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Abstract

The problem of subpixel heterogeneity in cover types has been addressed in terrestrial environments by the
application of linear spectral unmixing techniques. However, in aquatic systems the interceding depth of water
causes the apparent reflectance of the substrate to diverge from a linear model, and if depth is unknown these
methods cannot be applied. A new technique is presented in which the conventional spectral unmixing method has
been modified to calculate depth at each pixel in addition to the proportions of substrate type. The technique requires
knowledge of the reflectance spectra of m pure substrata in n (n . m) spectral bands at depth 0 and the water
diffuse attenuation coefficients for the site in the same bands. Depth, z, can be entirely unknown. The method is
comparable to ‘‘classical’’ spectral unmixing and proceeds by performing a Gaussian elimination for endmember
quantities and then solving the remaining nonlinear function of z for f(z) 5 0 by successive approximation. Com-
puter-based models are used to test the technique with realistic water diffuse attenuation coefficients and random
spectra and actual spectra of coral reef substrata. The robustness of the technique is assessed against three forms
of introduced error: measurement errors on the spectra to be unmixed, differences between the true endmember
spectra and those used in the analysis, and measurement error on the water diffuse attenuation coefficients. The
results of these tests imply the technique is sufficiently robust for use on real data. Furthermore, spectral unmixing
of aquatic systems appears to be relatively insensitive to inaccuracies in depth estimation and offers great utility
for benthic mapping.

Remote sensing is widely used to map benthic substrata
(reviewed by Green et al. 1996; Holden and LeDrew 1998)
and bathymetry (Benny and Dawson 1983; Bierwirth et al.
1993) in aquatic systems. However, substrate reflectance and
water depth are intimately associated and conventional an-
alytical methods are unable to resolve one measure accu-
rately unless the other is already known for each pixel. For
example, if the water column diffuse attenuation coefficient
(Maritorena and Guillocheau 1996) is known for each spec-
tral band and the depth of each pixel has been measured
independently, the at-surface reflectance of submerged sub-
strata can be predicted, thus permitting spectral classification
and benthic mapping (LeDrew et al. 1995; Mumby et al.
2001). In most practical situations, however, accurate bathy-
metric data are scarce (Bierwirth et al. 1993). This is partic-
ularly problematical in heterogeneous habitats such as coral
reefs where a high spatial resolution is required (Green et
al. 2000). Conversely, depth estimation requires an indepen-
dent map of substrata or valid assumptions of an invariant
substrate or bottom albedo. Depth estimation methods pre-
sented by Benny and Dawson (1983) and Jupp (1988) re-
quire a constant substrate, or at least a fairly constant albedo.
Similarly, although the method of Bierwirth et al. (1993)
does not rely on an invariant substrate, it does impose a
constraint broadly equivalent to assuming the substrate is of
uniform brightness. This results in darker benthos, such as
seagrass, causing an erroneously large depth estimate. Nord-
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man et al. (1990) described a method that requires the ratio
of bottom reflectances in two or more bands to be constant,
which is dependent on the substrata present and cannot be
guaranteed. Lee et al. (2001) describe a method for simul-
taneously estimating various water column parameters in-
cluding depth, but the method requires independent deter-
mination of the shape of the spectral reflectance of the
substrate in each pixel. Lyzenga’s (1978) method is based
on taking the ratio of the natural logarithm of the signal in
two bands and can be used to produce an index of depth.
However, this index is the sum of a term dependent on depth
and a term dependent on the absolute reflectance of the sub-
strate in the two bands. To use this method effectively, the
substrate must be identified for each pixel, and the depth
indices for each substrate must be calibrated individually.

A second fundamental problem in remote sensing is the
existence of substrate heterogeneity at subpixel scales
(Mather 1999). This problem has been combated in terres-
trial systems by spectrally unmixing the contribution of pure
endmember spectra to each pixel, where each endmember is
a substrate type (Adams et al. 1986; Foody and Cox 1994;
Brown et al. 1999). Spectral unmixing makes the assumption
that the measured spectral signal is the linear sum of a set
of pure endmember spectra weighted by their relative abun-
dance. Again, for an image of a submerged substrate, these
methods cannot be applied unless the spectral signal can be
depth corrected at every pixel. Adams et al. (1986) have
demonstrated that shade effects can be removed by treating
shadow as an endmember, and Peddle et al. (1995) have
attempted a spectral mixture analysis on coral reefs where
deep water was similarly treated as an endmember. However,
water depth cannot be treated as a linear component in spec-
tral mixing because the attenuation at any given wavelength
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increases nonlinearly with depth, and the rate of this atten-
uation is dependent on wavelength.

The approach presented here solves the confounding in-
fluence of depth on substrate reflectance in the context of
spectral unmixing. Depth and substrata can be unmixed pro-
viding that the spectra of all endmembers (at depth 0) are
known together with the water column diffuse attenuation
coefficients of each spectral band. In practice, both inputs
can be derived from a brief field survey or estimated from
spectral libraries and archived water quality data, respec-
tively. Importantly, depth and substrata can be mapped with-
out the need for extensive independent data.

Outline of the technique

The technique will be outlined both conceptually and
mathematically in six stages. The first stage considers the
model of light attenuation with depth, which forms the basis
of the technique. Stage 2 reviews the principles behind linear
spectral unmixing. Stage 3 describes the incorporation of
light attenuation into the linear mixing model. Stage 4 de-
scribes, in principle, how the resultant model can be solved
for depth, and stage 5 presents a practical technique by
which this may be achieved. Finally, stage 6 describes an
optional processing step based on principal components
analysis (PCA), which can be used to increase efficiency of
processing hyperspectral images when the number of bands
greatly exceeds the number of endmembers.

The effect of depth on reflectance—Reflectance, as mea-
sured for remote sensing purposes, is loosely defined as the
ratio of upwelling to downwelling radiation, although the
strict definition is dependent on the field of view of the sen-
sor(s) used (Kimes et al. 1980; Mobley 1994; Mather 1999).
A material submerged under a depth of water will have an
apparent reflectance that differs from its true (unsubmerged)
reflectance due to the attenuation of light as it passes through
the water column. The rate of attenuation varies with wave-
length such that the apparent reflectance of a substrate at
depth z in band i of a remotely sensed image, can be ap-
proximated as

22k ziR 5 R e (1)z 0

where R0 is the reflectance of the substrate at depth zero and
ki is the diffuse attenuation coefficient for the water at the
site at the wavelength of band i (Bierwirth et al. 1993).
Strictly speaking, the downwelling and upwelling diffuse at-
tenuation coefficients are distinct and defined in terms of
depth, being denoted Kd(z; l) and Ku(z; l), respectively
(Mobley 1994). However in practice, both coefficients often
have nearly the same numerical values and depend only
weakly on depth (Mobley 1994), so it is not uncommon for
workers to use a single term for the diffuse attenuation co-
efficient, k (e.g., Bierwirth et al. 1993; Smith and Baker
1981). The values of k have been tabulated at 10-nm inter-
vals between 200 and 800 nm for the clearest natural waters
(Smith and Baker 1981), but in practice, these will vary from
site to site, depending on the amount of suspended and dis-
solved material in the water. Additionally, this model ignores
any surface specular reflection from the water or backscatter

from within it. The former approximation is fair if we as-
sume that the water surface is fairly flat and the angle of
incident light and angle of measurement do not coincide.
The technique presented here can be based on any model of
apparent reflectance provided all the parameters other than
depth can be characterized. In this instance, Eq. 1 was con-
sidered a reasonable approximation and is the basis of what
follows.

Linear spectral unmixing—Linear spectral unmixing as-
sumes that the multispectral signal received at a sensor is
the sum of the spectral signals of one or more ‘‘pure’’ ma-
terials (or ‘‘endmembers’’), linearly proportional to their rel-
ative abundance in the sensor field of view (Mather 1999).
In practice, this requires the solution of a set of n simulta-
neous equations of the form

r 5 a q 1 a q 1 · · · 1 a q1 11 1 12 2 1m m

r 5 a q 1 a q 1 · · · 1 a q2 21 1 22 2 2m m

_ _ _ _

r 5 a q 1 a q 1 · · · 1 a qn n1 1 n2 2 nm m (2)

where r1, r2, . . . , rn represent the measured apparent reflec-
tances of the pixels in n wavelength bands (in whatever units
are being used), q1, q2, . . . , qm are the quantities of m end-
members, expressed as proportions 0 # qi # 1. The a values
represent the pure endmember spectra, such that the first
subscript on a denotes the spectral band and the second de-
notes the endmember. Therefore, a11, a21, . . . , an1 is the pure
spectral signal of the first endmember (in the same bands
and units as the r values), a12, a22, . . . , an2 give the second
pure endmember spectral signal and so forth.

Using matrices, this can be expressed more economically as

x 5 Mf (3)

where the (n 3 1) column vector x is the multispectral signal
for a pixel (r values), f is the (m 3 1) vector of endmember
frequencies (q values), and M is the endmember spectral
matrix such that the jth column of M is the spectra of the
jth endmember (a values). Because x and M are known,
provided there are as many equations as unknowns (m # n),
the system can be solved for f (i.e., q1, q2, . . . , qm). If n .
m, the expressions in Eq. 2 can also include an error term
because inconsistent solutions could arise from measurement
errors and deviations from model assumptions; that is, at-
tempting to solve for f will result in contradictory mathe-
matical statements. In this case, a least squares approach can
be used to estimate f in a manner that comes closest to sat-
isfying all the equations overall (Shimabukuro and Smith
1991). However, the procedure outlined here is naı̈ve in that
it does not generate a least squares approximation. Instead,
when n . m, the inconsistencies in the expressions of Eq.
2 are considered not as errors but as the effect of water
depth. Depth is resolved by trying to find a depth at which
the modified expressions of Eq. 2 are as consistent as pos-
sible. How this is done in practice will be described in stage
4, after it is shown how the effect of depth can be incor-
porated in the linear mixing model.
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The effect of water depth on spectral mixing—The effect
of depth on the apparent reflectances of the substrate can be
expressed by applying Eq. 1 to each band in which x (the
multispectral signal for each pixel) is measured. Using ma-
trices, this can be accomplished by constructing Vz as an (n
3 n) diagonal matrix containing values e , e , . . . ,22k z 22k z1 2

e , where k1, k2, . . . , kn are the diffuse attenuation coef-22k zn

ficients corresponding to the spectral bands in which x is
measured. Then

xz 5 Vzx 5 VzMf (4)

where xz is how material with reflectance x would actually
appear with an interceding depth of water z (i.e., xz is the
apparent reflectance at depth z). Note from the above equa-
tion that Vz and the matrix of endmember spectra M can be
combined into a depth-dependent endmember matrix, Mz 5
VzM. For a given depth z, the values of Mz express how the
individual pure endmembers would appear at that depth. A
modified version of Eq. 3 can now be written that makes
explicit the role of water depth.

xz 5 Mzf (5)

Conceptually, this expresses the idea that the measured
reflectance of a substrate in a pixel at depth z can be con-
sidered a linear sum of the endmember reflectance spectra
as they would appear at that depth themselves. This is equiv-
alent to a set of simultaneous equations of the same form as
Eq. 2, but where the a values have been modified by

22k zia → e a (6)ij ij

If there are more equations than unknowns (n . m), then
to find z, note that when z is correct, all these equations must
be true. The degree of inconsistency for incorrect values of
z might not be immediately apparent, but the tests we have
conducted (which are detailed later) indicate that it is suffi-
cient to resolve z. A method for finding the correct value of
z from the set of equations defined by Eq. 5 is explained
next.

Gaussian elimination and estimation of depth—Using the
principles of Gaussian elimination (Sedgewick 1988), the set
of equations given by Eq. 5 can be reduced to a set of func-
tions of z that will all equal zero when those equations are
consistent and nonzero otherwise. By subtracting a multiple
of the first equation in Eq. 2 from the remaining equations,
a new set of n 2 1 equations can be generated with no term
in q1. This procedure can be repeated with the new set of
equations to remove the terms in q2. After m repetitions,
there are n 2 m equations left with no q values at all, but
instead with zero equated to an expression on the left-hand
side which is composed of r values (the measured reflec-
tance for the pixel), a values (the endmember spectra at
depth zero), and terms of the form e . Because all values22k z1

apart from z are known, these functions—denoted f1(z), f2(z),
. . . , fn2m(z)—can form the basis for resolving z. The math-
ematical structure of these functions is complex, and they
cannot be rearranged easily to give z directly. In practice, a
successive approximation technique can give an estimate of
z to the required level of accuracy. In principle, any of f1(z),
f2(z), . . . alone could be used to find z. In practice, especially

with introduced error, individual functions occasionally give
multiple solutions for z or no solution at all. This situation
can be resolved by considering two or more of the functions
simultaneously. A practical method for obtaining the esti-
mate of z from these functions is described next.

Estimation of z by successive approximation—The prob-
lem of finding z has been reduced to that of finding the value
of z for which a set of functions f1(z), f2(z), . . . are all equal
to zero. This can be achieved by systematically taking values
of z to search for the points at which f1(z) 5 0, f2(z) 5 0,
. . . , etc. It is most efficient to restrict z to the valid range
of depths (i.e., zmin # z # zmax) where zmin will be zero and
zmax should be slightly larger than the expected maximum
depth at the site.

To find the roots of one function f(z), start with a number
of values at regular intervals between zmin and zmax and eval-
uate f(z) at each of these points. Intervals within which there
is a root f(z) 5 0 have on one side f(z) . 0 and on the other
side f(z) , 0. Such intervals can be subdivided into two new
intervals half the size of the original and the process re-
peated. By this method, an estimate of z for which f(z) 5 0
can be determined to the required level of accuracy. This
approach does potentially miss intervals that initially contain
two roots, but in practice, this has not proved significant and,
in any case, can be combated by taking more intervals in
the first instance. Some asymptotes also will be misidentified
as roots by this scheme, but this may be solved by noting
that as the intervals are subdivided, the values of f(z) do not
tend toward zero, but rather become increasingly large.

Each of f1(z), f2(z), . . . might exhibit several roots within
the valid range, but in practice, incorrect roots are not rep-
licated in more than one function. The majority of ambigu-
ities as to the true estimate of z can be resolved by consid-
ering only f1(z) and f2(z) and taking the average of their
closest two roots. In cases where multiple roots are found in
only one of f1(z) or f2(z) and no roots are found in the other,
the average of the location of the roots of the one can be
taken. There is still the potential for cases where no solution
for z is found. The extent to which this occurs is assessed
later. In the next section is described an optional transform
to concentrate the useful information into the first two func-
tions f1(z) and f2(z), which enhances the performance of this
approach.

Enhancement by principal components analysis—The fol-
lowing steps can be incorporated into the analysis to ensure
that the maximum separability in the data is being exploited
and to reduce the processing overhead when the number of
bands greatly exceeds the number of endmembers. These
procedures are entirely optional, and the technique can be
performed without them.

The reflectance spectra of the m endmembers can be
thought of as points in n-dimensional space, where the po-
sition of the point on the ith axis is the spectral signal in
that band. Taken this way, it is easy to see the redundancy
of information when few endmembers are measured in many
bands. For example, three separable endmembers in n-di-
mensional space will form a triangle in a 2-dimensional
plane regardless of the value of n (provided n . 2). Linear
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mixtures of those three endmembers will lie within the tri-
angle in the same plane. Performing a PCA on the endmem-
ber spectra projects the points in space so that the first two
new axes (or bands) describe the plane of that triangle.

In general then, a useful transform is to perform a PCA
on the columns of M in order to extract m 2 1 bands, which
will encompass the separability of the m endmembers. The
initial step of standardizing the means and variances of the
variables, customary with PCA (Manly 1994), is unneces-
sary. The transform is performed by constructing the matrix
A such that its rows are the eigenvectors of the covariance
matrix of M, ordered such that the corresponding eigenval-
ues decrease in magnitude (Manly 1994). Then Eq. 5 can
then be modified as

Ax 5 AMzf (7)

The linear mixture model still holds if the set of endmem-
bers and the measured spectral signal are pretransformed by
the same matrix. The matrix A is calculated once from the
set of endmember spectra and then applied to the spectral
signal at every pixel. If xp 5 Ax and Mp 5 AMz, then we
can write

xp 5 Mpf (8)

Equation 8 again defines a set of simultaneous equations
of the form in Eq. 2. The first m equations encompass the
variation required to unmix endmembers at depth 0. The
subsequent n 2 m equations will contain information when
other factors such as depth or measurement error arise. The
distribution of such information among these equations will
be difficult to predict, so an optimum solution would order
equations by their importance and confine processing to the
first few. This is done by selecting a subset of variables and
performing a PCA on those alone (again, without the initial
standardization step), concentrating the variance into a
smaller set of variables. Specifically, the PCA is performed
on the m 1 1 to n transformed variables for all the end-
members (i.e., the lower n 2 m rows of Mp). Let b 5 n 2
m and construct B as the (b 3 n) matrix composed of the
lower b rows of Mp; then find the (b 3 b) matrix of eigen-
vectors of B’s covariance matrix. A2 is then the identity ma-
trix in the first n 2 b rows and columns and contains these
eigenvectors in the final n 2 b columns of the last n 2 b
rows. Then Mp → A2Mp will transform only the final b rows
of Mp. The first m equations defined by Eq. 8 with this new
Mp are as before, but the subsequent n 2 m equations con-
tain decreasing amounts of information. Therefore, the first
function of z produced from the Gaussian elimination con-
tains the maximum information of use for resolving z.

Practical summary of the procedure

A practical step-by-step summary of the procedure is as
follows.

1. If necessary, radiometrically convert the image to reflec-
tance values and correct for atmospheric effects.

2. Obtain zero-depth reflectance spectra for all m endmem-
bers in n wavelength bands. These should be arranged in
the (n 3 m) matrix M such that the jth column of M is

the spectra of the jth endmember. In practice, the end-
member reflectance spectra can be obtained from a spec-
tral library, in situ measurements, or depth-corrected re-
gions of the image where the substrate and depth are
known from ground truth data.

3. Obtain n diffuse attenuation coefficients k1, k2, . . . , kn for
the water at the site in the same wavelengths as the end-
member spectrum bands. These can be measured directly
at the site or inferred from image data if several pixels
of the same substrate can be identified at a range of
known depths.

4. If n . m 1 2, evaluate the eigenvectors according to a
PCA on the endmember matrix M. The usual step of
standardizing each variable to a mean of zero and unit
variance is omitted. The matrix A is constructed from the
eigenvectors a1, a2, . . . , an ordered by decreasing eigen-
value such that the ith row of A is ai. No data are actually
transformed at this stage.

For each pixel, the following steps must be repeated for
successive estimates of depth, zest. In essence, they describe
how to evaluate the functions f1(zest), f2(zest), . . . , fn2m(zest).

5. For an estimate of depth zest, derive the set of endmembers
as they would be expected to appear at that depth, Mz,
from M by Eq. 4.

6. If A has been constructed as described above, then trans-
form the at-depth endmember spectra and the spectral sig-
nal x into the ‘‘space’’ of the PCA by Mp 5 AMz and xp

5 Ax. Alternatively, these can be used as they are (i.e.,
Mp 5 Mz and xp 5 x).

7. An additional optional step that improves the perfor-
mance of the technique is to apply a PCA to the m to n
rows of Mp and similarly transform xp. Those rows alone
are transformed by the matrix of resulting eigenvectors
sorted by decreasing eigenvalue.

8. The linear mixing model xp 5 Mpf defines a set of n
simultaneous equations in m unknowns (the values of f).
The equations defined by the first m rows of Mp can be
used to eliminate the terms in f from the equations de-
fined by the remaining (n 2 m) rows of Mp. If this elim-
ination is performed, the remaining constants are the val-
ues of f1(zest), f2(zest), . . . , fn2m(zest).

9. By repeating from step 5, the roots f1(zest) 5 0, f2(zest) 5
0, . . . can be determined and an estimate of the actual
depth z obtained from them, as described in stage 5 of
the outline.

Once the depth has been estimated for the pixel, the spec-
tral signal x can be depth corrected to xc by the inverse of
Eq. 1. Classical spectral unmixing can then proceed by the
estimation

f 5 M (xc)t
21
t (9)

where the subscript t indicates that Mt is the (m 3 m) matrix
composed of the first m rows of M, and (xc)t is the first m
values of xc. A sounder method, which utilizes all of the
variance in the endmembers, is given by

f 5 (AM) (Axc)t
21
t (10)
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Fig. 1. Endmember spectra. Fig. 2. Water diffuse attenuation coefficients.

Implementation details

Despite the apparent computational complexity of the
method, efficient implementation is possible by quantizing
the depth range into small discrete intervals. The bulk of the
calculations can then be performed in a preprocessing step
specific to these depths. Quantizing depth into 1,000 inter-
vals over a depth range of 10 m gives an inherent upper
limit of 0.005 m to the accuracy of depth estimation (each
interval is 0.01 m, so an estimate in the center of the correct
interval is, at most, 0.005 m in error). An inherent error of
0.005 m is very small compared to the inaccuracy introduced
by other sources of error (see the next section). The matrices
Mz and Mp and the forward transform for Gaussian elimi-
nation can then be calculated for each discrete depth prior
to image analysis. The most intensive calculations required
in this preprocessing step are the determination of the ei-
genvectors for the PCA transform. On a typical workstation,
the preprocessing step for five endmembers in 15 bands with
1,000 depth intervals takes approximately 10 s. Subsequent
analysis of 100,000 pixels takes approximately 30 s (equiv-
alent to 90 km2 of satellite image at 30 3 30-m pixel res-
olution).

Experimental test

The robustness of the technique toward various sources of
error was tested using a model. Spectral data in 15 bands
were simulated for random mixtures of five endmembers, at
random depths between 0 and 10 m according to linear mix-
ing and Eq. 1. The depth/unmixing technique was then ap-
plied to analyze the simulated spectra. In one set of trials,
the endmember reflectance spectra were generated randomly
for each repeat, with each spectrum consisting of 15 spec-
trally uncorrelated reflectance values drawn from a uniform
distribution between zero and one. A second set of trials
used the realistic spectra of five benthic components of coral
reefs between 380 and 660 nm (Fig. 1). These ‘‘realistic
spectra’’ are from a library of reef spectra measured in situ
(P.J.M. unpubl. data; see Clark et al. 2000 for collection de-

tails). Some spectra have been rescaled because their relative
magnitude in the raw data was found not to be in realistic
proportion to the others (this rescaling will not affect the
behavior of the technique). Realistic values for water diffuse
attenuation coefficients were used in both cases, being set as
twice those published for the clearest natural waters (Fig. 2;
Smith and Baker 1981). Values of this order have been re-
ported on coral reefs (Maritorena and Guillocheau 1996).
Valid estimates of depth were restricted to the range 22 ,
z , 12, so as not to exclude estimates that fell only slightly
outside the true range.

Error was introduced into the model in three ways.

1. Sensor error. Error on the spectral signal x was incor-
porated by adding a different random value to each term
in the vector x. The added values are normally distrib-
uted, zero centered, and spectrally uncorrelated (i.e., like
random noise). The magnitude of the added values (i.e.,
the range of the normal distribution from which they are
taken) is expressed in relation to the magnitude of the
original value to which they are being added. For ex-
ample, 10% sensor error implies that the error being add-
ed on each term comes from a normal distribution with
a standard deviation that is half of 10% of the original
value of the term. That is, a 10% sensor error implies a
positive or negative error, which in 95% of cases is within
10% of the true value. In practice, this form of error could
result from uneven behavior of the sensor over an image.

2. Endmember error. A normally distributed error was add-
ed to each value in M. The error terms are derived as
described in the previous section, being taken from a nor-
mal distribution with a standard deviation half the given
proportion of the true value. The modified M was used
in the analysis, whereas the original true M was used to
construct the spectral signal. Such errors would arise from
inaccurate measurements of endmembers and spatial
changes in endmember spectra (e.g., intraspecific varia-
tion in reflectance).

3. k-Value error. Water quality can vary within a site, and
the accurate measurement of diffuse attenuation coeffi-
cients can be problematic, especially if estimated from an
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Fig. 3. Error on depth estimates with 10% sensor error only;
87% of estimates within 1 m of accuracy.

Fig. 4. Error on depth estimates with 10% endmember error
only; 81% of estimates within 1 m accuracy.

image. To assess the performance under this kind of error,
a term equivalent to a measurement error on the water
diffuse attenuation coefficients was added in the same
way as described in (1) above. Original values were used
to generate the mixed pixel; the values with error were
used in the analysis.

The technique was applied for nine runs of 1,000 simu-
lations, with each run having a different combination of in-
troduced errors. Sensor errors, endmember errors and k-val-
ue errors of 0, 5, and 10% were included in the following
combinations: (0, 0, 0); (5, 0, 0); (0, 5, 0); (0, 0, 5); (5, 5,
5); (10, 0, 0); (0, 10, 0); (0, 0, 10); (10, 10, 10). The nine
error conditions were performed with real and random end-
members. A final run with real endmembers and 20% error
on all three terms gave a total of 19 experimental runs. Note
that because of the large number of values to which error is
added in each simulation, the probability of at least some
large errors is high. For example, under conditions of 20%
error on all three terms, errors are added to 5 3 15 values
in the endmember spectra, 15 k-values, and the 15 values of
the spectral signal—a total of 105 values. Under conditions
of 20% error on all three terms, the definition of percent
error used implies that every simulation will contain on av-
erage five values that are at least 20% in error and approx-
imately 37 values that are .10% in error. Similarly, even
when only sensor error or k-value error is introduced (af-
fecting only 15 values), the chances that at least one value
will be in error by an amount greater than the defined percent
error is better than even (the probability being 1 2 0.9515 5
0.54).

The accuracy of depth estimations was gauged by the per-
centage of estimations falling within 1 m of the true value
(which is 10% of the total depth range of 0–10 m). Assess-
ment of absolute errors is preferable to using a percent error
of the actual depth because percent error becomes very large
when depth becomes small (tending to infinity for any error
at all as depth tends to zero). Unmixing accuracy was as-
sessed in a similar way by calculating the mean of the errors
on the estimated endmember proportions. The method of

using the average error on the proportion estimates was se-
lected as being both a simple and an intuitive approach to
assessing unmixing accuracy. The average error ranges from
zero (all estimates correct) to unity for a worst-case scenario,
where a pixel composed entirely of one pure endmember is
classified as being composed of another pure endmember.
Kolmogoroff–Smirnoff tests (with Dunn–Šidák correction to
the a level, Sokal and Rohlf 1995) were used to detect
whether the distribution of errors differed between the con-
ditions. The performance with random and real spectra was
compared under each condition of introduced error. Finally,
to determine whether there was any depth-dependent effect
on the accuracy of depth estimates, the depth estimate error
and actual depth were recorded for 1,000 simulations under
medium error conditions (with real endmembers and 5% er-
ror in all three terms).

Results

In 16 of the 19 experimental conditions, the technique
found a solution for depth in more than 99% of simulations.
In the remaining three conditions (real endmembers with
10% sensor error alone and with 10% and 20% error on all
three terms), slightly less than 98% of simulations were able
to resolve depth. This indicates a relatively high sensitivity
of the technique to sensor error as opposed to either end-
member or k-value errors.

The accuracy of depth estimates where realistic endmem-
bers were used with a 10% sensor, endmember, and k-value
error are shown in Figs. 3–5, respectively. For a depth range
of 10 m, 87% of the depth estimates were within 1 m when
10% sensor error was introduced (Fig. 3). Depth errors were
greater when a comparable endmember error was introduced
(81% within 1 m, Fig. 4) but similar to k-value error (88%
of estimations within 1 m, Fig 5). Kolmogoroff–Smirnoff
tests confirmed that the distribution in Fig. 4 differed sig-
nificantly from those in Figs. 3 and 5 (in both cases, P ,
0.001), but the latter did not differ significantly from each
other (P 5 0.055). When 10% errors were introduced from



486 Hedley and Mumby

Fig. 5. Error on depth estimates with 10% k-value error only;
88% of estimates within 1 m of accuracy.

Fig. 7. Error on endmember proportion estimates with 5% mea-
surement error, 5% endmember error, and 5% k-value error.

Fig. 6. Error on depth estimates with 10% measurement error,
endmember error, and k-value error; 65% of estimates within 1 m
of accuracy.

Fig. 8. Average error on depth estimates as a function of depth
from a run with 5% measurement error, 5% endmember error, and
5% k-value error. Error bars represent 61 SE on the mean of depth
estimate errors.

all three sources, only 65% of depth estimates were within
1 m (Fig. 6). However, whereas these introduced errors had
a moderate effect on depth estimates, their effect on the es-
timation of endmember quantities was relatively small. With
5% errors introduced into all three terms, 90% of simulations
had an average error on the endmember proportions of
,0.18 (Fig. 7). When a 20% error was introduced to all three
terms, 53% of depth estimates were within 1 m and the
average error on the endmember proportions was ,0.21 in
90% of cases.

A further nine a-corrected Kolmogoroff–Smirnoff tests
were performed to detect differences between the conditions
of real and random endmember spectra. The distribution of
errors on the depth estimates with no introduced error
showed no significant difference (P 5 0.18) between the
realistic and random conditions (in both cases, there was no
error on the depth estimates for all 1,000 simulations). With
any error source of 5 or 10%, the technique performed sig-

nificantly differently with random than with realistic end-
members, (in all cases, P , 0.001). In fact, the overall ac-
curacy was somewhat better with realistic spectra, random
spectra giving only 73% of depth estimates within 1 m with
10% sensor error and 79 and 73% for comparable endmem-
ber and k-value errors, respectively. It is interesting to note
that the condition in which realistic endmembers fared worse
(on endmember error) was the most accurate with random
endmembers.

To ascertain whether there was any depth-dependent effect
on the accuracy of depth estimates, a frequency histogram
of the average error in depth estimates was plotted against
actual depth for one run (with real endmembers and 5% error
in all three terms, Fig. 8). The slight bimodal aspect of this
chart is an inevitable artifact of the analysis: because the
method only looks for depth estimates in the range 22 to
12 m, actual depths at the extreme ends (close to 0 or 10
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m) can produce physically larger estimate errors (#12 m)
than those in the middle (for an actual depth of 5 m, the
maximum estimate error is 7 m). However, despite this ar-
tifact, there is a clear depth-dependent effect in the accuracy
of depth estimates. Errors increase for greater depths, with
an average error of .1 m at depths of 9–10 m, compared
to ,0.5 m in the range 0–1 m (Fig. 8).

Discussion

Although the formulation of the technique gives a solution
for z defined precisely in mathematical terms, it was not
initially clear how robust its performance would be when
errors of the kind found in real data were introduced. It was
possible that these inconsistencies could result in many fail-
ures to find a solution for z or wildly inaccurate values for
solutions that were found. On the contrary, testing has shown
that, with realistic data, the technique is robust against mod-
est errors (i.e., 80% of depth estimates were within 1 m when
various sources of error were introduced).

The sensitivity of the method was actually slightly better
for real coral reef spectra than for random spectra, which
gave a similar distribution of errors but with a wider range.
As regards numerical input to the technique, these real spec-
tra perform slightly better than could be expected at random.
This observation is encouraging because the spectral differ-
ences between reef substrata (which in this case included
two coral genera) can be subtle (Holden and LeDrew 1998;
Clark et al. 2000). Importantly, 90% of the unmixing of end-
member proportions was accurate to within 0.18 (of the pos-
sible range 0–1), with moderate introduced errors, and with-
in 0.21 even under conditions of the most introduced errors
(20% on all three terms). Errors on the depth estimates that
are somewhat larger under this condition (only 53% of es-
timates were within 1 m) implies that, under the model used
here, spectral unmixing is fairly insensitive toward errors in
the depth estimation. Again, this result is encouraging for
the use of spectral unmixing when mapping benthic substrata
in aquatic systems.

The application of the technique to field data requires sev-
eral caveats. Like spectral unmixing in terrestrial systems,
the technique fails if the endmember spectra do not mix
linearly (i.e., if the spectral mix does not equal the spatial
mix of endmembers). In this case, however, such nonline-
arity disrupts both the estimation of depth and endmember
quantities. A second potential problem is the existence of
unknown endmembers. However, simulations indicate that
the technique is robust against a finite number of unknown
endmembers mixing in small fractions because such effects
would be similar to the sensor errors introduced here.

Simulations suggest that the error in depth estimates in-
creases as depth increases. As depth increases, the spectral
signal from the benthos becomes more attenuated, so noise
in the sensor (and from other sources) will increasingly mask
the information that can be resolved. Although increased wa-
ter clarity would improve the depth range over which the
method could be applied, attenuation must occur in some
bands in order for depth to be calculated. For example, spec-
tral bands in the wavelength region of least attenuation (e.g.,

;400–500 nm in the clearest natural waters, Smith and Bak-
er 1981) alone might not contain sufficient information to
resolve depth. For maximal applicability over a range of
depths, a selection of spectral bands with differing attenua-
tion in water should be chosen.

Currently, the method as outlined is best suited for appli-
cation to airborne hyperspectral remotely sensed data (e.g.,
from CASI or AVIRIS). The majority of satellite sensors do
not record in a sufficient number of spectral bands, the ab-
solute minimum requirement being the number of endmem-
bers plus two. However, this situation is likely to change in
the future (e.g., with the recent launch of the Hyperion hy-
perspectral sensor). Radiometric correction of the remotely
sensed signal would be beneficial, and possibly necessary,
if the method is to be applied to satellite sensed data.

One strength of the technique is that it is not necessarily
dependent on any particular model of light attenuation in
water. As long as the model used can be characterized in
every parameter other than depth, then depth remains the
single variable to be solved for. For example, backscatter
can be incorporated by using the equation (Bierwirth et al.
1993)

22k z 22k zi iR 5 R e 1 R (1 2 e ) (11)d 0 W

where RW is the apparent reflectance of deep water in band
i. As long as the spectral signal of deep water (values of RW)
is known, this can be used in place of Eq. 1 to modify the
endmember spectra. The incorporation of backscatter is po-
tentially very important because under most circumstances
where the bottom is deeper than a few meters, the back-
scatter term can no longer be neglected even in clear waters
(Philpot 1987; Lee et al. 1994). A priority for future inves-
tigation is whether incorporating backscatter will have an
effect on the dynamics of the technique.

The technique can also be improved by incorporating the
possibility of variation in endmember spectra. The current
formulation assumes that each endmember can be repre-
sented by a single ‘‘ideal’’ reflectance spectrum. In practice,
a single endmember will exhibit variation around a mean
spectrum. Corals, for example, exhibit intraspecific variation
in reflectance spectra (Clark et al. 2000). Currently, all var-
iation outside of that which can be explained as linear mix
of idealized endmembers is utilized to resolve depth (and
hence assumed to be the result of depth). An improved meth-
od would partition the variation that is accountable by var-
iation in endmembers from that which should be attributed
to depth. This would give a greater degree of freedom to the
model and hence affect the ability to resolve depth nega-
tively. However, a least squares approximation technique
based on this approach (Shimabukuro and Smith 1991)
might be more accurate and robust overall.
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S. ANDRÉFOUËT. 2000. Spectral discrimination of coral mor-
tality states following a severe bleaching event. Int. J. Remote
Sens. 21: 2321–2327.

FOODY, G. M., AND D. P. COX. 1994. Sub-pixel land cover com-
position estimation using a linear mixture model and fuzzy
membership functions. Int. J. Remote Sens. 15: 619–631.

GREEN, E. P., P. J. MUMBY, A. J. EDWARDS, AND C. D. CLARK.
1996. A review of remote sensing for the assessment and man-
agement of tropical coastal resources. Coast, Manag. 24: 1–
40.

, , , AND . 2000. Remote sensing hand-
book for tropical coastal management. UNESCO.

HOLDEN, H. M., AND E. F. LEDREW. 1998. The scientific issues
surrounding remote detection of submerged coral ecosystems.
Prog. Phys. Geogr. 22: 190–221.

JUPP, D. L. B. 1988. Background and extensions to depth of pen-
etration (DOP) mapping in shallow coastal waters, p. IV.2.1–
IV.2.19. In Proceedings of the International Symposium on Re-
mote Sensing of the Coastal Zone, Gold Coast, Queensland.

KIMES, D. S., J. A. SMITH, AND K. J. RANSON. 1980. Vegetation
reflectance measurements as a function of solar zenith angle.
Phot. Eng. Remote Sens. 46: 1563–1573.

LEDREW, E., H. HOLDEN, D. PEDDLE, J. MORROW, R. MURPHY, AND

W. BOUR. 1995. Towards a procedure for mapping coral stress
from SPOT imagery with in situ optical correction, p. 211–
219. In Proceedings of the 3rd Thematic Conference on Re-
mote Sensing of the Marine Coastal Environment. V. 1.

LEE, Z., K. L. CARDER, S. K. HAWES, R. G. STEWARD, T. G. PEA-
COCK, AND C. O. DAVIS. 1994. Model for the interpretation of
hyperspectral remote-sensing reflectance. Appl. Opt. 33: 5721–
5732.

, , R. F. CHEN, AND T. G. PEACOCK. 2001. Properties
of the water column and bottom derived from Airborne Visible

Infrared Imaging Spectrometer (AVIRIS) data. J. Geophys.
Res. 106: 11,639–11,651.

LYZENGA, D. R. 1978. Passive remote sensing techniques for map-
ping water depth and bottom features. Appl. Opt. 17: 379–383.

MANLY, B. F. J. 1994. Multivariate statistical methods, 2nd ed.
Chapman & Hall.

MARITORENA, S., AND N. GUILLOCHEAU. 1996. Optical properties
of water and spectral light absorption by living and non-living
particles and by yellow substances in coral reef waters of
French Polynesia. Mar. Ecol. Prog. Ser. 131: 245–255.

MATHER, P. M. 1999. Computer processing of remotely-sensed im-
ages, 2nd ed. Wiley.

MOBLEY, C. D. 1994. Light and water. Academic.
MUMBY, P. J., J. R. M. CHISHOLM, C. D. CLARK, J. D. HEDLEY,

AND J. JAUBERT. 2001. A bird’s-eye view of the health of coral
reefs. Nature 413: 36.

NORDMAN, M. E., L. WOOD, J. L. MICHALEK, AND J. J. CHRISTY.
1990. Water depth extraction from Landsat-5 imagery, p.
1129–1139. In Proceedings of the 23rd International Sympo-
sium on Remote Sensing of the Environment.

PEDDLE, D. R., E. F. LEDREW, AND H. M. HOLDEN. 1995. Spectral
mixture analysis of coral reef abundance from satellite imagery
and in situ ocean spectra, Savusavu Bay, Fiji, p. 563–575. In
Proceedings of the 3rd Thematic Conference on Remote Sens-
ing of the Marine Coastal Envirnoment. V. 2.

PHILPOT, W. D. 1987. Radiative-transfer in stratified waters—a sin-
gle scattering approximation for irradiance. Appl. Opt. 26:
4123–4132.

SEDGEWICK, R. 1988. Algorithms, 2nd ed. Addison-Wesley.
SHIMABUKURO, Y. E., AND J. A. SMITH. 1991. The least-squares

mixing models to generate fraction images derived from re-
mote sensing multispectral data. IEEE Trans. Geogr. Remote
Sens. 29: 16–20.

SMITH, R. C., AND K. S. BAKER. 1981. Optical properties of the
clearest natural waters. Appl. Opt. 20: 177–184.

SOKAL, R. R., AND F. J. ROHLF. 1995. Biometry, 3rd ed. Freeman.

Received: 21 August 2001
Amended: 3 December 2001

Accepted: 2 January 2002


