NACA0012 airfoil and
the corresponding region has been well refined.
Figure 15 shows the pressure coefficient distri-
butions on the surface of the NACA0012 airfoil,
which agree well with Palma’s results. It is no-
table that current approach uses much less cells
due to the adaptive refinement technique. Figure
16 shows the skin friction-coelficient distribu-
tions on the surface of the NACA0012 airfoil by
the current approach, while Palma and LLIU has

not given the-corresponding\data.

Fig. 13 Refinement level 4 adapted grid of the
NACAO0012 airfoil for case 2

Fig. 14 Mach number contours of flow around
the NACAO0012 airfoil for case 2
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applicable to three dimensional cases in principle
D while detailed complement needs to be further
b5 IPPPV-r-S investigated.
o Palma Refel‘ences .
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Fig. 15 Pressure coefficient distributions on
the surface of the NACA0012 airfoil

for case 2
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Fig. 16  Skin friction coefficient distributions-on
the surface of the NACAQ012 aiffoil

for-case 2

4 Conclusions

Cartesian grid is automatically generated af-
ter the geometry has been specified by users and
adaptive refinements are operated according to
the geometric information and solution of flow
field. An altered CCST method has been pro-
posed and validated on adaptively refined Carte-
sian grid. Current research covers incompressi-
ble/compressible subsonic, transonic and super-
sonic flow cases. Results obtained with this ap-
proach show good agreement with published
structured grid/stretched Cartesian grid results,
which indicate its efficiency in the simulations of
viscous flows. Current research focus on the

two-dimensional flow cases and this approach is
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