微量甲胺磷的示波极谱测定

湖南省劳动卫生职业病防治研究所(长沙 410007) 陈桂贻 汤利民 许支农 陈志莲 张 絮

提 要 研究甲胺磷(MAP)的水解等反应的生成物亚硝酸与 8-羟基喹啉合成的偶氮化合物的极谱行为。该化合物在 - 0.54(VS.SCE)处有一灵敏的极谱吸附波,波高与 MAP 含量在 0.02~1.5 \(\mu_g/\) ml 范围内呈良好线性关系。方法简便快速,选择性好。用于水和空气样品中 MAP 的测定,结果满意。关键词 甲胺磷 8-羟基喹啉 偶氮化合物 示波极谱法

Determination of Micro MAP by Oscillopolarography Chen Guiyi et al. (Institute of Labour Hygiene and Occupational Diseases of Hunan Chang Sha 410007)

The polarographic behaviour of an aze-compound produced by the reaction of Methy amine phosphorus (MAP)—with 8-hy droxyquinoline(Oxin), in the ammonia medium has been studied. The yellow orange aze-compound grives a sensitive adsorption ware at the potential of -0.54V(VS.SCE) the height is directly proportional to concentration of MAP Over the range of $0.02\sim1.54$ g/ml. The method is simple and selective whe applied to water and air sampoles it gives almost the same results those the colorimetry.

Key words MAP Oxin Azo-compoud Oscillopolarography

甲胺磷(MAP) 是一种危害较大的环境污染物, 常用比色法 [1]测定, 但方法的摩尔吸光系数 ϵ 仅为 1. 1× 10^4 , 干扰多, 不能直接测定有色、浑浊样品。

本文受文献^[2]的启发,将 MAP 的水解等反应的生成物亚硝酸与 8-羟基喹啉(Oxin)反应,生成红色偶氮染料。试验发现,该物具有极谱活性,在氢氧化铵介质中,于电位-0.54V(VS.SCE)处有一灵敏吸附波。经对各种测定条件探讨后,提出测定微量 MAP的新方法,其灵敏度较比色法高 10 倍,检出下限为 0.02^{μ} g/ml,线性范围为 $0.02^{\sim}15^{\mu}$ g/ml, Cu^{2+} 、 Pb^{2+} 等 30 多种常见的阴阳离子不干扰,应用于水和空气中微量 MAP的测定,结果满意。并对极谱波特性进行了初步研究。

1 实验部分

1.1 仪器与试剂 JP-2型示波极谱仪,采用三电极系统。混合液: 称取 0.2g 氯化汞和 0.8g 对氨基苯磺酰铵溶于 100ml 0.3 mol/L 盐酸溶液中。2g/L Ox in 溶液: 称取 0.5g 8 羟基喹啉,溶于 5ml 冰醋酸中,并用水稀释至 250ml。50g/L EDTANa2 溶液: 称取 5g 乙二胺四乙酸二钠溶于 12 氨水 100ml 中。标准溶液: 精确称取一定量纯 MAP 标准溶于无水乙醇作贮备液,临用前用水稀释成 $10\mu g/ml$ 。

1. 2 实验方法 于 10ml 比色管中加入 5. 0μgMAP 标准液,补加水至 5ml,加入 1mol/L 氢氧化钠 1ml,于 30℃水浴中水解 20min,取出加入 1mol/L 盐酸 1. 4ml 和 0. 01mol/L 亚硝酸钠 0. 1ml,待 5min 后,加入 20g/L 氨磺酸铵 0. 5ml,激烈振摇 1min,放置 3min 后,加入混合液 1. 5ml, 2g/L Oxin 溶液 1ml, 50g/L EDT A-Na₂ 溶液 1ml,放置 10min 后导数扫描测定,记录 - 0. 54V 处的峰电流、波形见图 1。

2 结果与讨论

2.1 亚硝基化的介质与试剂用量 实验结果表明,在 0.08~0.3mol/L氢氧化钠溶液中MAP定量水解产生甲硫醇钠,甲硫醇钠可在磷酸、硫酸等各种酸性介质中亚硝基化,但以盐酸介质较理想,其酸度以 0.02~0.2mol/L为宜。亚硝酸用量在 0.00005~0.0002mol/L时峰电流高且稳定,用量越增大,空白越高,这可能是加氨基磺酸铵强烈振摇后仍有痕量亚硝酸所致。为了降低试剂空白,本实验加 0.01mol/L 亚硝酸钠 0.1ml,此时的试剂空白值为图 1 曲线 1 所示。

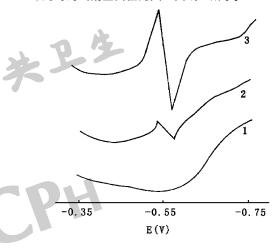


图 1 导数示波极谱图

曲线: 1. 试剂空白 S= 0.04 2.0.2 lgMAP 3.1.0 lgMAP 2.2 混合液的用量 亚硝基化甲硫醇钠在汞离子存在下水解释放出亚硝酸,亚硝酸与对氨基苯磺酰胺重氮化,氯化汞与磺胺用量的影响,如图 2 中曲线 2.3 所示,当各自用量超过 2ml时峰电流下降,实验还发现,氯化汞与磺胺必须混合后同时加入,否则亚硝酸会从溶液中逸出,用量选用 1.5 ml。

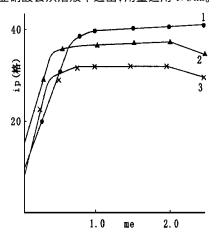


图 2 试剂用量的影响

曲线:1. 混合酸 2. 2g/L 氯化汞 3. 8g/L 磺铵

2 3 偶合剂的选择及用量 表 1 表明盐酸萘乙二胺, 盐酸萘胺, R 盐等均能与重氮化的亚硝酸盐偶合, 产生具有极谱活性的吸附波, 但 R 盐和苯酚灵敏度低, H 酸实验条件不易控制,

盐酸萘胺又有致癌作用,表 1 是两种较为理想的偶合剂的比较。从表中可知,用 Oxin 作偶合剂具有极谱活性高,电极反应可逆性好、稳定性好、毒性小等优点,其用量对峰电流的影响是:随着 Oxin 用量增加,波峰增高,当用量为 0.15ml 时出现平台,0.15~1.5ml 波高最大且无变化,选用 1ml。

表 1 偶合剂的比较(MAP 1 Lg S= 0.04)

名称	保存 天数	波峰电位 V(SCE)	还原电流 (格)	氧化电流 (格)
盐酸萘乙二胺	5	- 0. 58	21	1
Oxin	30	- 0. 54	40	29

- 2.4 方法的线性范围和精密度 在试验条件下, MAP浓度在 0.02~1.5 $^{\text{L}}$ g/ $^{\text{ml}}$ 之间与 $^{\text{IP}}$ 呈良好的线性关系, $^{\text{r}}$ =0.998。并在室温下(4~37 $^{\text{C}}$)48h 无明显变化,但 MAP 浓度大于 1.5 $^{\text{L}}$ g/ $^{\text{ml}}$ 时,因滴汞电极表面吸附达到饱和,波高不再线性增加。对水样浓度 0.05、0.5 $^{\text{L}}$ g/ $^{\text{ml}}$ 平行测定 6 次,相对标准差分别为 6.5% 和 3.1%。
- 2.5 共存离子的影响 对 MAPO 2μg/ml 测定, 当相对误差 ≤±10% 时, 可允许 100 倍的 Ag⁺、Pb²⁺、Fe²⁺、Cd²⁺、Bi²⁺、 Cu²⁺、Zn²⁺、Sn²⁺、Mn²⁺、Fe³⁺、As³⁺、Ni³⁺、Mo(v), 20 倍的 CrO₄²⁻、MnO₄²⁻, 2mg 的 K⁺、Na⁺、NH₄⁴、NO₃、Cl⁻、SO₄²⁻, 但凡 是能水解产生—SH 基化合物如内吸磷、乐果等干扰测定。
- 2.6 极谱特性 试验观察到, MAP 波高与汞柱高度成正比, 表面活性物质聚乙烯醇、碘化钾等引入对波高稍有影响; 毛细管电荷曲线表明, 当加入 MAP 后有明显的吸附现象; 循环伏安图(图 3) 上狭窄的对称波进一步说明此波属吸附波, 导数单扫描极谱图显示的阴极波的电位差 $E_{pp}=0.038$ [t=28°C], 将此值代入下列方程 [3]: $E_{pp}=3.5$ $\frac{RT}{nF}$ (t=28°C), 求得电极反应电子数 n=2.2, 参考文献 [4]有关论述, 可以认为此还原波为偶

$$- N = N - OH + 2e + 2H2O = OH$$

2.7 样品分析

- 2. 7. 1 水样分析 取水样 $5ml \pm 50ml$ 烧杯中, 按试验方法测定, 同时作标准曲线, 求含量。
- 2.7.2 空气样品分析 串联 3 支各装 5ml 水的多孔玻板吸收管,以 0.5L/min 的速度抽取 40L 空气,余同水样分析。
- 2.7.3 回收率及不同方法结果对照 以某地水样为样本,进行水平加标回收试验,结果见表 2,空气样品用不同方法,测定结果对比见表 3。由表中可见,平均回收率达 90% 以上,相对

氮双电子还原波,电极反应过程为:

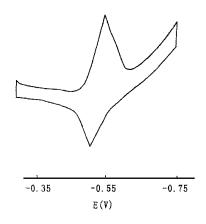
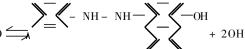



图 3 循环伏安图 7. 0 μg MAP S= 0. 4 表 2 水样的回收率试验

加入MAP		测得MAP				
(μ_g)		(μ_g)			(%)	
0	0. 35	0. 37	0. 32	0. 38		
0. 3	0. 61	0. 64	0. 60	0. 67	91. 6	
0. 5	0. 82	0.81	0. 84	0.86	95. 5	
1. 00	1. 30	1. 38	1. 26	1. 34	96. 5	

表 3 空气样品分析结果的比较

样品编号	比色法	本 法	相对偏差
件如编写	(mg/m^3)	(mg/m^3)	(%)
1	0. 015	0. 013	7. 1
2	0. 030	0. 033	4. 8
3	0. 057	0. 053	3. 6
4	0. 110	0. 105	2. 3

偏差小干8%,分析结果有良好的准确性。

参考文献

- 1. 中国预防医学科学院劳动卫生与职业病研究所(编).车间空气监测检验方法,北京,人民卫生出版社,1990:476
- 2. 陈桂贻, 等. 理化检验 1997; 30(11): 20
- 3. Zhang Qing, Huang Yuying. Talanta, 1987; 34: 555
 - 焦奎, 高小霞. 中国科学(B辑) 1985; 4:306

(1998-12-23 收稿 宋艳萍编辑 张亚莲校对)