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Abstract

If the benthic boundary in optically shallow waters is spatially inhomogeneous or sloping, the underwater light
field is inherently three-dimensional (3D). Numerical simulations of 3D underwater radiances were made for en-
vironmental conditions observed in shallow Bahamian waters. The simulations show that if the pattern of bottom
reflectance for an inhomogeneous but level bottom has a spatial scale much smaller than the bottom area seen by
a radiometer, the inhomogeneous bottom can be replaced by a homogeneous bottom whose reflectance is the area-
weighted average of the actual bottom reflectances. For large-scale patterns of bottom reflectance, the 3D light fields
near the edges of bottom patches of different reflectances can be predicted from analytical models incorporating
the sensor geometry and one-dimensional (1D) light fields computed for homogeneous bottoms, with errors of order
10% when compared to the exact 3D solutions. The same holds true for uniformly sloping bottoms, whose 3D light
fields can be modeled in terms of the 1D light fields computed for level bottoms, with errors of less than 10% for
bottom slopes of 208 or less.

Optically shallow bottoms affect the reflected, upwelling
radiance in various ways. Mobley et al. (2003) investigated
how the bidirectional reflectance distribution function
(BDRF) of a level homogeneous bottom determines the
magnitude and angular distribution of the bottom-reflected
radiance. If the bottom is inhomogeneous, or patchy, the
upwelling radiance is a spatial function of horizontal location
as well as depth; the same is true if the bottom is not level.
This paper considers the effects of patchy and sloping bot-
toms on the upwelling radiances.

One-dimensional (1D) radiative transfer models like Hy-
drolight (Mobley et al. 1993; Mobley 1994) are computa-
tionally extremely fast. However, to achieve their mathe-
matical efficiency, such models require that the water
inherent optical properties (IOPs, namely the absorption co-
efficient and the volume scattering function) and the bound-
ary conditions (the sea surface wave statistics and the bottom
BRDF) be horizontally homogeneous. Thus, the computed
in-water light field can vary spatially with depth, but not
with horizontal location. If the bottom BRDF varies with
position, or if the bottom is not level, then the assumption
of a horizontally homogeneous bottom boundary condition
is violated and 1D models cannot be used. In these cases,
the inherently three-dimensional (3D) light field generated
by horizontal variations in the bottom boundary condition
can be computed by Monte Carlo techniques.

Consider, for example, a level bottom with a large sea-
grass patch next to a large sand patch. In principle, the entire
light field is then 3D. However, near the center of the sea-
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grass patch, far from its boundary with the sand, a 1D model
that assumes an infinitely large, homogeneous patch of sea-
grass may be able to predict the light field with sufficient
accuracy for the problem at hand. Likewise, near the center
of the sand patch, the light field may be essentially 1D. Near
the grass–sand boundary, the light field will show effects of
both bottom types, and a 3D model must be used for exact
computation of the light field. However, the computer times
required for 3D Monte Carlo calculations are vastly greater
than for 1D Hydrolight calculations, both because of the dif-
ferent numerical techniques used to solve the radiative trans-
fer equation and because of the additional calculations re-
quired for 3D versus 1D geometries. It is therefore of interest
to quantify when bottom-induced 3D effects on the upwell-
ing radiance are large enough to warrant the computational
expense of Monte Carlo techniques, and when the 3D light
field can be adequately approximated by a 1D light field.
Near the grass–sand boundary just mentioned, it may even
be possible to approximate the true 3D light field by some
combination of the 1D grass and sand solutions. If this is
indeed the case, the computational savings would be consid-
erable. Likewise, if the bottom is not level, 3D Monte Carlo
techniques must be used. However, it may be possible to
approximate the true 3D light field at a given horizontal
location by a 1D light field computed using the depth at that
location, after some correction for the bottom-slope effect is
applied to the 1D solution. This paper investigates the errors
in such 1D approximations to 3D light fields.

The BMC3D model

To compute 3D light fields, we developed a backward
Monte Carlo (BMC) 3D computer code (named BMC3D)
capable of simulating in-water light fields for various inho-
mogeneous bottom conditions. Collins et al. (1972) and Gor-
don (1985) describe the mathematical details of the BMC
computational technique. In brief, as illustrated in Fig. 1, the
BMC technique emits simulated photon packets from the



330 Mobley and Sundman

Fig. 1. Illustration of backward Monte Carlo ray tracing. The
photon packets are traced from the sensor to the sky, rather than
from the sky to the sensor.

sensor in an angular pattern determined by the radiometric
quantity being computed—radiance, plane, or scalar irradi-
ance. The photon packets are then traced using standard
Monte Carlo techniques (e.g., Mobley et al. 1993; Mobley
1994) as the photon packets interact with the water body,
the bottom, and the sea surface. Whenever a photon packet
strikes the bottom, the BRDF at that location is used as a
bivariate probability distribution function to determine the
polar and azimuthal directions and the weight of the reflected
photon packet. Thus any bottom geometry or reflectance pat-
tern can be incorporated into the BMC3D code by defining
the bottom depth as a function of horizontal location and the
BRDF to be used at each bottom point. Whenever a photon
packet exits the sea surface heading toward the sky, it is
weighted by the sky radiance in that direction and tallied as
a contribution to the power received by the in-water sensor.
This is equivalent to tracing a photon packet traveling in the
opposite direction from the sky to the sensor. One advantage
of the BMC artifice is that only photon packets connecting
the sky and the sensor are traced. No photon packets miss
the sensor, as would be the case in a forward computation
in which photon packets are traced from the sky into the
water, of which only a few eventually would enter the sensor
at a particular location and orientation. The BMC3D calcu-
lations thus have no wasted photons and the code is conse-
quently very efficient for a Monte Carlo simulation. Another
advantage of the BMC technique is that it can simulate point
sensors and radiances as measured by an idealized sensor
having a Dirac delta-function angular response. Neither point
sensors nor delta-function responses can be simulated with
forward Monte Carlo techniques. The BMC3D code does
not employ any variance reduction techniques.

The BMC3D code uses a Cartesian (x, y, z) coordinate
system to locate the sensor and specify the bottom boundary.
Here x and y are horizontal coordinates lying in the plane
of the mean sea surface and oriented as appropriate for the
problem at hand. The depth z is measured positive down-
ward from the mean sea surface; the bottom depth at hori-

zontal position (x, y) is then z 5 zb(x, y). For example, x #
0 might be a half plane with a bottom covered by seagrass,
and x . 0 might be a half plane with a sandy bottom. The
origin of the coordinates would then be at the sea surface
directly above the grass–sand boundary. The sensor can be
placed at any (x, y, z) position within the water, and it can
be oriented in any direction (u, w), where u is measured from
the 1z (nadir) direction and w is measured from the 1x
direction. Thus, a radiance sensor pointing in the u 5 0
direction is collecting photons heading in the u 5 1808 di-
rection; i.e., it is measuring the upwelling radiance Lu. The
sensor angular response is specified by polar angle a and
azimuthal angle b. Angle a 5 0 along the sensor’s optical
axis, i.e., a 5 0 in the sensor viewing direction (u, w); b is
measured from some convenient direction. In BMC simu-
lations, a delta-function sensor response is then simulated by
emitting all photons with a 5 0. Most sensors have respons-
es that are symmetric about their optical axis, in which case
b is randomly chosen from a uniform distribution over 0 to
2p. A cosine response (as used in measuring the plane ir-
radiance) is simulated by emitting the photons in randomly
chosen directions (a, b), with a being determined from a
probability distribution that reproduces the cosine response
(namely, a 5 sin21 ÏR, where R is a random number
drawn from a uniform 0 to 1 distribution). A measured sen-
sor response S(a) can be used to determine the distribution
of photons as a function of a appropriate to any actual sen-
sor.

Our interest here is on bottom effects. The simulations
below therefore assume the water body itself to be homo-
geneous, i.e., the IOPs are independent of depth and hori-
zontal location. When a photon packet crosses the mean sea
surface, a tilted wave facet is randomly generated using
Cox–Munk wave slope statistics (Cox and Munk 1954; see
Mobley 1994 for computational details), which reproduce
the slope statistics of actual gravity-capillary wave sea sur-
faces for the given wind speed. This tilted wave facet is used
to compute the directions and weights of the reflected and
refracted photon packets according to Fresnel’s law and the
angle of incidence of the photon packet onto the tilted wave
facet. The possibility of multiple scattering between surface
wave facets is ignored. The close agreement of BMC3D and
Hydrolight (which does include multiple interactions be-
tween surface wave facets) for comparable situations indi-
cates that the error associated with ignoring multiple scat-
tering between surface wave facets is negligible for solar
positions and viewing directions away from the horizon
(when wave shadowing may be important). The sky radiance
distribution for given atmospheric conditions is determined
using a combination of the Radiance Transmittance RAD-
TRAN atmospheric model (Gregg and Carder 1990) for the
spectral plane irradiance and the Harrison and Coombes
(1988) semianalytical model for the directional pattern of the
sky radiance relative to the sun’s location; these same models
are used in Hydrolight for computing sky radiances.

Mobley et al. (2003) showed that for sand and various
vegetation canopies a non-Lambertian bottom BRDF can be
replaced by a Lambertian BRDF having the same irradiance
reflectance Rb, and the resulting errors in the upwelling ra-
diances will be no more than 10% for solar angles and view-
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ing directions relevant to much ocean-color remote sensing
or in-water observation of the bottom using ambient light.
To simplify the BMC3D calculations, we therefore assume
the bottom to be a Lambertian reflector at each point, al-
though the bottom reflectance Rb can depend on horizontal
location and wavelength. (The BMC3D code can simulate
non-Lambertian bottoms, but at considerable computational
expense if the BRDF is not a simple analytical function.)
The bottom need not be level in the BMC3D code. For non-
level bottoms, the Lambertian BRDF is applied to the tan-
gent plane to the bottom at the point where the photon packet
intersects the bottom.

The BMC3D code was debugged using a combination of
hand checking, comparison with Hydrolight for comparable
simulations using homogeneous bottoms (e.g., the points at
x 5 6` in Figs. 2 and 4 below), and comparison with ide-
alized situations (e.g., no absorption or no scattering) for
which analytic solutions of the radiance could be obtained.

Environmental conditions

Our intention in this paper is to illustrate 3D bottom ef-
fects on upwelling light fields for environmental conditions
relevant to remote sensing in clear, optically shallow waters;
we do not perform an exhaustive study for all water types.
For the simulations below, we therefore selected water IOPs
and bottom conditions typical of those measured near Lee
Stocking Island, Bahamas during the Coastal Benthic Opti-
cal Properties (CoBOP) field experiments in 1999 and 2000.
These waters are visually quite clear with underwater visi-
bilities of 10 m or more. The total (water plus dissolved
substances plus particles) absorption coefficients are at a
minimum at blue wavelengths. In one instance (channel
marker site 1, 24 May 1999) the total absorption coefficient
at 480 nm, as obtained from ac-9 measurements, was a 5
0.05 m21 and the scattering coefficient was b 5 0.28 m21.
These values give a beam attenuation coefficient of c 5 a
1 b 5 0.33 m21; one optical depth, 1/c, is then 3 m. The
corresponding albedo of single scattering is v0 5 b/c 5 0.85,
which indicates scattering-dominated water. The total IOPs
as measured at 658 nm were a 5 0.40 and b 5 0.20, for
which v0 5 b/c 5 0.33, which indicates absorption-domi-
nated water. The scattering phase function was not measured;
we therefore use the average particle phase function defined
in Mobley et al. (1993). The contribution by sea water to
the total scattering at 480 nm is only 0.0034 m21, which
justifies the use of a particle phase function for the total
phase function. The wind speed was taken to be 5 m s21,
and the sky was clear.

A bottom reflectance of Rb 5 0.05 at 480 nm is typical
of seagrass leaves measured at the CoBOP site and of var-
ious algae (Maritorena et al. 1994). The visually bright ooid
sands at the CoBOP site typically have a reflectance near Rb

5 0.5 at 480 nm. We use these values to simulate the ex-
tremes encountered in bottom reflectances.

Small-scale patch effects

We first consider the effects of variations in the bottom
reflectance that are of a much smaller spatial scale than the

bottom area ‘‘seen’’ by the sensor. Such a situation would
occur, for example, if seagrass leaves were viewed against a
sand substrate by a radiance sensor whose field of view in-
cluded many individual leaves.

To simulate this situation, the bottom was modeled as a
checkerboard pattern of two different reflectances. The
checkerboard squares were given a size of 0.01 m on a side.
To represent 25% grass coverage seen against a sand sub-
strate, for example, 25% of the checkerboard squares were
given a reflectance of Rb 5 0.05 and the remaining squares
were given the sand reflectance Rb 5 0.5. A radiance sensor
with a 58 half angle field of view located at the surface in 5
m of water would see a circle of radius (5 m) 3 tan 58 5
0.44 m on the bottom. (This sensor response was chosen for
comparison with Hydrolight, which has a 58 half angle polar
cap.) This sensor footprint would include about 6,000 indi-
vidual squares. Simulations of this type with the BMC3D
code show that the radiance computed for the checkerboard
bottom with two different reflectances differs less than 1%
from the radiance computed for a uniform bottom having the
same area-weighted reflectance. Thus the 25% grass, 75%
sand bottom just mentioned can be replaced by a uniform
bottom having a reflectance of Rb 5 0.25 3 0.05 1 0.75 3
0.5 5 0.3875. In the present situation, the Hydrolight results
agreed with the uniform-bottom BMC3D results to within
1%, which represents statistical fluctuations in the BMC3D
estimates.

These results indicate that in simulations of bottoms with
small-scale variability compared to the sensor footprint, a
1D model like Hydrolight can be used with an area-weighted
bottom reflectance determined from the actual bottom re-
flectances. The more expensive 3D simulation is unneces-
sary.

Large-scale patch effects

If the bottom patches are large compared to the sensor
footprint, we can anticipate ‘‘edge effects’’ near the bound-
aries of the large patches. We thus investigated the 3D light
field near the edge of semiinfinite bottom patches of greatly
different reflectances. The BMC3D coordinate system was
chosen with the x axis perpendicular to the boundary be-
tween the two bottom types and the y axis lying along the
boundary. Bottom type 1, x # 0, has the grass reflectance
Rb 5 0.05; bottom type 2, x . 0, has the sand reflectance
Rb 5 0.5. The bottom was level at a depth of zb 5 5 m (1.65
optical depths at 480 nm). The sun was placed at a zenith
angle of 608 in air in the 1x (w 5 0) direction.

In the first simulation, BMC3D was used to compute the
upwelling plane irradiance just below the sea surface, Eu(x,
z 5 0), as the sensor is moved across the grass–sand bound-
ary. The diamonds in Fig. 2 show the irradiances as com-
puted by one series of BMC3D runs. The cluster of dia-
monds plotted at x 5 0 shows the results from 10
independent runs (each starting with a different seed for the
random number generator). The spread of these points gives
a qualitative indication of the magnitude of the statistical
noise in the BMC3D estimates of Eu(x, z 5 0). The dashed
lines at Eu 5 0.036 and 0.167 W m22 nm21 show the irra-
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Fig. 2. Simulations of the upwelling plane irradiance just below
the sea surface across a grass–sand boundary at x 5 0. Line type
and symbols identify the model used.

Fig. 3. Contribution of bottom-reflected light to the upwelling
irradiance and radiance just below the sea surface, as computed by
Eq. 1: (a) Eu for highly scattering water (v0 5 0.85); (b) Eu for
highly absorbing water (v0 5 0.33); (c) Lu for highly scattering
water; (d) Lu for highly absorbing water. The solid lines are for a
zenith sun, and the dashed lines are for a solar zenith angle of 608
in air. The upper pair of lines in each panel is for a bottom reflec-
tance of Rb 5 0.05, and the bottom pair is for Rb 5 0.50. The dots
in panel a correspond to the simulation of Fig. 2.

diances computed by Hydrolight for homogeneous bottoms
with reflectances of 0.05 and 0.5, respectively. The points
labeled x 5 6` are the BMC3D values obtained for simu-
lations of infinite homogeneous bottoms. These values agree
with Hydrolight to within a few percent; the difference can
be attributed to statistical noise in the Monte Carlo simula-
tions. The BMC3D values show a transition zone between
the grass and sand bottoms that extends horizontally about
twice the water depth. At distances from the grass–sand
boundary greater than ;10 m, the sensor is primarily influ-
enced by only one bottom type and the 1D solution provides
an approximation to the exact 3D solution that is accurate
to within 10% or better.

Each BMC3D-computed point in Fig. 2 required about 20
min of computer time (on a 600 MHZ PC) when 106 photons
were initialized. A corresponding Hydrolight run for a ho-
mogeneous bottom requires only 3 s and gives the entire
radiance distribution at all depths, not just the surface up-
welling irradiance being studied here. Thus there is great
computational incentive to model the 3D light field in the
transition region near the grass–sand boundary in terms of
the respective 1D Hydrolight solutions, which are valid far
from the boundary.

To lay the foundation for such a simplified model, we next
investigate how much of the upwelling irradiance or radiance
at the water surface is due to light that has reflected off of
the bottom itself and how much is due to light that has been
scattered upward within the water column, without ever hav-
ing interacted with the bottom. A series of Hydrolight runs
was performed for a totally absorbing (black) bottom defined
by Rb 5 0, for a dark bottom (like dense seagrass) with Rb

5 0.05, and for a highly reflecting bottom (like ooid sand)
with Rb 5 0.50. A measure of the contribution of the bottom-
reflected light to the upwelling irradiance at the sea surface,
Eu(z 5 0), is the ratio

E (R 5 0)u bE 5 (1)ratio E (R . 0)u b

If this ratio is zero, the water column is contributing nothing
to the upwelling irradiance; this is the limit as the bottom
depth goes to zero. If this ratio is one, the bottom is con-
tributing nothing; this occurs as the bottom depth becomes
infinite. A similar ratio can be defined for the upwelling
radiance Lu.

Figure 3 shows these ratios as functions of bottom depth
and reflectance for solar zenith angles (in air) of 0 (solid
lines) and 608 (dashed lines), and for highly scattering (v0

5 0.85; panels a and c) and highly absorbing (v0 5 0.33;
panels b and d) water IOPs. The conversion from optical
depth z 5 cz to geometric depth z in meters is based on the
IOPs at 480 and 658 nm, as described above. The two dots
in panel a correspond to the 5-m bottom depth and 608 solar
angle used to generate Fig. 2. This figure shows that for
bright bottoms at less than a few optical depths, most of the
upwelling light at the surface has interacted with the bottom.
The water column has a greater contribution to the upwelling
light for the 608 solar zenith angle than for the sun at the
zenith simply because the solar direct beam path within the
water is longer for a given bottom depth. These simulations
do not separate the contributions of photons that travel di-
rectly from the bottom to the sensor from the contributions
of bottom-reflected photons that have been scattered again
within the water column. However, the highly forward peak-
ed nature of the scattering phase function implies that the
majority of photons travel almost directly from the bottom
to the sensor when the bottom depth is no more than a few
photon mean free paths 1/c (3 m at 480 nm and 1.67 m at
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658 nm in the present simulations); this is the case for the
shallow bottom depths of interest here. For a given bottom
optical depth and reflectance, the bottom contribution is less
for highly absorbing waters than for highly scattering waters.

We now construct an analytical model for the upwelling
irradiance Eu(x, z 5 0), as was computed for Fig. 2. The
upwelling plane irradiance just below the sea surface is by
definition

E (x, y, z 5 0) 5 L (x, y, z 5 0, u, w)zcos u z dV (2)u E u

Ju

where Lu is the upwelling radiance. Ju is the set of all up-
ward directions, p/2 # u # p and 0 # w # 2p ; and dV 5
sinu du dw is the differential element of solid angle. As just
discussed, in optically shallow waters the upwelling radiance
will be dominated by bottom-reflected radiance that travels
almost directly from the bottom to the sensor. We thus as-
sume that we can ignore the path radiance contribution to
Lu, i.e., we ignore the scattering by the water column itself
of the solar beam into the sensor. The radiance at the surface,
Lu(x, y, 0, u, w), then arises from the upward-reflected ra-
diance at the bottom, z 5 zb, attenuated along the path from
the bottom to the surface:

L (x, y, 0, u, w) 5 L (x9, y9, z9, u, w)exp(2cz9 / zcos u z) (3)u u b b

Here (x9, y9, z ) is the point on the bottom where radiance9b
reflected into direction (u, w) reaches the surface at location
(x, y, 0). Substituting Eq. 3 into Eq. 2, we can rewrite the
integral as a sum of integrals over the two bottom types:

E (x, y, z 5 0)u

5 L (x9, y9, z9, u, w)exp(2cz9 / zcos u z)zcos u z dVE u b b

J(1)

1 · · · (4)E
J(2)

Here J(1) is the set of (u, w) directions that ‘‘sees’’ bottom
type 1 from point (x, y, 0), and J(2) is the set of directions
that sees bottom type 2. The integral over J(2) has the same
form as the integral over J(1). The set of all upward direc-
tions is Ju 5 J(1) 1 J(2).

For a Lambertian bottom, the upwelling radiance at the
bottom is related to the upwelling and downwelling irradi-
ances by

L (x9, y9, z9, u, w) 5 E (x9, y9, z9)/p 5 R (x9, y9, z9)E /pu b u b b b d

Hydrolight simulations show that the bottom boundary re-
flectance Rb seldom perturbs the downwelling irradiance by
more than a few percent, even for optically very shallow
waters. For example, in the extreme cases of Rb 5 0.05
versus 0.50 at a depth of 1 m in water with the highly scat-
tering IOPs described above, Ed at the bottom varies by only
9% about the mean value, although the two Eu values differ
by an order of magnitude; for deeper waters the variation is
less (e.g., Ed at the bottom varies by less than 4% when the
bottom depth is 5 m). Thus, it is reasonable to assume that
the bottom type does not perturb the downwelling irradiance,

in which case the upwelling irradiance at the bottom will
depend on the bottom type via the bottom reflectance Rb, but
not on the location within a bottom patch of a given type.
The upwelling irradiance then can be replaced by the up-
welling irradiance computed by a 1D model for the bottom
reflectance of the particular bottom type. Equation 4 can then
be written as

E (x, y, z 5 0)u

E (1; z )u b5 exp(2cz / zcos u z)zcos u z dVE bp
J(1)

E (2; z )u b1 exp(2cz / zcos u z)zcos u z dV (5)E bp
J(2)

Here arguments 1 and 2 have been added to the irradiances
to indicate that these values are computed by a 1D model
for bottom types 1 or 2. To the same level of approximation
as Eq. 4, the 1D irradiances at the surface can be written in
terms of the irradiances at the bottom, e.g.,

E (1; z 5 0)u

1
5 E (1; z ) exp(2cz / zcos u z)zcos u z dV (6)u b E bp

J

with a corresponding equation for bottom type 2.
Finally, we note that the cos u factor in Eq. 2 is just the

angular response function S(a) for a plane irradiance sensor:
a 5 u for a sensor whose optical axis is oriented downward.
This factor can be replaced by any other sensor response
S(u) to describe other radiometric variables. With this gen-
eralization, and using Eq. 6 to write Eu(i; zb) in terms of Eu(i;
0), i 5 1 or 2, Eq. 5 becomes

E (x, y, 0) 5 E (1; 0)w(1; x, y) 1 E (2; 0)w(2; x, y) (7)u u u

where w(i; x, y) is the weighting function for bottom type i,
which in general is given by

exp[2cz / zcos u z]S(u) dVE b

J(i)
w(i; x, y) 5 (8)

exp[2cz / zcos u z]S(u) dVE b

J

For the plane irradiances of Eq. 7, the sensor response func-
tion in Eq. 8 is S(u) 5 cos u. Equation 7 can be generalized
to any number of bottom types; note that Si w(i; x, y) 5 1.

Equations 7 and 8 give a conceptually simple analytical
model for the 3D upwelling irradiance at any horizontal lo-
cation (x, y) in terms of the 1D irradiances computed for
homogeneous bottoms of the various types, and in terms of
weighting functions that depend only on the water beam at-
tenuation coefficient c and the viewing geometry of the var-
ious bottom patches as seen from location (x, y). The weight-
ing functions generally need to be computed numerically,
but evaluation of these integrals is much faster than per-
forming 3D Monte Carlo simulations. The adequacy of the
assumptions leading to this model of course depends on the
water IOPs and bottom depth and reflectance of each specific
situation.
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Fig. 4. Simulations of the upwelling radiance as measured by a
TSRB across a grass–sand boundary at x 5 0. Line type and sym-
bols identify the model used. The inset shows the actual TSRB
sensor response used in the BMC3D calculations for the TSRB
curve.

The solid line in Fig. 2 shows Eu(x, 0) as predicted by
Eqs. 7 and 8. The 1D irradiances Eu(1; 0) and Eu(2; 0) were
computed by Hydrolight using the bottom reflectances of
Rb(1) 5 0.05 and Rb(2) 5 0.5, respectively. Near the grass–
sand boundary, the 1D Hydrolight values differ from the 3D
BMC3D values by up to 670%. The average of the 10
BMC3D runs plotted at x 5 0 differs from the analytical
model prediction by 3.6%. At the other points, the analytical
model of Eqs. 7 and 8 is never more than 10% from the 3D
values, and some (unknown) part of that difference is due
to statistical noise in the BMC3D values, rather than to the
inadequacy of the analytical model itself. Thus, for this par-
ticular set of water IOPs and bottom reflectances, the ana-
lytical model based on 1D calculations gives Eu to within
10% of the BMC3D values, but at a small fraction of the
computational cost.

Figure 4 shows the predicted values for the upwelling ra-
diance as would be measured by a tethered spectroradiome-
ter buoy (TSRB; Satlantic) being towed across the same
grass–sand boundary as was simulated in Fig. 2. The TSRB
radiance sensor is at a nominal depth of 0.7 m below the
sea surface. The TSRB sensor response S(a) is shown in the
inset of Fig. 4. The sensor response drops to half of its peak
value at an angle of a ø 98 and is almost 0 beyond 148. For
this water depth, the grass–sand boundary does not come
into the sensor field of view until the TSRB is closer than
4.3 tan (148) ø 1.1 m from the boundary.

As in Fig. 2, the dashed lines show the Hydrolight values
for Lu(z 5 0.7 m) computed for the two different bottom
reflectances. The diamond symbols show the Lu values as
predicted by the BMC3D code using the measured TSRB
angular response function. The triangle symbols show the Lu

values as predicted by BMC3D using a Dirac delta function
for the sensor response S(a), i.e., the simulated sensor has a
perfectly collimated acceptance direction. Because the ide-
alized delta-function sensor has a zero field of view, the

differences in the BMC3D and Hydrolight values, which are
noticeable within ;3 m of the boundary, can be attributed
to scattering effects within the water column. Scattering
blurs the boundary between the two bottom types, so that
when the sensor is above the grass, for example, it is de-
tecting some photons that originated from downwelling light
being reflected by the sand bottom and then being scattered
again by the water into the sensor. Note that the curves for
the actual TSRB sensor and the delta-function sensor are
almost identical for distances greater than 1 m from the
boundary, which indicates that the TSRB is receiving light
scattered by the water column but that it is not directly see-
ing the adjacent bottom type. When the TSRB is closer than
1.1 m to the boundary, its finite field of view also collects
light directly from both bottom types, which broadens the
Lu transition from one bottom type to the other.

The analytical model of Eqs. 7 and 8 is applicable to the
TSRB if the 1D Eu values of Eq. 7 are replaced by 1D values
for Lu(z 5 0.7 m), and the measured TSRB sensor response
is used for S(u) in Eq. 8. The resulting prediction for the 3D
Lu is shown by the solid line in Fig. 4. We see that these
values begin to depart from the Hydrolight values at ;1 m
from the boundary, where the sensor begins seeing the ad-
jacent bottom type in its field of view. The model values are
identical with Hydrolight farther from the boundary because
the model does not account for scattering within the water
column, which causes additional blurring of the boundary in
the BMC3D calculations. In this simulation, the analytical
model differs from the BMC3D values by as much as 25%
(near x 5 21 m), but this is still better than the 1D Hydro-
light values, which differ by 680% near the boundary.

These simulations show that the errors resulting if a 1D
radiative transfer model is used without correction to esti-
mate the upwelling light field near the boundary between
bottom types having much different reflectances can be
many tens of percent, compared to the correct 3D values.
However, the 3D edge effects can be analytically modeled
using the 1D values in combination with weighting functions
that incorporate water beam attenuation and sensor response
effects. The resulting estimates of the upwelling light fields
often have errors of less than 10%, and the computations
take seconds rather than minutes or hours. These errors are
proportionately less if the reflectances of the bottom patches
are closer in value than the order-of-magnitude difference in
Rb values used in these simulations.

Bottom-slope effects

We next consider the extent to which the 3D light field
induced by a sloping bottom can be approximated by a 1D
model. Figure 5 illustrates a radiance sensor at the sea sur-
face viewing a sloping bottom. The bottom slopes downward
in the 1x direction at an angle ub, measured from 0 for a
level bottom. The bottom depth directly below the sensor is
zb. The sun’s direct beam within the water has a zenith angle
of usw in the (x, y, z) coordinate system, which has x and y
parallel to the mean sea surface. The incident angle of the
sun’s beam onto the bottom is ui, measured from the normal
to the bottom. The sun’s azimuthal angle is ws, measured
from 0 in the 1x direction.
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Fig. 5. Geometry for simulation of a sloping bottom.

Fig. 6. Errors in the upwelling radiance that occur if a 1D model
with a level bottom is used instead of a 3D model with a sloping
bottom (solid lines). The azimuthal angle ws 5 0 indicates the sun
downslope, and ws 5 180 indicates the sun upslope (see Fig. 5).
The dashed lines are the errors obtained when the 1D, level-bottom
radiances are corrected by the model of Eq. 9.Using the same water IOPs at 480 nm as in the previous

simulations, the upwelling radiance just below the sea sur-
face, Lu(z 5 0), was computed for a variety of bottom-slope
angles ub, solar zenith and azimuthal angles, and bottom
depths and reflectances, using the BMC3D code. For com-
parison with Hydrolight, the radiance sensor was modeled
with a 58 top-hat response, i.e., S(a) 5 1 for 0 # a # 58,
and S(a) 5 0 for a . 58. Hydrolight was used to compute
Lu for the same conditions, except that the bottom had a
constant depth equal to the depth directly below the sensor
in the BMC3D simulations. The error in Lu, as computed by
the 1D Hydrolight model compared to the 3D BMC3D mod-
el, was computed as

L (1D) 2 L (3D)u upercent error 5 100
L (3D)u

The solid lines of Fig. 6 show the results for a solar zenith
angle of 458 in air, a bottom depth of 5 m directly below
the sensor, and a bottom reflectance of Rb 5 0.5. The error
in Lu resulting from using a 1D model instead of a 3D model
can be tens of percent or greater, especially when the sun is
upslope (ws 5 1808). This is the solar azimuthal angle that
causes the greatest change in cos ui, compared to the cos ui

value for a level bottom.
In optically shallow waters with a Lambertian bottom

BRDF, it is reasonable to assume that the primary effect of
the bottom slope is that it changes the sun’s incident angle
onto the bottom. If this is indeed the case, then it should be
possible to correct for the bottom slope by a simple adjust-
ment for the change in incident angle. If E⊥ is the irradiance
of the sun’s direct underwater beam measured on a surface
normal to the beam, then the irradiance onto a surface ori-
ented at angle ui is E⊥ cos ui. The ratio of the radiances
reflected by a sloping Lambertian bottom to that of a level
bottom is then

Rb slopeE cos u⊥ islopeL pu 5
levelL Ru b levelE cos u⊥ ip

where superscripts slope and level denote values for sloping
and level bottoms, respectively. Thus the 3D upwelling ra-
diance for the sloping bottom can be estimated from the 1D
value computed for a level bottom by the simple equation

slopecos uislope levelL 5 L (9)u u levelcos ui

The angle of incidence onto the sloping bottom is given by

slopecos u 5 sin u sin u cos w 1 cos u cos u (10)i b sw s b sw

where all angles are measured in water, i.e., usw is the sun’s
zenith angle after refraction through the sea surface.

The dashed lines of Fig. 6 show the errors in Lu resulting
when the 1D Hydrolight values for L are used in Eq. 9level

u

to estimate the 3D L values. For this simulation, the errorslope
u

is less than 15% for bottom slopes of 308 or less. The errors
are greater for larger solar zenith angles, but even for zenith
angles of 608 (in air), the modeled Lu values are within 7%
of the BMC3D values for bottom slopes of 208 or less.
Again, we see that if errors of order 10% are tolerable, it is
possible to use a 1D radiative transfer model like Hydrolight
in combination with a simple model for the bottom-slope
effect to obtain an estimate of the true radiance, which can
be exactly computed only by running a 3D radiative transfer
code like BMC3D.
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Conclusions

Numerical simulations of three-dimensional underwater
light fields were made using a backward Monte Carlo model
capable of simulating spatially patchy and sloping bottom
boundaries. The results from the 3D Monte Carlo model
were compared with results obtained from the 1D Hydrolight
model. For level bottoms with patchiness spatial scales much
smaller than the instrument footprint, the patchy bottom can
be replaced by a uniform bottom whose reflectance is the
area-weighted average of reflectances of the various bottom
reflectances. A 1D radiative transfer model can then be used
to compute the in-water and water-leaving radiance distri-
bution. If the bottom patches are spatially large compared to
the instrument footprint, the errors in upwelling radiances
and irradiances can be many tens of percent if a 1D model
is used near the boundary between bottom patches of dif-
ferent reflectances. However, the errors can be reduced to
;10% or less in many situations of practical interest if the
1D predictions, valid for homogeneous bottoms, are adjusted
using simple analytical models that account for water atten-
uation and sensor response. The same is true for uniformly
sloping bottoms, whose primary effect is to change the in-
cident angle of the sun’s direct beam onto the smooth bot-
tom. A simple geometrical correction for the bottom slope,
when applied to the 1D solution for a level bottom, can give
upwelling radiances that are within 10% of the exact values
computed by a 3D radiative transfer model for bottom slopes
up to 208. In these situations it is necessary to run a com-
putationally expensive 3D Monte Carlo model only if up-
welling radiances or irradiances must be computed with ac-
curacies of 10% or better. Although our results, strictly
speaking, are valid only for the particular water IOPs and

other conditions used in the simulations, the corresponding
results for other optically shallow, clear water bodies are
likely to be similar.

References

COLLINS, D. G., W. G. BLÄTTNER, M. B. WELLS, AND H. G. HORAK.
1972. Backward Monte Carlo calculations of the polarization
characteristics of the radiation emerging from spherical-shell
atmospheres. Appl. Optics 11: 2684–2696.

COX, C., AND W. MUNK. 1954. Measurement of the roughness of
the sea surface from photographs of the sun’s glitter. J. Opt.
Soc. Am. 44: 838–850.

GORDON, H. R. 1985. Ship perturbation of irradiance measurements
at sea. 1: Monte Carlo simulations. Appl. Opt. 24: 4172–4182.

GREGG, W. W., AND K. L. CARDER. 1990. A simple spectral solar
irradiance model for cloudless maritime atmospheres. Limnol.
Oceanogr. 35: 1657–1675.

HARRISON, A. W., AND C. A. COOMBES. 1988. Angular distribution
of clear sky short wavelength radiance. Solar Energy 40: 57–
63.

MARITORENA, S., A. MOREL, AND B. GENTILI. 1994. Diffuse reflec-
tance of oceanic shallow waters: Influence of the water depth
and bottom albedo. Limnol. Oceanogr. 39: 1689–1703.

MOBLEY, C. D. 1994. Light and water: Radiative transfer in natural
waters. Academic.

, H. ZHANG, AND K. J. VOSS. 2003. Effects of optically shal-
low bottoms on upwelling radiances: Bidirectional reflectance
distribution function effects. Limnol. Oceanogr. 48: 337–345.

, AND OTHERS. 1993. Comparison of numerical models for
computing underwater light fields. Appl. Opt. 32: 7484–7504.

Received: 27 September 2001
Accepted: 8 April 2002

Amended: 17 April 2002

http://www.aslo.org/lo/pdf/vol_39/issue_7/1689.pdf
http://www.aslo.org/lo/toc/vol_48/issue_1pt2/0337.pdf

